JPH04202728A - Copper alloy for electronic equipment - Google Patents

Copper alloy for electronic equipment

Info

Publication number
JPH04202728A
JPH04202728A JP33751690A JP33751690A JPH04202728A JP H04202728 A JPH04202728 A JP H04202728A JP 33751690 A JP33751690 A JP 33751690A JP 33751690 A JP33751690 A JP 33751690A JP H04202728 A JPH04202728 A JP H04202728A
Authority
JP
Japan
Prior art keywords
copper alloy
allay
alloy
electronic equipment
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33751690A
Other languages
Japanese (ja)
Inventor
Teruo Nakanishi
中西 輝雄
Keizo Kitakaze
北風 敬三
Takefumi Ito
武文 伊藤
Kimio Hashizume
橋爪 公男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP33751690A priority Critical patent/JPH04202728A/en
Publication of JPH04202728A publication Critical patent/JPH04202728A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a copper allay for electronic equipment excellent in peeling resistance of soldering without deteriorating its solderability and having high strength and high electrical conductivity by incorporating a Cu-Ni-P-Si series alloy with Ag, Ti or the like independently or compositely together with Zn and Mn. CONSTITUTION:This is a Cu allay contg., by weight, 1.0 to 8.0% Ni, 0.1 to 0.8% P and 0.06 to 1.0% Si and furthermore contg. one or two kinds of 0.05 to 0.3% Ag and 0.02 to 0.5% Ti. Or, this is a Cu allay obtd. by adding 0.1 to 1.0% Zn to the alloy having the above compsn. so that the total content with Ag or Ti or with Ag+Ti will be regulated to 0.15 to 1.0%. Or, this is a Cu allay obtd. by incorporating specified amounts of one or two kinds of Ag and Zn as well as Mn into the Cu allay contg. the above amounts of Ni, P and Si, or incorporating specified amounts of Ti and Mn or compositely adding Ti, Mn and Zn so that their total content will be regulated to specified one, and it is suitable for electronic equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はICなどの半導体−機器に用いら孔るリードフ
レーム材やコネクタ用材料等の電子機器用銅合金に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper alloy for electronic devices such as lead frame materials and connector materials used in semiconductor devices such as ICs.

〔従来の技術〕[Conventional technology]

VTR、TV 、パソコン等の電子機器に使用される材
料は、機器及び部品の多機能化、小型化が進み、葭信頼
性の要求が強まっている。これに伴い、ICリードフレ
ーム材の例では、ICの高集積化に伴い、高強度、高熱
伝導性という主要特性に加え、材料の信頼性に関する特
性として耐食性、耐熱性のより優れたものか求められて
いる。さらにIC。
Materials used in electronic devices such as VTRs, TVs, and personal computers are becoming increasingly multifunctional and smaller, and demands for higher reliability are increasing. In line with this, in the case of IC lead frame materials, in addition to the main properties of high strength and high thermal conductivity, as ICs become more highly integrated, there is a need for materials with superior corrosion resistance and heat resistance as properties related to material reliability. It is being More IC.

コンデンサなどの部品の回路基板への高密度実装の進展
とともlこICパッケージの実装方式もピン挿入方式か
ら表面実装方式(SMT)への変更が急速に進み、これ
に伴って、ICパッケージの外部リード(ピン)部に施
されたはんだめっきの耐熱剥離性の優れることが、信頼
性に関して最近時lこ重要な特性の一つになってきてい
る。これは詳しくは、ICの動作中に昇温することのあ
る150℃付近までの温度に対してはんだめっきの耐剥
離性か優れること、すなわち母材のリードとはんだめっ
きの密着性か温度上昇のもとても長期間保持される必要
のあることを意味している。
With the progress of high-density mounting of components such as capacitors on circuit boards, the mounting method of IC packages is rapidly changing from pin insertion method to surface mount method (SMT). Excellent heat-resistant peelability of the solder plating applied to the external lead (pin) portion has recently become one of the most important characteristics in terms of reliability. In detail, this means that the solder plating has excellent peeling resistance against temperatures up to around 150°C, which can rise during IC operation; that is, the adhesion between the base metal leads and the solder plating, and the resistance to temperature rise. This also means that it needs to be kept for a very long time.

