JPH05294625A - Production of barium titanate based semiconductor ceramic having positive characteristic - Google Patents

Production of barium titanate based semiconductor ceramic having positive characteristic

Info

Publication number
JPH05294625A
JPH05294625A JP4098068A JP9806892A JPH05294625A JP H05294625 A JPH05294625 A JP H05294625A JP 4098068 A JP4098068 A JP 4098068A JP 9806892 A JP9806892 A JP 9806892A JP H05294625 A JPH05294625 A JP H05294625A
Authority
JP
Japan
Prior art keywords
powder
temperature
barium titanate
resistance
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4098068A
Other languages
Japanese (ja)
Inventor
Nobuhiko Obara
進彦 小原
Hirosumi Izawa
広純 伊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP4098068A priority Critical patent/JPH05294625A/en
Publication of JPH05294625A publication Critical patent/JPH05294625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide a method for producing a semiconductor ceramic of barium titanate having positive characteristics, capable of lowering a specific resistance at ordinary temperature, increasing coefficient of resistance/temperature and further increasing flash dielectric strength larger. CONSTITUTION:The objective semiconductor ceramic of barium titanate with positive characteristics having good characteristics is obtained by forming an average particle diameter of titanium oxide powder which is a raw material into the range of 0.1-0.6mum expressed in terms of an accumulated weight distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチタン酸バリウム系の正
特性半導体磁器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a barium titanate-based positive-characteristic semiconductor ceramic.

【0002】[0002]

【従来の技術】一般に、チタン酸バリウムは120℃付
近にキュリー点を持ち、それ以下では強誘電体で、絶縁
性を示す。しかし、チタン酸バリウムにビスマス、イッ
トリウム、ニオブ、アンチモン、タンタル、希土類元素
等のうち少なくとも一種を微量添加すると半導体化し
て、室温での抵抗率が10〜103 Ωcm程度に下がる
ことが知られている。このような半導体化したチタン酸
バリウムは通常、キュリー点を超えると異常な抵抗上昇
を示すという特徴を有している。また、チタン酸バリウ
ムのキュリー点はストロンチウム、ジルコニウム、鉛等
の元素の添加により、変えることが出来ることが知られ
ている。さらに、マンガンや、珪素、アルミニウム等を
添加したり、チタンを量論より多く加えることにより、
抵抗上昇の度合いを高めたり、特性を安定化させる等の
効果があることも知られている。
2. Description of the Related Art Generally, barium titanate has a Curie point near 120 ° C., and below that, it is a ferroelectric substance and exhibits insulating properties. However, it is known that when at least one of bismuth, yttrium, niobium, antimony, tantalum, and rare earth elements is added to barium titanate in a trace amount, it becomes a semiconductor, and the resistivity at room temperature is lowered to about 10 to 10 3 Ωcm. There is. Such a barium titanate made into a semiconductor usually has a characteristic that it exhibits an abnormal resistance increase when it exceeds the Curie point. It is also known that the Curie point of barium titanate can be changed by adding elements such as strontium, zirconium and lead. Furthermore, by adding manganese, silicon, aluminum, etc., or by adding titanium in a larger amount than the stoichiometry,
It is also known to have effects such as increasing the degree of resistance increase and stabilizing the characteristics.

【0003】正特性半導体磁器の主な特性として室温に
おける比抵抗値、キュリー点付近での抵抗の変化率(抵
抗温度係数α)等がある。抵抗温度係数αは α={ln(R2 /R1 )/(T2 /T1 )}×100 〔%/℃〕 で示され、R1 は25℃の抵抗値(R25)の102 倍抵
抗値、T1 はR1 のときの温度、R2 はR25の103
抵抗値、T2 はR2 のときの温度である。正特性半導体
磁器はテレビ受像機における消磁回路を駆動するスイッ
チング素子、モーター起動用素子、定温度用発熱体素
子、電流制限用素子、温度制御用素子等に使用されてい
る。この中で消磁回路用、モーター起動用、電流制限用
等では素子の小型化の要求のため、抵抗温度係数を大き
く保ったまま、常温比抵抗が低く、フラッシュ耐圧の大
きな正特性半導体磁器が求められている。しかし、従来
のものにおいては比抵抗が低くなるにつれて、抵抗温度
係数が小さくなることが知られている。たとえば、比抵
抗が70Ωcm程度の場合、αを20程度、フラッシュ
耐圧特性は140V/mmに留まっている。(西井、エ
レクトロニク・セラミクス、’88、5月号(198
8)、22)
The main characteristics of the positive-characteristic semiconductor porcelain are the specific resistance value at room temperature, the rate of change of resistance near the Curie point (temperature coefficient of resistance α), and the like. The temperature coefficient of resistance α is expressed by α = {ln (R 2 / R 1 ) / (T 2 / T 1 )} × 100 [% / ° C.], and R 1 is 10 of the resistance value (R 25 ) at 25 ° C. twice the resistance value, T 1 is the temperature when the R 1, R 2 is 10 3 times the resistance value of R 25, T 2 is the temperature at the R 2. Positive-characteristic semiconductor porcelain is used as a switching element for driving a degaussing circuit in a television receiver, a motor starting element, a constant temperature heating element, a current limiting element, a temperature controlling element, and the like. Among these, for degaussing circuits, motor starting, current limiting, etc., there is a demand for smaller elements, so there is a need for a positive-characteristic semiconductor porcelain with low room temperature specific resistance and large flash withstand voltage while maintaining a large temperature coefficient of resistance. Has been. However, it is known that the conventional temperature coefficient decreases as the specific resistance decreases. For example, when the specific resistance is about 70 Ωcm, α is about 20, and the flash withstand voltage characteristic is 140 V / mm. (Nishii, Electronic Ceramics, '88, May issue (198
8), 22)

