JPH0499139A - Copper-base alloy - Google Patents
Copper-base alloyInfo
- Publication number
- JPH0499139A JPH0499139A JP20539790A JP20539790A JPH0499139A JP H0499139 A JPH0499139 A JP H0499139A JP 20539790 A JP20539790 A JP 20539790A JP 20539790 A JP20539790 A JP 20539790A JP H0499139 A JPH0499139 A JP H0499139A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- contg
- base alloy
- electrical conductivity
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 11
- 239000000956 alloy Substances 0.000 title claims abstract description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 239000010949 copper Substances 0.000 claims abstract description 11
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 238000007747 plating Methods 0.000 abstract description 6
- 238000005476 soldering Methods 0.000 abstract description 6
- 238000005097 cold rolling Methods 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 229910052725 zinc Inorganic materials 0.000 abstract 3
- 238000004519 manufacturing process Methods 0.000 abstract 2
- 239000002994 raw material Substances 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、電子機器用の集積回路のリードフレームや
コネクタ等に使用される銅基合金に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper-based alloy used for lead frames, connectors, etc. of integrated circuits for electronic devices.
(従来の技術)
従来の電子機器用の銅合金としては、CDA・C194
00合金や0.1%前後のSn、Fe等で構成されるよ
うな高電導型のもの(引張強さ50 kgf/s+*2
程度以下・電気伝導率60%1^CS以上)やりん青銅
のような高強度型のもの(強度は42^11oyと同水
準・電気伝導率20%1^CS以ト)か1に使用されて
いる。また、その他の高強度型のものとしては42^1
1oy (F e −42%Ni)か使用され、さら
に高強度型のものとしてはt″;1価なベリリウム銅合
金等が使用されている。(Prior art) As a conventional copper alloy for electronic devices, CDA/C194
00 alloy or high conductivity type composed of around 0.1% Sn, Fe, etc. (tensile strength 50 kgf/s+*2
below, electrical conductivity of 60% 1^CS or higher) or high-strength type such as phosphor bronze (strength is at the same level as 42^11oy, electrical conductivity of 20% 1^CS or higher) or 1. ing. In addition, other high-strength types include 42^1
1oy (F e -42%Ni) is used, and monovalent beryllium copper alloy etc. are used as a high strength type.
しかしなから、これらの合金は、いずれもリードフレー
ムやコネクタ等の分野で要求される電気伝導率1強度水
準及び価格等の点でそれぞれ一長短があり、これらを十
分に満足できるものでなかった。However, all of these alloys have their own advantages and disadvantages in terms of electrical conductivity, strength level, price, etc. required in fields such as lead frames and connectors, and none of them could fully satisfy these requirements. .
例えば、集積回路のリードフレームには、高集積度化に
よって発生する熱の放出に適しているという理由で、導
電性の優れた銅合金が多く使用されているか、部品の小
型化に伴う材料の薄形化の要請には、強度水準が不十分
であるため、十分に応えられない。このため、特に高強
度を必要とされるQFP (クラオード・フラット・パ
ッケージ)タイプのICパッケージにおいては、42^
110yが依然として多用されている。For example, copper alloys with excellent conductivity are often used in lead frames for integrated circuits because they are suitable for dissipating heat generated by higher levels of integration, or materials are being used as parts become smaller. The demand for thinner products cannot be fully met because the strength level is insufficient. For this reason, especially in QFP (clad flat package) type IC packages that require high strength, 42^
110y is still widely used.
このような事情から現在では、広範囲のニーズに応えら
れる水準の合金、すなわち、42AIIoyと同等の強
度(引張強ざ70 kgf/am2程度)と40%lA
C3以上の電気伝導率を合せもつ、Si。Due to these circumstances, we are currently developing alloys that are at a level that can meet a wide range of needs, that is, they have the same strength as 42AIIoy (tensile strength of about 70 kgf/am2) and 40% lA.
Si has an electrical conductivity higher than C3.
P及びNiを構成成分とする高強度、高導電型の銅基合
金が開発され、すでに実用に供されている。A high-strength, high-conductivity copper-based alloy containing P and Ni as constituent components has been developed and is already in practical use.
(発明が解決しようとする課題)
しかしながら、上記銅基台金は、強度と導電性の上では
実用レベルの特性を有しているが、はんだや錫めっき時
の高温環境下における高温・長期信頼性(はんだ・めっ
き耐熱性)の面では、なお十分なレベルに達しておらず
、−層の改善が求められている。(Problems to be Solved by the Invention) However, although the above-mentioned copper base metal has properties at a practical level in terms of strength and conductivity, it does not provide high-temperature and long-term reliability in high-temperature environments during soldering or tin plating. In terms of properties (solder/plating heat resistance), it has not yet reached a sufficient level, and improvements in the negative layer are required.