一方、コネクタに関しては、材料の薄板化が進み、また
通電量の増大により発熱量も増している。
On the other hand, with regard to connectors, materials are becoming thinner, and the amount of heat generated is also increasing due to an increase in the amount of current applied.

このため強度、はね特性、導電率のより優れた材料か求
められている。コネクタの場合も実用に際して金属端子
部分にはんだめっきが施されたのちはんだ付けされるこ
とか多いか、リードフレームと同様に150℃付近の温
度上昇に対してはんだめっきの耐熱剥離性か長期に亘っ
て優れることが要求される。
For this reason, materials with better strength, splash characteristics, and electrical conductivity are being sought. In the case of connectors as well, in practical use, the metal terminals are often plated with solder and then soldered, and as with lead frames, the heat-removability of the solder plating against a temperature rise of around 150°C remains to be seen over a long period of time. It is required to be excellent.

リードフレーム用材料としては、Icの高集積化かます
ます進み、発熱量か増大してきたため、Fe−42%N
i合金に代って熱伝導性(放熱性)の優れる銅合金か多
く使われるようになってきた。
As materials for lead frames, Fe-42%N
Copper alloys, which have excellent thermal conductivity (heat dissipation), are increasingly being used in place of i-alloys.

リードフレーム用銅合金としてはCu−Fe系。Cu-Fe type copper alloy for lead frames.

Cu −Sn系、Cu−5n−Ni系、Cu−Ni−5
i系などで多種類の合金が実用されている。
Cu-Sn system, Cu-5n-Ni system, Cu-Ni-5
Many types of alloys, such as the i-series, are in practical use.

またコネクタ用銅合金としてはリン青銅(Cu−4〜8
%5n−P )、Cu−Be合金(B e 1.8〜2
.0%)。
In addition, phosphor bronze (Cu-4 to Cu-8) is used as a copper alloy for connectors.
%5n-P), Cu-Be alloy (Be 1.8-2
.. 0%).

Cu−Ni−5n系合金(Cu−9%Ni−6%Sn、
Cu−9%Ni−2,3%Sn)等か用いられている。
Cu-Ni-5n alloy (Cu-9%Ni-6%Sn,
Cu-9%Ni-2,3%Sn), etc. are used.

このような電子機器用銅合金に対しては、前述の町うに
、機器に高信頼性を付与するために、はんtごめっきの
耐熱剥離性の優れることか要求されるか、この特性に優
れ1こ合金は少なく、この特性の改善か要望されている
For such copper alloys for electronic devices, in order to provide high reliability to the devices, it is necessary to have excellent heat peeling resistance of the solder plating. There are few excellent alloys, and improvements in this property are desired.

はんtごめっきの耐熱剥離性の改善に、銅合金へのZn
の添加が有効であることが、種々の特許出願に開示され
ている。例えば、特願昭63−103206号及び特願
昭63−167330号明細書に示されているCu−N
i −P−3i −Zn 系合金では適量のZnを添加
したことで、はんだめっき耐熱剥離性か顕著に改善され
たことか述べられている。
Adding Zn to copper alloys to improve the heat-removability of solder iron plating
It has been disclosed in various patent applications that the addition of is effective. For example, Cu-N shown in Japanese Patent Application No. 63-103206 and Japanese Patent Application No. 63-167330
It is stated that the addition of an appropriate amount of Zn to i-P-3i-Zn series alloys significantly improved the heat peeling resistance of solder plating.

〔発明か解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、上記の特許出願に示された銅合金におい
ては、Znの添加量が特願昭63−103206号のよ
うに少ない範囲であるとはんtごめっき耐熱剥離性の改
善効果が不充分であり、−万、特願昭63−16733
0号のようにZn添加量が多すぎる場合は、リードフレ
ームのはんだめっきされた外部リードを回路基板上に接
合する際のはんだ付は性か低下すると共に、Zn を比
較的に多く含有する合金の欠点として耐応力腐食性が劣
下するという問題があった。
However, in the copper alloy shown in the above patent application, if the amount of Zn added is in a small range as in Japanese Patent Application No. 63-103206, the effect of improving the heat-resistant peeling property of iron plating is insufficient. Yes, -10,000, patent application 1986-16733
If the amount of Zn added is too large as in No. 0, the soldering strength when joining the solder-plated external leads of the lead frame to the circuit board will decrease, and the alloy containing a relatively large amount of Zn will deteriorate. The disadvantage of this was that stress corrosion resistance deteriorated.