【0004】また、一般にチタン酸バリウム系の正特性
半導体磁器は原料を所定割合に混合し、仮焼後、粉砕、
造粒、成形し、焼成をする工程で製造される。各工程の
粉体を微細化することにより、抵抗温度係数を大きく保
ったまま、常温比抵抗が低く、フラッシュ耐圧の大きな
正特性半導体磁器を得ようとする試みとして、特開昭6
4−22001、特開平2−289426、特開平3−
88770がある。特開昭64−22001には粉砕分
級し、90重量%以上を1.0〜3.0μm にするとフ
ラッシュ耐圧が向上することが開示され、特開平2−2
89426、特開平3−88770には、湿式共沈法で
調整したBaTiO3 、SrTiO3 等を用い、それぞ
れの1次粒子と2次粒子を規定している。例えば、Ba
TiO3 は0.2μm 以下の1次粒子で開気孔を有する
2次粒子が平均粒径150〜250μm であると、低抵
抗なPTCが得られることが開示されている。
In general, barium titanate-based positive temperature coefficient semiconductor porcelain is prepared by mixing raw materials in a predetermined ratio, calcining and crushing.
It is manufactured in the steps of granulating, molding and firing. As an attempt to obtain a positive temperature coefficient semiconductor ceramic having a low room temperature specific resistance and a large flash withstand voltage while maintaining a large temperature coefficient of resistance by finely pulverizing the powder in each step, Japanese Patent Laid-Open Publication No.
4-2001, JP-A-2-289426, JP-A-3-
There is 88770. Japanese Unexamined Patent Publication No. 64-22001 discloses that when 90% by weight or more is crushed and classified to 1.0 to 3.0 .mu.m, the flash withstand voltage is improved.
In 89426 and JP-A-3-88770, primary particles and secondary particles of BaTiO 3 , SrTiO 3 and the like prepared by a wet coprecipitation method are used to define the respective primary particles and secondary particles. For example, Ba
It is disclosed that when TiO 3 is 0.2 μm or less in primary particles and the secondary particles having open pores have an average particle size of 150 to 250 μm, a low resistance PTC can be obtained.

【0005】[0005]

【発明が解決しようとする課題】従来のチタン酸バリウ
ム系正特性半導体磁器では、印加される大きな電圧に十
分耐え得る優れた耐電圧特性(フラッシュ耐圧特性)と
してはまだ十分でない。また、常温比抵抗をより低くす
るとともに抵抗温度係数αも大きくする要求が更に深ま
っている。
The conventional barium titanate-based positive-characteristic semiconductor porcelain is not yet sufficient as the excellent withstand voltage characteristic (flash withstand voltage characteristic) capable of sufficiently withstanding a large applied voltage. Further, there is a growing demand for lowering the room temperature specific resistance and increasing the resistance temperature coefficient α.

【0006】[0006]

【課題を解決するための手段】本発明者はこのような現
状に鑑み、上記問題点を解決するために鋭意、検討を行
なった結果、次の発明に至った。即ち、チタン酸バリウ
ム系正特性半導体磁器の製造方法において、原料混合粉
末のうち酸化チタン粉末の平均粒径が累積重量分布表示
で0.1〜0.6〜μm である粉末を用いることを特徴
とする製造方法を見出した。
The present inventor has made earnest studies in order to solve the above problems in view of the current situation, and as a result, the following invention has been achieved. That is, in the method for manufacturing a barium titanate-based positive-characteristic semiconductor porcelain, a powder having a mean particle size of titanium oxide powder of the raw material mixed powder of 0.1 to 0.6 to μm in terms of cumulative weight distribution is used. The manufacturing method was found.

【0007】以下に本発明を詳説する。チタン酸バリウ
ム系正特性半導体磁器の主な原料成分は、元素としてB
aとTiで、キュリー点を変化させる元素としてSr、
Pb、Ca、Zr等が用いられる。これらの他にBi、
Y、Nb、Sb、Ta、希土類元素等を半導体化させる
微量添加元素として使用する場合もある。更に、Mn、
Si、Al、V、Cr、Fe、Co等も微量添加元素と
して加えられることもある。
The present invention will be described in detail below. The main raw material component of barium titanate-based positive temperature coefficient semiconductor porcelain is B as an element.
a and Ti, Sr as an element that changes the Curie point,
Pb, Ca, Zr or the like is used. Besides these, Bi,
In some cases, Y, Nb, Sb, Ta, rare earth elements, and the like are used as a trace amount addition element for converting to semiconductor. Furthermore, Mn,
Si, Al, V, Cr, Fe, Co, etc. may be added as a trace additive element.