この発明は、このような従来の問題点に着目してなされ
たもので、高強度、高導電性を有するとともに、優れた
はんだ・めっきの高温・長期イS頼性を備えた電子機器
用の銅基合金を提供することを目的とする。This invention was made by focusing on these conventional problems, and provides a method for electronic devices that has high strength, high conductivity, and excellent high-temperature and long-term reliability of soldering and plating. The purpose is to provide copper-based alloys.
(1[を解決するための手段〕
この発明が提供する銅基合金は、Si、P及びNiを総
量で1〜4重q%を含有し、それらの元素の比率・Ni
/(Si+P)が重量比で4〜6の範囲であり、Znを
0.5〜8重量%含有し、残余が銅及び不可避の不純物
からなるものである。(1 [Means for Solving Problem]) The copper-based alloy provided by the present invention contains Si, P, and Ni in a total amount of 1 to 4 q% by weight, and the ratio of these elements/Ni
/(Si+P) is in the range of 4 to 6 in terms of weight ratio, and contains Zn in an amount of 0.5 to 8% by weight, with the remainder consisting of copper and unavoidable impurities.
ト記Si、P及びNiを総量で1〜4重量%とじ、それ
らの元素の比率・Ni/(Si+P)を東に比で4〜6
としたのは、この範囲であれば、各元素か金属間化合物
を高率よく生成し、これが引張強さの向上に寄与するこ
とと、電気伝導率をさほど低下、させないことを見い出
したからである。The total amount of Si, P and Ni is 1 to 4% by weight, and the ratio of these elements Ni/(Si+P) is 4 to 6% by weight.
This is because we found that within this range, each element or intermetallic compound is generated at a high rate, which contributes to improving tensile strength and does not significantly reduce electrical conductivity. .
すなわち、各元素の比率・Ni/(Si+P)がITt
量比で4〜6にあるとき、金属間化合物が効率よく生成
され、その生成効率は、Si、P及びNiの含有量が総
量で1〜4重量%のときに高くなって引張強さの向上が
認められ、この範囲であれば電気伝導率の著しい低下も
認められないためである。In other words, the ratio of each element Ni/(Si+P) is ITt
When the amount ratio is 4 to 6, intermetallic compounds are efficiently generated, and the generation efficiency increases when the total content of Si, P, and Ni is 1 to 4% by weight, and the tensile strength increases. This is because an improvement is observed, and within this range, no significant decrease in electrical conductivity is observed.
Znは、はんだや錫めっきの高温・長期イ3頼性の向上
を目的として添加したものて、添加のF限を0.5重量
%としたのは、それ未満であると、上記向上の効果が余
り得られないからであり、上限を8重置%としたのは、
それを超えると、応力腐食感受性か大きくなるからであ
る。Zn is added for the purpose of improving the high-temperature and long-term reliability of solder and tin plating, and the F limit of addition is set at 0.5% by weight. This is because it is not possible to obtain much, and the upper limit was set at 8%.
This is because if it exceeds this, the stress corrosion susceptibility increases.
(作用)
この発明においては、Si、P及びNiの含有量と各元
素の比率・N i/ (S i + P、)を、上記範
囲に限定したので、これらの元素か銅基合金としての高
い電気伝導率を低下させないで、これに高い引張強さを
付与する。また、上記範囲のZnは、応力腐食感受性を
増大させないで、はんだや錫めっき時の高温・長期信頼
性を向上させる。(Function) In this invention, since the content of Si, P, and Ni and the ratio of each element, Ni/(S i + P,), are limited to the above range, these elements or This gives it high tensile strength without compromising its high electrical conductivity. Further, Zn in the above range improves high-temperature and long-term reliability during soldering and tin plating without increasing stress corrosion susceptibility.
(実施例) 以下に、この発明の一実施例について説明する。(Example) An embodiment of the present invention will be described below.
表1の成分の試料出、1〜11 (No、 2.4゜7
〜10は実施例、No、1.3,5,6.11は比較例
)を高周波電気炉にて溶解後、鋳型に鋳込んで厚さ20
mmの鋳塊をつくり、その表面を固剤後、冷間圧延と熱
処理をくりかえし、最終37%の冷間加工を施して、こ
れを厚さ0.25sa+の板に什トげた。最終の圧延前
には、800℃て30分加熱後水中に焼入れし、その後
に450℃で2時間の焼戻し処理を実施した。Samples of components in Table 1, 1 to 11 (No, 2.4°7
~10 are examples, No. 1.3, 5, 6.11 are comparative examples) were melted in a high frequency electric furnace, and then cast into a mold to a thickness of 20.
An ingot with a thickness of 1 mm was made, and after its surface was solidified, cold rolling and heat treatment were repeated, and a final cold working of 37% was performed, and the ingot was placed on a plate with a thickness of 0.25 sa+. Before the final rolling, it was heated at 800°C for 30 minutes, quenched in water, and then tempered at 450°C for 2 hours.
表1に実施例と比較例の諸特性を示した。Table 1 shows various characteristics of Examples and Comparative Examples.