本発明は上記のような問題点を解消するためになされた
もので、はんだ付は性を低下させることなく、はんtご
めっきの耐熱剥離性を顕著に改善した、高強度・高導電
性の電子機器用銅合金を提供することを目的とする。
The present invention was made to solve the above-mentioned problems, and it is a high-strength, high-conductivity film that significantly improves the heat-resistant peelability of solder plating without reducing soldering properties. The purpose is to provide copper alloys for electronic devices.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の合金は、(1)重量%にて、Ni1.0〜80
%、201〜08%、Si0.06〜1.0%を含有し
、さらにAg0.05〜03%とTi0.02〜05%
 のうちの1種または2種を含有して残部がCu及び不
可避の不純物からなる電子機器用銅合金、(2)上記の
(1)の各合金に、さらにZn0.1〜10重量%を含
有せしめ、AgまたはTiとあるいはA g + T 
iとZnの合計か015〜10重量%の範囲にある電子
機器用銅合金、(3)重量%にて、Ni1.0〜8.0
%、P0.1〜0.8%、5i006〜10%を含有し
、さらにAg 0.05〜0.3%とZn01〜10%
のうちの1種または2種とMn0.05〜05%を含有
し、Znを含有する場合はZn十MnあるいはAg+Z
n+Mnの量が0.2〜1.0%の範囲にあり、残部が
Cu及び不可避の不純物からなる電子機器用銅合金、(
4)重量%にて、Ni 1.0〜8.0%。
The alloy of the present invention has (1) Ni1.0 to 80% by weight;
%, 201~08%, Si0.06~1.0%, and further contains Ag0.05~03% and Ti0.02~05%.
Copper alloy for electronic devices containing one or two of the above, with the remainder consisting of Cu and unavoidable impurities, (2) Each of the alloys in (1) above further contains 0.1 to 10% by weight of Zn. Seshime, Ag or Ti or A g + T
Copper alloy for electronic devices in which the sum of i and Zn is in the range of 0.15 to 10% by weight, (3) Ni 1.0 to 8.0 in weight%
%, P0.1-0.8%, 5i006-10%, and further contains Ag 0.05-0.3% and Zn01-10%.
It contains one or two of the above and 0.05-05% of Mn, and if it contains Zn, it is Zn + Mn or Ag + Z.
A copper alloy for electronic devices in which the amount of n+Mn is in the range of 0.2 to 1.0%, and the balance is Cu and unavoidable impurities.
4) Ni 1.0-8.0% by weight.

PO11〜0.8%、Si0.06〜1.0%を含有し
、さらにTi002〜05%、 Mn 0.05〜0.
5  f含有して残部がCu及び不可避の不純物からな
る電子機器用銅合金、(5)上記の(4)の合金にZn
 0.1〜1.0重量%を含有せしめ、Ti+Mn+Z
nの量か0.17〜1.0重量%の範囲にある電子機器
用銅合金、である。
Contains 11-0.8% PO, 0.06-1.0% Si, and 002-05% Ti, and 0.05-0.05% Mn.
Copper alloy for electronic devices containing 5 F and the remainder consisting of Cu and unavoidable impurities, (5) Zn in the alloy of (4) above.
Contains 0.1 to 1.0% by weight, Ti+Mn+Z
This is a copper alloy for electronic devices in which the amount of n is in the range of 0.17 to 1.0% by weight.

本発明の内容をより簡単に述べると以下の通りである。The content of the present invention will be described more simply as follows.

特願昭63−103206号の明細書に示されるCu−
Ni −P−5i合金のはんだめっき耐熱剥離性を改善
することを目的に、この合金に、Ag、Tiの1種ある
いは2種をそれぞれ添加した各合金。
Cu shown in the specification of Japanese Patent Application No. 103206/1983
Each alloy has one or both of Ag and Ti added to the Ni-P-5i alloy for the purpose of improving the heat peeling resistance of solder plating.

また、Ag、Ti、Mnのうちの1種または2種をZn
と共にそれぞれ添加し1こ各合金、さらにAg、Tiの
うちの1種とMn とを添加した各合金である。
In addition, one or two of Ag, Ti, and Mn can be substituted with Zn.
These are alloys in which Mn and one of Ag and Ti are added.