【0008】チタン酸バリウム系正特性半導体磁器で
は、一般にモル数の割合としてBaは0.4〜0.9モ
ル;Tiは1.0〜1.1モル;Sr、Pb、Ca、Z
rは合わせて0.1〜0.4モルであり、上記のBi、
Y、Nb等は合わせて0.01〜0.05モル、Mn、
Si、Al等は合わせて0.01〜0.1モル含有され
る。本発明では原料は、固体の形態の化合物なら使用で
き、Ti元素はTiO2 として添加し、Ba、Sr、P
b、Ca元素の場合、炭酸塩、硫酸塩、硝酸塩、リン酸
塩、酸化物、水酸化物等が使用でき、Zrの場合は酸化
物、水酸化物等が使用できる。原料中の微量不純物によ
って特性が変わるため、それぞれの原料の不純物含量は
通常0.1%以下であるのが好ましい。
In the barium titanate positive-characteristic semiconductor porcelain, generally, the molar ratio is 0.4 to 0.9 mol of Ba; 1.0 to 1.1 mol of Ti; Sr, Pb, Ca and Z.
r is 0.1 to 0.4 mol in total, and the above Bi,
Y, Nb, etc. are 0.01-0.05 mol in total, Mn,
Si, Al and the like are contained in a total amount of 0.01 to 0.1 mol. In the present invention, the raw material can be any compound in the form of a solid, and the Ti element is added as TiO 2 , and Ba, Sr, P
In the case of b and Ca elements, carbonates, sulfates, nitrates, phosphates, oxides and hydroxides can be used, and in the case of Zr, oxides and hydroxides can be used. Since the characteristics change depending on the trace impurities in the raw materials, the content of impurities in each raw material is preferably 0.1% or less.

【0009】原料混合粉末のうち酸化チタンTiO2
末の累積重量分布表示での平均粒径が小さい程、20%
/℃以上の抵抗温度係数を維持しつつ常温の比抵抗が小
さく、フラッシュ耐圧が大きくなるが、0.1μm 未満
となると粉末の反応性が高く、焼結時等で異常粒ができ
やすく、その結果、フラッシュ耐圧が10kW未満とな
り劣る。0.6μm を超えると常温の比抵抗が70Ωc
mより高くなり、従来品以下の特性のものとなるため好
ましくない。よって、0.1〜0.6μm の範囲が混合
原料粉末のうちTiO2 の平均粒径として好ましく、更
に0.2〜0.4μm の範囲がより好ましい。TiO2
粉末の平均粒径が0.1〜0.6μm であると20%/
℃以上の抵抗温度係数を維持しつつ常温の比抵抗が70
Ωcmより低く、また、10kW以上のフラッシュ耐圧
(=(耐電圧)2 /(室温抵抗))の特性をも持ったチ
タン酸バリウム系半導体磁器が得られることがわかっ
た。
The smaller the average particle size in the cumulative weight distribution display of the titanium oxide TiO 2 powder in the raw material mixed powder, the more it is 20%.
Although the resistivity at room temperature is small and the flash withstand voltage is large while maintaining the temperature coefficient of resistance above / ° C, the reactivity of the powder is high when it is less than 0.1 μm, and abnormal grains are easily formed during sintering. As a result, the flash withstand voltage is less than 10 kW, which is inferior. If it exceeds 0.6 μm, the resistivity at room temperature is 70 Ωc
m is higher than that of the conventional product, which is not preferable. Therefore, the range of 0.1 to 0.6 μm is preferable as the average particle size of TiO 2 in the mixed raw material powder, and the range of 0.2 to 0.4 μm is more preferable. TiO 2
20% / when the average particle size of the powder is 0.1-0.6 μm
The resistivity at room temperature is 70 while maintaining the temperature coefficient of resistance above ℃
It was found that a barium titanate-based semiconductor ceramic having a flash withstand voltage (= (withstand voltage) 2 / (room temperature resistance)) of 10 kW or more and lower than Ωcm can be obtained.