表1から明らかなように、実施例の各試料は、いずれも
引張強さ、電気伝導率、応力腐食感受性の面で優れてい
るとともに、はんだ耐熱性の面でも著しく優れたもので
あることが判る。As is clear from Table 1, all of the samples in the examples were excellent in terms of tensile strength, electrical conductivity, and stress corrosion susceptibility, and were also significantly superior in terms of soldering heat resistance. I understand.
こわに対し、比較例の試料出、1は、はんだ耐熱性と電
気伝導率の面で優れているものの、引張強さが低く、比
較例の資料歯、3.No、6は、引張強さ、電気伝導率
の面では十分な水準にあるか、はんだ耐熱性が劣ってい
る。また、比較例の試料No、5.No、11は、とも
に引張強さとはんだ耐熱性において優れているが、試料
出、5は電気伝導率が低く、試料出、11には応力腐食
感受金を得ることができる。In contrast, Comparative Example Sample No. 1 has excellent solder heat resistance and electrical conductivity, but has low tensile strength, and Comparative Example No. 3. No. 6 had sufficient tensile strength and electrical conductivity, or had poor solder heat resistance. In addition, sample No. 5 of the comparative example. Samples No. 11 are both excellent in tensile strength and soldering heat resistance, but Sample No. 5 has low electrical conductivity, and Sample No. 11 can provide stress corrosion sensitive gold.
Claims (1)
らの元素の比率・Ni/(Si+P)が重量比で4〜6
の範囲であり、Znを0.5〜8重量%含有し、残余が
銅及び不可避の不純物からなる銅基合金。Contains 1 to 4% by weight of Si, P, and Ni in total, and the ratio of these elements Ni/(Si+P) is 4 to 6 by weight.
A copper-based alloy containing 0.5 to 8% by weight of Zn, with the remainder consisting of copper and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20539790A JPH0499139A (en) | 1990-08-02 | 1990-08-02 | Copper-base alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20539790A JPH0499139A (en) | 1990-08-02 | 1990-08-02 | Copper-base alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0499139A true JPH0499139A (en) | 1992-03-31 |
Family
ID=16506157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20539790A Pending JPH0499139A (en) | 1990-08-02 | 1990-08-02 | Copper-base alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0499139A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007016304A (en) * | 2005-06-10 | 2007-01-25 | Dowa Holdings Co Ltd | Cu-NI-SI-ZN-BASE ALLOY |
JP2014095151A (en) * | 2012-11-09 | 2014-05-22 | Poongsan Corp | Copper alloy material for electric and electronic component and its manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02190431A (en) * | 1989-01-19 | 1990-07-26 | Furukawa Electric Co Ltd:The | Copper alloy for connecting apparatus |
-
1990
- 1990-08-02 JP JP20539790A patent/JPH0499139A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02190431A (en) * | 1989-01-19 | 1990-07-26 | Furukawa Electric Co Ltd:The | Copper alloy for connecting apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007016304A (en) * | 2005-06-10 | 2007-01-25 | Dowa Holdings Co Ltd | Cu-NI-SI-ZN-BASE ALLOY |
JP2014095151A (en) * | 2012-11-09 | 2014-05-22 | Poongsan Corp | Copper alloy material for electric and electronic component and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2670670B2 (en) | High strength and high conductivity copper alloy | |
JPS61183426A (en) | High strength, highly conductive heat resisting copper alloy | |
JPS6330375B2 (en) | ||
JPS6314056B2 (en) | ||
JPS63143230A (en) | Precipitation strengthening high tensile copper alloy having high electrical conductivity | |
JPS5834537B2 (en) | High-strength conductive copper alloy with good heat resistance | |
JPS6254852B2 (en) | ||
JPH02163331A (en) | High strength and high conductivity copper alloy having excellent adhesion for oxidized film | |
JPS63307232A (en) | Copper alloy | |
JPS6267144A (en) | Copper alloy for lead frame | |
JPH02118037A (en) | High tensile and high conductivity copper alloy having excellent adhesion of oxidized film | |
JPH0499139A (en) | Copper-base alloy | |
JPH02122039A (en) | High strength and high conductivity copper alloy having excellent adhesion of oxidized film | |
JPH01159337A (en) | High tensile and high electric conductive copper alloy | |
JPS63125628A (en) | Copper alloy for semiconductor device lead material | |
JPS61174345A (en) | Copper alloy for lead frame | |
JPS61174344A (en) | Copper alloy for lead frame | |
JPS5853700B2 (en) | Copper alloy for lead material of semiconductor equipment | |
JPS58147140A (en) | Lead wire of semiconductor device | |
JPH02129326A (en) | High strength copper alloy | |
JPS63192835A (en) | Lead material for ceramic package | |
JPH0480103B2 (en) | ||
JPH0218375B2 (en) | ||
JPS61157651A (en) | Copper alloy for lead frame | |
JPH04202728A (en) | Copper alloy for electronic equipment |