〔作 用〕[For production]

本発明の合金においては、■添加元素のAg。 In the alloy of the present invention, (1) Ag as an additive element.

Ti は単独または共存で、■Ag、Ti、Mnのそれ
ぞれとZnの共存で、■Ag、T旨Mnのうちの2種元
素の共存で、■あるいはAg 、Ti 、Mn (7)
ウチの2種元素とZnの共存で、上記Cu−N1−P−
Si合金に固有の高強度・高導電性という優れ1こ特性
を損うことなく、はんだめっき耐熱剥離性を顕著に改善
する。さらに本発明で1よ、特願昭63−167330
号の明細書に示されるCu−N1−PSI−Zn合金に
おける問題点であった多量のZn添加に起因するはんだ
付は性の低下は生じない。
Ti alone or in coexistence, ■ coexistence of each of Ag, Ti, and Mn and Zn, ■ coexistence of two elements of Ag, T, and Mn, ■ or Ag, Ti, Mn (7)
Due to the coexistence of our two elements and Zn, the above Cu-N1-P-
It significantly improves the heat peelability of solder plating without impairing the excellent characteristics of high strength and high conductivity inherent to Si alloys. Furthermore, with the present invention, patent application No. 167330/1983
No deterioration in soldering properties occurs due to the addition of a large amount of Zn, which was a problem in the Cu-N1-PSI-Zn alloy shown in the specification of No.

次に本発明の銅合金における添加成分の限定理由につい
て説明する。なお、本発明の合金の改良前からの主成分
であるNi 、P、 Siの含有量は特願FFB63−
103206号と同じで、優れグこ強度と導電性を付与
するための成分であるが、Ag、Ti等の添加に関する
本発明を特徴づける成分てはないので、それらの成分の
限定理由はここでは述べないが、特願昭63−1032
06号と同じである。
Next, the reasons for limiting the additive components in the copper alloy of the present invention will be explained. The contents of Ni, P, and Si, which are the main components of the alloy of the present invention before the improvement, are determined according to patent application FFB63-
This is the same as No. 103206, and it is a component for imparting excellent gluing strength and conductivity, but since there are no components that characterize the present invention regarding the addition of Ag, Ti, etc., the reasons for limiting these components will be explained here. I won't mention it, but patent application 1986-1032
Same as No. 06.

Ag、TiはCu−Ni −P−Si合金のはんだめっ
きの耐熱剥離性を改善する元素であるが、各単独添加の
場合、下限未満ではその改善効果に乏しく、ま1こ上限
を越えると導電率及びはんだ付は性の低下を招くため、
Agは005〜03%、Tiはoo2〜0.5%(各重
量%)とし1こ。なおAgについては高価な元素であり
、03%を越えた添加は銅合金の価格か上昇し過ぎる点
からも適当でない。またAg  と11  を複合添加
する場合の限界も単独添加の場合と同様である。またA
g 、Ti 、Mnのうちの1種または2種をそれぞれ
Znと共に複合して含有せしめ1こ場合にもはんだめっ
き耐熱剥離性の改善に同様の効果を奏するか、この場合
のMn添加量は、0.05%未満では改善効果に乏しく
、0.5%を越えると導電率が無視できない程度に低下
するため、それらを限界と定めた。共存成分としてのZ
nは、0.1%未満では、Mnのみとの共存の場合に改
善効果か乏しく、またAg、Tiの1種あるいはAg。
Ag and Ti are elements that improve the heat peeling resistance of solder plating of Cu-Ni-P-Si alloys, but when each is added alone, the improvement effect is poor below the lower limit, and when the upper limit is exceeded, the conductivity decreases. Since the rate and soldering lead to a decrease in quality,
Ag is 0.05% to 0.03%, Ti is 0.02 to 0.5% (each weight %). Note that Ag is an expensive element, and adding more than 0.3% is not appropriate since the price of the copper alloy will increase too much. Furthermore, the limits when Ag and 11 are added in combination are the same as when they are added alone. Also A
The amount of Mn added in this case is: If it is less than 0.05%, the improvement effect is poor, and if it exceeds 0.5%, the conductivity decreases to a non-negligible extent, so these were set as the limits. Z as a coexisting component
If n is less than 0.1%, the improvement effect will be poor when coexisting with Mn alone, and one of Ag, Ti, or Ag.