【0010】原料の混合法には、乳鉢混合、ボールミル
混合、媒体撹拌型混合、気流粉砕混合等が用いられる
が、混合の際にも不純物混入には十分配慮する必要があ
る。ボールミル混合の場合には、ポットまたはミルおよ
びボールはナイロン樹脂またはウレタンゴムでライニン
グまたはコートしたものやジルコニア製のボールを使用
し、不純物の混入を極力抑える。本発明の原料のTiO
2 粉末を所定の粒径にするには、他の原料粉末との混合
と同時に所定の粒径にしてもよく、また、混合前に所定
の粒径のTiO2 粉末にして混合してもどちらでもよ
い。このように粒度調整する方法は一般に行なわれる粉
砕法等によればよく、例えばボールミル粉砕混合法によ
る場合にはボールの比重、径を変えたり、回転数を調整
し、粒度を本発明の所定の範囲のものに整える。混合
後、粉砕をしてTiO2 粉末の粒径を調製する場合、T
iO2 はH2 SO4 以外の塩酸、硝酸、フッ酸には溶け
ないからTiO2 以外の粉末はこれらの鉱酸にて溶かし
た後、TiO2 粉末のみの試料としてそれの粒径を測定
しながらTiO2 粉末の粒径を整えればよい。
As a method for mixing the raw materials, mortar mixing, ball mill mixing, medium stirring type mixing, air flow crushing mixing and the like are used, but it is necessary to give sufficient consideration to impurities during mixing. In the case of ball-mill mixing, the pots or mills and balls used should be those lined or coated with nylon resin or urethane rubber or balls made of zirconia to minimize contamination with impurities. Raw material TiO of the present invention
In order to make the two powders have a predetermined particle size, the powder may have a predetermined particle size at the same time as mixing with other raw material powders, or may be made into TiO 2 powder having a predetermined particle size before mixing. But it's okay. The method of adjusting the particle size as described above may be carried out by a generally used pulverizing method. For example, in the case of a ball mill pulverizing and mixing method, the specific gravity and diameter of the balls are changed or the number of revolutions is adjusted to adjust the particle size to a predetermined value according to the present invention. Adjust to the range. When the particle size of the TiO 2 powder is adjusted by grinding after mixing, T
Since iO 2 is insoluble in hydrochloric acid, nitric acid, and hydrofluoric acid other than H 2 SO 4 , powders other than TiO 2 are dissolved in these mineral acids, and the particle size of TiO 2 powder is measured as a sample. However, the particle size of the TiO 2 powder may be adjusted.

【0011】所定の粒度に混合された原料を粉体のまま
か成形し、その後大気中にて800〜1300℃で仮焼
する。仮焼温度が低い程、抵抗温度係数が小さくなり、
常温の比抵抗が高くなり、仮焼温度が高くなるとまた常
温の比抵抗が高くなり好ましくない。1150〜125
0℃の範囲の仮焼温度はより好ましい。成形し仮焼した
場合は仮焼後、粉砕または解砕し、粉体のままで仮焼し
た場合も解砕し、PVA、PVB等のバインダーを加
え、スプレードライヤー等にて1〜50μm φに造粒
し、それを500〜8000kg/cm2 程度で成形す
る。その後、その成形品を通常大気中にて1250〜1
400℃で焼結する。最高焼結温度での保持時間が長い
と常温での比抵抗が上昇するので保持時間は短くするの
が好ましい。また、特性は降温速度に強く依存し、最高
温度から1000℃程度までの降温速度を30〜100
℃/時間の範囲とするとよい。仮焼温度と焼結温度と
は、強く影響しあっているので最適の組み合わせを決め
る必要がある。
The raw material mixed to a predetermined particle size is powdered or molded, and then calcined at 800 to 1300 ° C. in the atmosphere. The lower the calcination temperature, the smaller the temperature coefficient of resistance,
When the specific resistance at room temperature becomes high and the calcination temperature becomes high, the specific resistance at room temperature also becomes high, which is not preferable. 1150-125
A calcination temperature in the range of 0 ° C is more preferred. If it is molded and calcined, it is calcinated and then crushed or crushed. If it is calcinated as a powder, it is crushed, and a binder such as PVA or PVB is added, and it is adjusted to 1 to 50 μm φ with a spray dryer or the like. Granulate and shape it at about 500-8000 kg / cm 2 . Then, the molded product is 1250 to 1 in normal air.
Sinter at 400 ° C. If the holding time at the maximum sintering temperature is long, the specific resistance at room temperature increases, so the holding time is preferably short. Moreover, the characteristics strongly depend on the cooling rate, and the cooling rate from the maximum temperature to about 1000 ° C. is 30 to 100.
It is preferable that the temperature is in the range of ° C / hour. Since the calcination temperature and the sintering temperature strongly influence each other, it is necessary to determine the optimum combination.

【0012】[0012]

【実施例】以下に、実施例及び比較例により説明する。
なお、以下の実施例、比較例は主成分としてBa、T
i、Srとなっているが、本発明はこの系に限定される
ものでなく、Srの代わりにPb、CaまたはZrが入
った系でも同様な結果が得られた。 実施例1 炭酸バリウム(日本化学工業製高純度品F03、平均粒
径d50=2.2μm )、炭酸ストロンチウム(日本特殊
化成製高純度品、d50=6.2μm )、酸化イットリウ
ム(和光純薬製特級)、酸化チタン(昭和電工製スーパ
ータイタニアG2、d50=0.52μm )、炭酸マンガ
ン(半井化学薬品製特級)、酸化ケイ素(昭和電工製高
純度球状単分散シリカ、d50=0.5μm )、酸化アル
ミニウム(バイコフスキー製CR6、d50=0.3μm
)をTi原子1.0000に対し、次のような比率で
配合する。 Ba 0.7706 Sr 0.2192 Y 0.0065 Si 0.0432 Mn 0.0010 Al 0.0024
[Examples] Examples and comparative examples will be described below.
In the following examples and comparative examples, Ba, T
However, the present invention is not limited to this system, and similar results were obtained with a system containing Pb, Ca or Zr instead of Sr. Example 1 Barium carbonate (Nippon Kagaku Kogyo's high-purity product F03, average particle size d 50 = 2.2 μm), strontium carbonate (Nippon Tokushu Kasei's high-purity product, d 50 = 6.2 μm), yttrium oxide (Wako Pure) Pharmaceutical grade), titanium oxide (Showa Denko super titania G2, d 50 = 0.52 μm), manganese carbonate (Hanai Chemical grade), silicon oxide (Showa Denko high-purity spherical monodisperse silica, d 50 = 0) 0.5 μm), aluminum oxide (CR6 made by Baikovsky, d 50 = 0.3 μm)
) Is mixed with Ti atom of 1.0000 in the following ratio. Ba 0.7706 Sr 0.2192 Y 0.0065 Si 0.0432 Mn 0.0010 Al 0.0024

【0013】この配合したもの130gを採り、純水2
00gとともに0.7リットルのウレタンライニングポ
ットミルに入れ、10mmφのナイロン被覆ボール50
個にて回転数を20rpm とし、20時間混合した。湿式
混合粉砕後、ボールを分離し、スラリー状態で回収し
た。このスラリーの一部を1N塩酸で溶かし、不溶な沈
澱であるTiO2 粉末を水洗し、湿式状態の試料をその
ままCILAS社製Granulometer 850
にて粒度測定した。TiO2 粉末の累積分布の平均粒径
50は0.52μm であった。残りのスラリーを100
℃で乾燥し、この乾燥粉をアルミナ匣鉢に入れ、大気中
にて1180℃まで150℃/時間で昇温し、1180
℃で2時間保持し、150℃/時間にて降温し仮焼し
た。
130 g of this blend was taken and pure water 2
Put it in a 0.7 liter urethane lining pot mill together with 00 g and 10 mmφ nylon coated ball 50
The number of revolutions was 20 rpm and the mixing was performed for 20 hours. After wet mixing and pulverization, the balls were separated and collected in a slurry state. A part of this slurry was dissolved with 1N hydrochloric acid, and an insoluble precipitate of TiO 2 powder was washed with water, and a wet sample was used as it was for Granulometer 850 manufactured by CILAS.
The particle size was measured at. The average particle size d 50 of the cumulative distribution of the TiO 2 powder was 0.52 μm. 100 for the rest of the slurry
Dry at 0 ° C, put the dried powder in an alumina bowl, and raise the temperature to 1180 ° C in the air at 150 ° C / hour,
The temperature was maintained at 2 ° C for 2 hours, and the temperature was lowered at 150 ° C / hour to perform calcination.

【0014】得られた仮焼粉を乳鉢にて解砕し、2.5
重量%PVA水溶液をスラリー濃度20重量%になるよ
うに加えて、スプレードライヤーにて平均粒径20μm
に造粒した。この顆粒を4ton/cm2 で一軸加圧成
形し、直径16mmφ、厚さ1.7mmのペレット状成
形体を得た。この成形体を大気中にて300℃まで10
0℃/時間、その後1300℃まで200℃/時間にて
昇温し、1300℃では保持せずすぐ降温し、1000
℃まで50℃/時間、その後200℃/時間で常温まで
降温し、焼結した。
The calcined powder obtained is crushed in a mortar to give 2.5
Add a weight% PVA aqueous solution to a slurry concentration of 20% by weight and use a spray dryer to obtain an average particle size of 20 μm.
Granulated into The granules were uniaxially pressure-molded at 4 ton / cm 2 to obtain pellet-shaped molded bodies having a diameter of 16 mmφ and a thickness of 1.7 mm. This molded product is heated to 300 ° C in the atmosphere for 10
0 ° C./hour, then increase to 1300 ° C. at 200 ° C./hour, and immediately lower the temperature at 1300 ° C. without holding,
The temperature was decreased to 50 ° C./hour, and then to 200 ° C./hour, and the temperature was lowered to room temperature, followed by sintering.