Ti、Mnのうちの2種とZn量(組合せた場合にはZ
n量が少なくてめっき耐熱性の改善作用が減少する分を
AgなどZn以外の成分量を増すことで補う必要がある
が、Agの増加は材料コストの上昇を招き、T]あるい
はMn  の増加は実用上は問題になる程度ではないも
のの導電率を低下させるとともに、とくにTiの増加は
溶解時の溶湯の流動性も低下させる。またZn量か1%
を越えるとはんだ付は性及び耐応力腐食性か劣下する。
Two of Ti and Mn and the amount of Zn (when combined, Z
It is necessary to compensate for the decrease in the effect of improving plating heat resistance due to a small amount of n by increasing the amount of components other than Zn, such as Ag, but an increase in Ag will lead to an increase in material cost, and an increase in T] or Mn. Although this is not a problem in practice, it lowers the electrical conductivity, and in particular, an increase in Ti also lowers the fluidity of the molten metal during melting. Also, the amount of Zn is 1%
If this value is exceeded, the soldering properties and stress corrosion resistance will deteriorate.

したがってZn は01〜10%と定めた。Therefore, Zn was set at 01 to 10%.

Ag、Ti、Mnのうちの1種または2種4Znと複合
添加する場合のAg、Tiの限界及び限定理由は、Ag
、Tiの単独添加の場合と同じである。
When one or two of Ag, Ti, and Mn are added in combination with 4Zn, the limits and reasons for the limitations of Ag and Ti are as follows:
, is the same as when Ti is added alone.

複合添加の場合において、Ag、Ti 、Mn ODう
ちの1種ま1こは2種とZnの複合の場合にはそれらの
合計量の上限ははんtご付は性または導電率あるいは耐
応力腐食性を低下を避けるために10%とした。またZ
nと他成分との合計fの下限はそれ未満ではめっき耐熱
剥離性の改善効果に乏しいことから、添加成分の選定の
違いにより015〜0.2%と定めた。
In the case of composite addition, in the case of a composite of one or two of Ag, Ti, Mn OD and Zn, the upper limit of their total amount depends on the solder properties, electrical conductivity, or stress resistance. The corrosion resistance was set at 10% to avoid deterioration. Also Z
The lower limit of the total f of n and other components is determined to be 0.15 to 0.2% depending on the selection of additive components, since if it is less than this, the effect of improving the heat-resistant peeling property of plating is poor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

高周波電気炉にて各組成の合金を溶製し、面側加工後冷
間圧延と熱処理をaり返して、最終37%の冷間加工を
行って厚さ0.25仁の板材に仕上げた。
Alloys of various compositions were melted in a high-frequency electric furnace, and after side processing, cold rolling and heat treatment were repeated, and a final 37% cold working was performed to produce a plate with a thickness of 0.25 threads. .

最終仕上げ圧延前の熱処理は、8oo℃で30分加熱後
水中に焼入れした後450℃で2時間の時効処理を施し
た。
The heat treatment before the final finish rolling was performed by heating at 80° C. for 30 minutes, quenching in water, and then aging at 450° C. for 2 hours.

第1表に本発明材と比較材の諸特性の例を示す。Table 1 shows examples of various properties of the present invention material and comparative material.

諸特性はすべて最終37%の冷間加工を施した厚さ0.
25+mの板材について測定したものである。なお、は
んだめっきの耐熱剥離性試験は、まず前処理として、短
冊形試片を脱脂後、]、5vo1%塩酸水溶液中に浸漬
し、水洗後1v01%アンモニア水溶液で中和した。次
に各試片を重量比で60%Sn −40%pb組成のは
んだ浴(230℃)に浸漬して溶融めっきを施した後、
大気雰囲気の150℃の恒温槽中に所定の各時間保持し
、その後はんだめっき部について90°■曲げを行い、
めっき剥離が生じたか否かを顕微鏡観察して、剥離か生
じる時間を比較し1こ。はんだぬれ性の試験は表面張力
測定法により行った。すなわち、150℃で1000時
間加熱したはんだめっき試料を再度230℃のはんだ浴
に一定速度で深さ8III11まで浸漬して一定時間保
持し、その間の試片のぬれ時間をメニスコグラフで測定
することにより、はんだのぬれ性を評価した。第1表に
は、ねれ時間が2秒以内をぬれ性が良(○印)、10秒
以上を不良(×印)、3〜9秒を中位(△印)と表記し
た。
All properties are based on the final 37% cold worked thickness of 0.
The measurements were taken on a 25+m plate. In the heat-resistant peelability test of solder plating, first, as a pretreatment, a strip-shaped specimen was degreased, then immersed in a 5vol 1% aqueous hydrochloric acid solution, washed with water, and then neutralized with a 1vol 1% ammonia aqueous solution. Next, each specimen was immersed in a solder bath (230°C) with a composition of 60% Sn - 40% PB by weight and hot-dip plated.
It was held in a constant temperature bath at 150°C in an atmospheric atmosphere for a specified period of time, and then the solder plated part was bent by 90°.
We observed with a microscope whether the plating peeled off or not, and compared the time it took for the plating to occur. The solder wettability test was conducted using a surface tension measurement method. That is, by dipping the solder plating sample heated at 150°C for 1000 hours into a 230°C solder bath at a constant speed to a depth of 8III11 and holding it for a certain period of time, and measuring the wetting time of the specimen during that time using a meniscograph, The solder wettability was evaluated. In Table 1, wettability was described as good (○ mark) if the wetting time was 2 seconds or less, poor wettability (x mark) if it was 10 seconds or more, and fair wettability (△ mark) if it was 3 to 9 seconds.

第1表の結果から明らかなように、本発明の実施例の合
金は、Ag、Ti、Mnの1種または2種をZnと共に
、あるいはZnを含ませずに各適当量を添加したことに
まり、リードフレームj(どの電子機器用材料に要求さ
れる重要特性の一つであるはんだめっき耐熱剥離性に優
れ、150℃で長時間加熱後のはんだ付は性(はんだぬ
れ性)も良好である。比較材では、とくにZn fiの
多い場合には、はんだぬれ性か劣化して実用上問題とな
る。ま1こAg、Ti、Mnの添加量か多すぎる場合は
導電率の低下を招くことかわかり、電子機器用材料とし
て好ましくない。
As is clear from the results in Table 1, the alloys of the examples of the present invention were prepared by adding appropriate amounts of one or both of Ag, Ti, and Mn together with Zn or without Zn. Lead frame J (solder plating has excellent heat peeling resistance, which is one of the important properties required for materials for any electronic device, and has good solderability (solder wettability) after being heated at 150℃ for a long time. In comparative materials, especially when there is a large amount of Zn fi, the solder wettability deteriorates, which poses a practical problem. However, if the amount of Ag, Ti, or Mn added is too large, it causes a decrease in electrical conductivity. This is understandable, and it is not desirable as a material for electronic devices.

〔発明の効果〕〔Effect of the invention〕

以上のまうに本発明によれば、N I + P + S
 lから成る微細な化合物かマトリックス中に一様に析
出する析出硬化型の合金て、Ag、Ti−j単独または
複合して、あるいはAg 、 ]’i 、 Mnの1種
または2種とZnを組合せて添加したことによって、優
れたはんだめっき耐熱剥離性とはんだ付は性に加えて高
強度・高熱伝導性を有するとともに、トランジスタ、I
Cなどのとくに表面実装タイプのICパッケージのリー
ドフレーム用や、コネクタ用など電子機器用として好適
な、高性能・高信頼性の銅合金か得られる効果がある。
As described above, according to the present invention, N I + P + S
Precipitation-hardening alloys in which fine compounds consisting of By combining these additives, the solder plating has excellent heat peeling resistance and soldering properties, as well as high strength and high thermal conductivity.
This has the effect of producing a high-performance, highly reliable copper alloy that is particularly suitable for lead frames of surface-mounted IC packages such as C, and for electronic devices such as connectors.

Claims (5)

【特許請求の範囲】[Claims] (1)重量%にて、Ni1.0〜8.0%、P0.1〜
0.8%、Si0.06〜1.0%を含有し、さらにA
g0.05〜0.3%とTi0.02〜0.5%のうち
の1種または2種を含有して残部がCu及び不可避の不
純物からなる電子機器用銅合金。
(1) Ni1.0-8.0%, P0.1-8.0% by weight
0.8%, Si0.06-1.0%, and further A
A copper alloy for electronic devices containing one or two of g0.05-0.3% and Ti0.02-0.5%, with the remainder being Cu and inevitable impurities.
(2)重量%にて、Ni1.0〜8.0%、P0.1〜
0.8%、Si0.06〜1.0%を含有し、さらにA
g0.05〜0.3%とTi0.02〜0.5%のうち
の1種または2種とZn0.1〜1.0%を、Agまた
はTiあるいはAg+TiとZnの合計で0.15〜1
.0%の範囲で含有して、残部がCu及び不可避の不純
物からなる電子機器用銅合金。
(2) Ni1.0-8.0%, P0.1-8.0% by weight
0.8%, Si0.06-1.0%, and further A
One or two of g0.05-0.3% and Ti0.02-0.5% and Zn0.1-1.0%, Ag or Ti or Ag + Ti and Zn total 0.15-0. 1
.. A copper alloy for electronic devices containing Cu in a range of 0%, with the remainder consisting of Cu and unavoidable impurities.
(3)重量%にて、Ni1.0〜8.0%、P0.1〜
0.8%、Si0.06〜1.0%を含有し、さらにA
g0.05〜0.3%とZn0.1〜1.0%のうちの
1種または2種とMn0.05〜0.5%を、ZnとM
nあるいはAg、Zn、Mnの合計が0.2〜10%の
範囲で含有して、残部がCu及び不可避の不純物からな
る電子機器用銅合金。
(3) Ni1.0-8.0%, P0.1-8.0% by weight
0.8%, Si0.06-1.0%, and further A
Zn and M
A copper alloy for electronic devices, containing n or a total of Ag, Zn, and Mn in a range of 0.2 to 10%, with the remainder being Cu and unavoidable impurities.
(4)重量%にて、Ni1.0〜8.0%、P0.1〜
0.8%、Si0.06〜1.0%を含有し、さらにT
i0.02〜0.5%、Mn0.05〜0.5%を含有
して残部がCu及び不可避の不純物からなる電子機器用
銅合金。
(4) Ni1.0-8.0%, P0.1-8.0% by weight
0.8%, Si0.06-1.0%, and further T
A copper alloy for electronic devices containing 0.02 to 0.5% i, 0.05 to 0.5% Mn, and the remainder consisting of Cu and unavoidable impurities.
(5)重量%にて、Ni1.0〜8.0%、P0.1〜
0.8%、Si0.06〜1.0%を含有し、さらにT
i0.02〜0.5%、Mn0.05〜0.5%とZn
0.1〜1.0%を合計0.17〜1.0%の範囲で含
有して、残部がCu及び不可避の不純物からなる電子機
器用銅合金。
(5) Ni1.0-8.0%, P0.1-8.0% by weight
0.8%, Si0.06-1.0%, and further T
i0.02~0.5%, Mn0.05~0.5% and Zn
A copper alloy for electronic devices containing 0.1 to 1.0% in a total range of 0.17 to 1.0%, with the remainder consisting of Cu and unavoidable impurities.
JP33751690A 1990-11-30 1990-11-30 Copper alloy for electronic equipment Pending JPH04202728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33751690A JPH04202728A (en) 1990-11-30 1990-11-30 Copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33751690A JPH04202728A (en) 1990-11-30 1990-11-30 Copper alloy for electronic equipment

Publications (1)

Publication Number Publication Date
JPH04202728A true JPH04202728A (en) 1992-07-23

Family

ID=18309394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33751690A Pending JPH04202728A (en) 1990-11-30 1990-11-30 Copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JPH04202728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS63262448A (en) Production of copper alloy having excellent peeling resistance of tin or tin alloy plating
JPS6314056B2 (en)
JPS6158536B2 (en)
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPH0424417B2 (en)
JPH02118037A (en) High tensile and high conductivity copper alloy having excellent adhesion of oxidized film
JPH02122039A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPH04202728A (en) Copper alloy for electronic equipment
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPS63125628A (en) Copper alloy for semiconductor device lead material
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPH02145734A (en) High strength and high conductivity copper alloy having excellent adhesion of oxidized film
JPS63192835A (en) Lead material for ceramic package
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPH0218375B2 (en)
JPS6157379B2 (en)
JPS63125629A (en) Copper alloy for semiconductor device lead material
JPH02173248A (en) Manufacture of copper alloy improved in adhesive strength of oxide film
JP3273193B2 (en) High-strength, high-conductivity copper-based alloy with excellent resistance to solder heat release
JPH0499139A (en) Copper-base alloy