【0015】得られたペレット状焼結体(13.4mm
φ×1.6mmt)にニッケル・ホウ素系の無電解メッ
キで厚さ7〜8μm のNi電極を付け、更に銀ペースト
を焼付け銀電極を付けた。この試料を恒温槽中にセット
し、25〜200℃における抵抗値を2端子法にて測定
(n=10にて)し、25℃での常温比抵抗および抵抗
温度係数αを求め、試料10個の平均値を表1に示し
た。また、フラッシュ耐圧を求めるために以下の条件で
測定した。即ち、室温の電極付のペレット状試料に15
Vの電圧を1分間印加する。試料温度が上がるための電
圧印加後、15分間放冷する。次に試料に30Vの電圧
を1分間印加、15分放冷する。このように電圧印加、
放冷の操作を電圧を15Vずつ上げて順次行ない、ペレ
ット状試料が破壊されるまで続け、破壊されなかった電
圧のうち、最高電圧Eを求め、次式にてフラッシュ耐圧
(kW)を試料個数10個にて求め、最小値を表1に表
示した。 フラッシュ耐圧(kW)=E2 /(室温抵抗) なお室温抵抗は25℃の値を使用した。
The obtained pellet-shaped sintered body (13.4 mm
φ × 1.6 mmt) was attached with a Ni electrode having a thickness of 7 to 8 μm by nickel-boron-based electroless plating, and was further baked with a silver paste to attach a silver electrode. This sample was set in a constant temperature bath, the resistance value at 25 to 200 ° C. was measured by the two-terminal method (at n = 10), and the room temperature specific resistance at 25 ° C. and the temperature coefficient of resistance α were obtained. The average value of each is shown in Table 1. In addition, the flash withstand voltage was measured under the following conditions. That is, the pellet-shaped sample with electrodes at room temperature
The voltage of V is applied for 1 minute. After applying a voltage for raising the sample temperature, the sample is allowed to cool for 15 minutes. Next, a voltage of 30 V is applied to the sample for 1 minute and left to cool for 15 minutes. In this way voltage application,
The cooling operation is sequentially performed by increasing the voltage by 15 V and continues until the pellet-shaped sample is broken. The highest voltage E among the unbroken voltages is calculated, and the flash withstand voltage (kW) is calculated by the following formula. The minimum value is shown in Table 1 as 10 values. Flash withstand voltage (kW) = E 2 / (room temperature resistance) The room temperature resistance was 25 ° C.

【0016】実施例2〜5 実施例1の試料の造り方および特性測定条件において、
仮焼および焼結温度を表1のように変えた以外は、実施
例1と同様にして、表1の試料特性結果を得た。
Examples 2 to 5 In the sample manufacturing method and the characteristic measurement conditions of Example 1,
The sample characteristic results in Table 1 were obtained in the same manner as in Example 1 except that the calcination and sintering temperatures were changed as shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例6〜12 酸化チタンとして昭和電工製スーパータイタニアG1
(d50=0.30μm )を用いた以外は実施例1と同じ
ように製造した。ただし、仮焼および焼結温度は表2に
示した条件である。また、原料混合後のTiO2 粉末の
50は実施例1と同様に処理後測定し、その値は0.2
9μm であった。これらの試料の特性の結果を表2に示
す。
Examples 6 to 12 Showa Denko Super Titania G1 as titanium oxide
The procedure of Example 1 was repeated except that (d 50 = 0.30 μm) was used. However, the calcination and sintering temperatures are the conditions shown in Table 2. The d 50 of the TiO 2 powder after mixing the raw materials was measured after the treatment in the same manner as in Example 1, and the value was 0.2.
It was 9 μm. The results of the properties of these samples are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】比較例1〜3 酸化チタンとして東邦チタニウム製チタニア(d50
0.69μm )を用いた以外は実施例1と同一条件で比
較例1〜3の試料を調製した。ただし、仮焼および焼結
温度は表3に示した条件である。また、原料混合後のT
iO2 粉末のd50は実施例1と同様な処理で測定し、
0.68μm であった。比較例1〜3の特性を表3に示
す。
Comparative Examples 1 to 3 As titanium oxide, titania made by Toho Titanium (d 50 =
Samples of Comparative Examples 1 to 3 were prepared under the same conditions as in Example 1 except that 0.69 μm) was used. However, the calcination and sintering temperatures are the conditions shown in Table 3. In addition, T after mixing the raw materials
The d 50 of the iO 2 powder was measured by the same treatment as in Example 1,
It was 0.68 μm. Table 3 shows the characteristics of Comparative Examples 1 to 3.

【0021】[0021]

【表3】 [Table 3]

【0022】比較例4〜6 酸化チタンとして出光興産製チタニアIT−PC(d50
=0.06μm )を用いた以外は実施例1と同一条件で
比較例4〜6の試料を調製した。ただし、仮焼温度は1
200℃、焼結温度は表3に示す条件である。また、原
料混合後のTiO2 粉末のd50は0.06μm で変わら
なかった。比較例4〜6の特性を表3に示す。
Comparative Examples 4 to 6 Titanium IT-PC (d 50 manufactured by Idemitsu Kosan Co., Ltd. as titanium oxide
= 0.06 µm), the samples of Comparative Examples 4 to 6 were prepared under the same conditions as in Example 1. However, the calcination temperature is 1
200 ° C. and sintering temperature are the conditions shown in Table 3. The d 50 of the TiO 2 powder after mixing the raw materials was 0.06 μm, which was unchanged. Table 3 shows the characteristics of Comparative Examples 4 to 6.

【0023】実施例13〜18 実施例1の10mmφのナイロン被覆ボールによる混合
条件を20mmφのジルコニアボール50個にて40時
間、回転数100rpm にて混合粉砕したことを除いて実
施例1と同一条件で実施例13〜18の試料を調製し
た。ただし、仮焼および焼結温度は表4に示した条件で
ある。また、混合粉砕後のTiO2 粉末のd50は実施例
1と同様の処理をし、粒度測定した。その結果、0.4
5μm であった。実施例13〜18の焼結試料特性を表
4に示す。
Examples 13 to 18 The same conditions as in Example 1 except that the 10 mmφ nylon-coated balls of Example 1 were mixed and ground with 50 20 mmφ zirconia balls for 40 hours at a rotation speed of 100 rpm. Samples of Examples 13 to 18 were prepared in. However, the calcination and sintering temperatures are the conditions shown in Table 4. The d 50 of the TiO 2 powder after mixed and pulverized was treated in the same manner as in Example 1 and the particle size was measured. As a result, 0.4
It was 5 μm. Table 4 shows the characteristics of the sintered samples of Examples 13 to 18.

【0024】なお、原料を混合粉砕して得られた粉末中
のジルコニウム含量を化学分析したところ320ppm で
あった。
The zirconium content in the powder obtained by mixing and grinding the raw materials was 320 ppm as a result of chemical analysis.

【0025】[0025]

【表4】 [Table 4]

【0026】実施例19〜27 実施例13は酸化チタンとしてスーパータイタニアG2
を使用しているが、その変わりに前述のスーパータイタ
ニアG1を用いること以外は実施例13と同様に実施例
19〜27の試料を表5に示す仮焼および焼結温度の条
件で調製した。混合粉砕後のTiO2 粉末の粒度は同様
に処理、測定したが、d50は0.24μm であった。ま
た、混合粉砕後の粉末中のジルコニウム含量は300pp
m であった。実施例19〜27の試料の特性を表5に示
す。
Examples 19 to 27 In Example 13, titanium oxide was used as super titania G2.
However, the samples of Examples 19 to 27 were prepared under the conditions of calcination and sintering temperatures shown in Table 5 in the same manner as in Example 13 except that Super Titania G1 was used instead. The particle size of the TiO 2 powder after mixed pulverization was treated and measured in the same manner, and the d 50 was 0.24 μm. The zirconium content in the powder after mixing and grinding is 300 pp.
It was m. Table 5 shows the characteristics of the samples of Examples 19 to 27.

【0027】[0027]

【表5】 [Table 5]

【0028】実施例28〜30 スーパータイタニアG2を820℃にて2時間熱処理し
たTiO2 粉末のd50は0.64μm であった。この熱
処理後のTiO2 粉末を用いる以外は実施例13と同様
に処理し、仮焼および焼結温度を表6に示す条件で実施
例28〜30の試料を調製した。混合粉砕後のTiO2
粉末の粒度は同様に処理、測定したが、d50は0.56
μm であった。また、混合粉砕後の粉末中のジルコニウ
ム含量は320ppm であった。実施例28〜30の焼結
試料の特性を表6に示す。
Examples 28 to 30 Super Titania G2 was heat-treated at 820 ° C. for 2 hours to give a TiO 2 powder having a d 50 of 0.64 μm. The samples of Examples 28 to 30 were prepared under the conditions shown in Table 6 for the calcination and sintering temperatures, except that the TiO 2 powder after this heat treatment was used. TiO 2 after mixed grinding
The particle size of the powder was treated and measured in the same manner, but the d 50 was 0.56.
It was μm. The zirconium content in the powder after mixed and pulverized was 320 ppm. Table 6 shows the characteristics of the sintered samples of Examples 28 to 30.

【0029】[0029]

【表6】 [Table 6]

【0030】比較例7〜10 酸化チタンとして東邦チタニウム製チタニア(d50
0.69μm )を用いた以外は実施例13と同一条件で
調製し、比較例7〜10の試料を造った。仮焼および焼
結温度条件は表7に示すものである。また、混合粉砕後
のTiO2 粉末の粒度はd50=0.61μm であり、混
合粉砕後の粉末中のジルコニウム含量は300ppm であ
った。比較例7〜10の焼結試料の特性を表7に示す。
Comparative Examples 7 to 10 As titanium oxide, titania (d 50 =, manufactured by Toho Titanium) was used.
Samples of Comparative Examples 7 to 10 were prepared under the same conditions as in Example 13 except that 0.69 μm) was used. The calcination and sintering temperature conditions are shown in Table 7. The particle size of the TiO 2 powder after mixed and pulverized was d 50 = 0.61 μm, and the zirconium content in the powder after mixed and pulverized was 300 ppm. Table 7 shows the characteristics of the sintered samples of Comparative Examples 7 to 10.

【0031】比較例11〜17 酸化チタンとして出光興産製チタニアIT−PC(d50
=0.06μm )を用いた以外は実施例13と同一条件
で調製した。仮焼および焼結温度条件は表7に示す条件
で比較例11〜17を造った。また、混合粉砕後のTi
2 粉末の粒度はd50=0.06μm で変化はなく、混
合粉砕後の粉末中のジルコニウム含量は280ppm であ
った。比較例11〜17の焼結試料の特性を表7に示
す。
Comparative Examples 11 to 17 Titanium IT-PC (d 50 manufactured by Idemitsu Kosan Co., Ltd. as titanium oxide
Was prepared under the same conditions as in Example 13 except that 0.06 μm) was used. Comparative Examples 11 to 17 were produced under the conditions of calcination and sintering temperature shown in Table 7. Also, Ti after mixed and pulverized
The particle size of the O 2 powder was d 50 = 0.06 μm, which was unchanged, and the zirconium content in the powder after mixing and pulverization was 280 ppm. Table 7 shows the characteristics of the sintered samples of Comparative Examples 11 to 17.

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【発明の効果】酸化チタン粉末原料が累積重量分布表示
で平均粒径0.1〜0.6μm ならそのまま他の原料と
混合配合し、そうでなければ混合しながら粉砕等を行な
い、上記の平均粒径範囲にすることにより、従来より常
温比抵抗をより低くするとともに抵抗温度係数を大きく
し、フラッシュ耐圧も高くすることができる。
EFFECTS OF THE INVENTION If the raw material of titanium oxide powder has an average particle size of 0.1 to 0.6 μm in terms of cumulative weight distribution, it is mixed and blended with other raw materials as it is. By setting the particle size within the range, it is possible to further lower the room temperature specific resistance, increase the resistance temperature coefficient, and increase the flash withstand voltage as compared with the related art.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウム系正特性半導体磁器の
製造方法において、原料混合粉末のうち酸化チタン粉末
の平均粒径が累積重量分布表示で0.1〜0.6〜μm
である粉末を用いることを特徴とする方法。
1. A method for manufacturing a barium titanate-based positive-characteristic semiconductor porcelain, wherein the average particle size of titanium oxide powder in the raw material mixed powder is 0.1 to 0.6 μm in terms of cumulative weight distribution.
A method comprising using a powder that is
JP4098068A 1992-04-17 1992-04-17 Production of barium titanate based semiconductor ceramic having positive characteristic Pending JPH05294625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4098068A JPH05294625A (en) 1992-04-17 1992-04-17 Production of barium titanate based semiconductor ceramic having positive characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4098068A JPH05294625A (en) 1992-04-17 1992-04-17 Production of barium titanate based semiconductor ceramic having positive characteristic

Publications (1)

Publication Number Publication Date
JPH05294625A true JPH05294625A (en) 1993-11-09

Family

ID=14210025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4098068A Pending JPH05294625A (en) 1992-04-17 1992-04-17 Production of barium titanate based semiconductor ceramic having positive characteristic

Country Status (1)

Country Link
JP (1) JPH05294625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035593A1 (en) * 2004-09-27 2006-04-06 Toho Titanium Co., Ltd. Barium titanate semiconductor ceramic composition
JP2012199339A (en) * 2011-03-18 2012-10-18 Ricoh Co Ltd Non-lead film actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035593A1 (en) * 2004-09-27 2006-04-06 Toho Titanium Co., Ltd. Barium titanate semiconductor ceramic composition
JPWO2006035593A1 (en) * 2004-09-27 2008-05-15 東邦チタニウム株式会社 Barium titanate semiconductor porcelain composition
JP4800956B2 (en) * 2004-09-27 2011-10-26 東邦チタニウム株式会社 Barium titanate semiconductor porcelain composition
JP2012199339A (en) * 2011-03-18 2012-10-18 Ricoh Co Ltd Non-lead film actuator

Similar Documents

Publication Publication Date Title
KR100358974B1 (en) Method of producing semiconductor ceramic having positive temperature coefficient
JP3608599B2 (en) Barium titanate semiconductor porcelain
JPH0388770A (en) Barium titanate-based semiconductor porcelain composition and thermistor
JPH0354165A (en) Ptc ceramic composition and production thereof
JPH05254928A (en) Production of barium titanate-based semiconductor porcelain having positive temperature coefficient
JPH05294625A (en) Production of barium titanate based semiconductor ceramic having positive characteristic
JP3154513B2 (en) Spherical barium titanate-based semiconductor ceramic material powder and method for producing the same
JP2645815B2 (en) Grain boundary insulated semiconductor porcelain
JPH0660721A (en) Dielectric porcelain and its manufacture
JP2558357B2 (en) Barium titanate-based powder for semiconductor porcelain and its manufacturing method
JP2649341B2 (en) Grain boundary insulated semiconductor porcelain
JP2885599B2 (en) Barium titanate-based powder composition and method for producing semiconductor porcelain composition using the same
JP4058140B2 (en) Barium titanate semiconductor porcelain
JPH0465356A (en) Raw material powder for barium titanate series semiconducting ceramic composition and ceramic composition
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2569205B2 (en) Raw material powder for barium titanate-based semiconductor porcelain composition and porcelain composition comprising the same
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPH07142207A (en) Barium titanate semiconductor ceramic and its manufacture
JPH08213205A (en) Barium titanate semiconductor ceramics and manufacture thereof
JPH11139870A (en) Barium titanate-base semiconductor porcelain
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH0822773B2 (en) Method for manufacturing barium titanate porcelain semiconductor
JPH08203702A (en) Barium titanate semiconductor ceramic and its manufacture
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor