JPH04186722A - Manufacture of crystalline semiconductor thin film - Google Patents

Manufacture of crystalline semiconductor thin film

Info

Publication number
JPH04186722A
JPH04186722A JP31541990A JP31541990A JPH04186722A JP H04186722 A JPH04186722 A JP H04186722A JP 31541990 A JP31541990 A JP 31541990A JP 31541990 A JP31541990 A JP 31541990A JP H04186722 A JPH04186722 A JP H04186722A
Authority
JP
Japan
Prior art keywords
film
crystalline
thin film
semiconductor thin
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31541990A
Other languages
Japanese (ja)
Other versions
JP2993107B2 (en
Inventor
Masatoshi Yazaki
矢崎 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2315419A priority Critical patent/JP2993107B2/en
Publication of JPH04186722A publication Critical patent/JPH04186722A/en
Application granted granted Critical
Publication of JP2993107B2 publication Critical patent/JP2993107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a flat crystalline Si film which can control a position and size of crystal grains, eliminate need of laminating a film having a different thermal expansion coefficient for securing flatness and eliminate crystal defect due to stress at the time of fusing and cooling by repeating two cycles of short time laser beam application process. CONSTITUTION:After an amorphous Si film 2 is formed on an insulating base 1, a laser beam 3 is applied to a partial region so that only the partial region is fused and crystallized to from a crystalline region 4. Then after a second amorphous Si film 5 is laminated, the laser beam 3 is again applied to transform the amorphous region with the crystalline region 4 as a seed layer of a seed crystal. Since the crystalline region 4 exists, application of the laser beam 3 allows rearrangement of Si atoms to proceed in a short time within several seconds at the time of cooling with the crystalline region 4 as the center, so that a crystal grain having a large grain diameter with the crystalline region 4 as a center nucleus can be constituted, a position and size of the crystal grain is controlled, flowing of the film at the time of fusing is prevented, a surface of the formed crystalline Si film 6 is flat, and it is not necessary to laminate a film of a different kind from Si.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は結晶性半導体薄膜の製造方法に関するものであ
って、 S OI (Silicon on In5u
lator)横道を形成するのに用いて最適なものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for manufacturing a crystalline semiconductor thin film,
lator) It is most suitable for use in forming sideways.

[従来の技術] 結晶性半導体iil膿の製造方法の従来例として特開昭
61−288413号公報に記載されたものがある。第
2図(a)〜第2図(C)に従来例の実だ例を示す工程
順断面図を示す。以下図面にもとづき詳しく説明する。
[Prior Art] A conventional method for producing crystalline semiconductor IIL is described in Japanese Patent Application Laid-Open No. 61-288413. FIG. 2(a) to FIG. 2(C) are process-order sectional views showing actual examples of the conventional example. A detailed explanation will be given below based on the drawings.

まず、第2図(a)に示すように石英基板12上へ多結
晶S1膜7を形成する。次に第2図(b)に示すように
S i 02 B (二酸化シリコン11N)8を積層
した後、レーザービーム9を照射し多結晶S1膜7を融
解し第2図(C)に示すように単結晶S i Ili 
10へ変換するというものであった。
First, as shown in FIG. 2(a), a polycrystalline S1 film 7 is formed on a quartz substrate 12. Next, as shown in FIG. 2(b), after laminating S i 02 B (silicon dioxide 11N) 8, a laser beam 9 is irradiated to melt the polycrystalline S1 film 7, as shown in FIG. 2(C). single crystal S i Ili
The plan was to convert it to 10.

〔発明が解決しようとする課旺1 しかしながら、単結晶Si膜10の平坦性を得る目的で
Sin、膜を積層するために、レーザービーム9の5i
O21118による吸収と反射が起こり、その吸収率と
反射率が5in2111Bの膜質や膜厚さらにはその形
成条件によって異なるため。
[Problem to be solved by the invention 1 However, in order to obtain the flatness of the single crystal Si film 10, in order to stack the Si film, the laser beam 9 is
This is because absorption and reflection by O21118 occur, and the absorption and reflectance differ depending on the film quality and thickness of the 5in2111B, as well as its formation conditions.

レーザービーム9の照射強度の最適条件がつかみにくく
、結晶化した膜は実際には第3図に示すような不規則な
形状をした結晶が秩序なく配置される結晶性5illi
llになってしまう問題点を有していた。また、結晶粒
の成長は、レーザ−ビーム9照射時の熱の吸収と放熱過
程の際にまったくでたらめな制御不可能な位置から起き
るため、近接し合う結晶粒は互いに相手の結晶成長を妨
げて、大粒径の結晶の成長実現が不可能であるという問
題点を有している。さらには、5iOa膜8によって、
レーザービーム8の一部が反射及び吸収されて、多結晶
S i lli 7を融解するのには大きな照射強度が
必要となり、その結果、5iO=膜8と結晶性Si膜1
1との間に応力が生じ、結晶性Sl膜11に多くの欠陥
が生じることが多かった。
It is difficult to determine the optimum conditions for the irradiation intensity of the laser beam 9, and the crystallized film is actually a crystalline film in which irregularly shaped crystals are arranged without order, as shown in Figure 3.
It had the problem that it became ll. In addition, the growth of crystal grains occurs from completely random and uncontrollable positions during the heat absorption and heat dissipation process during the laser beam 9 irradiation, so crystal grains that are close to each other can interfere with the crystal growth of the other. However, there is a problem in that it is impossible to realize the growth of large grain size crystals. Furthermore, with the 5iOa film 8,
Part of the laser beam 8 is reflected and absorbed, requiring a high irradiation intensity to melt the polycrystalline Si lli 7, resulting in 5iO = film 8 and crystalline Si film 1
1, and many defects were often generated in the crystalline Sl film 11.

そこで、本発明は、結晶化するシリコン膜の上に異なる
膜を積層することなく平坦で欠陥が少なく、定められた
位置に大粒径の結晶粒を有する結、品性半導体薄膜を得
ることが可能な結晶性半導体薄膜の製造方法を提供する
ことを目的とする。
Therefore, the present invention makes it possible to obtain a high-quality semiconductor thin film that is flat, has few defects, and has large crystal grains at predetermined positions without stacking different films on top of the crystallized silicon film. The purpose of the present invention is to provide a method of manufacturing a crystalline semiconductor thin film that is possible.

[課題を解決するための手段] 本発明に係る結晶性半導体薄膜の製造方法は、上記課題
を解決するために、絶縁性基体上に形成した非晶性半導
体膜を結晶化させることにより多結晶半導体膜を得るよ
うにした結晶性半導体薄膜の製造方法において、fii
i記絶縁性基体上に第1非晶性半導体薄膜を形成する工
程と、前zc!第1非晶性半導体薄膜の一部領域にレー
ザービームを昭射して前記第1非晶性半導体薄膜内に結
晶領域を形成した後、第2非晶性半導体薄膜を積層する
工程と、前記第1非晶性半導体薄膜と第2非晶質半導体
薄膜へ前記レーザービームを叩射して結晶性半導体薄膜
へ変換する工程を含むことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the method for manufacturing a crystalline semiconductor thin film according to the present invention involves crystallizing an amorphous semiconductor film formed on an insulating substrate. In a method for producing a crystalline semiconductor thin film to obtain a semiconductor film, fii
Step i of forming a first amorphous semiconductor thin film on the insulating substrate, and step zc! irradiating a partial region of the first amorphous semiconductor thin film with a laser beam to form a crystalline region within the first amorphous semiconductor thin film, and then laminating a second amorphous semiconductor thin film; The method is characterized by including a step of bombarding the first amorphous semiconductor thin film and the second amorphous semiconductor thin film with the laser beam to convert them into crystalline semiconductor thin films.

C実 施 例1 以下本発明に係る結晶性半導体薄膜の製造方法をSOI
構造の形成に適用した実施例につき図面を参照しながら
説明する。
C Example 1 The method for manufacturing a crystalline semiconductor thin film according to the present invention will be described below using SOI.
An example applied to the formation of a structure will be described with reference to the drawings.

まず第1図(a)に示すように絶縁性基体l上に非晶性
S i tl! (非晶性シリコン膜)2を形成した後
、非晶性Si膜2の一部領域にレーザービーム3を照射
して非晶性5iu2の一部領域のみ融解及び結晶化して
第1図(b)に示す結晶領域4を形成する0次に第1図
(C)に示すように第2非晶性5illi5を積層した
後、再びレーザービーム3を照射して結晶領域4を種結
晶のシード層として第1図(d)に示す結晶性Si膜6
へ非晶性領域を変換する。結晶領域4が存在しているた
めに、レーザービーム3の照射によって結晶領域4を中
心に冷却時に81原子の再配列が数秒以内の短い時間内
で進み、結晶領域4を中心核とする大粒径の結晶粒が構
成される。このため結晶粒の位置と大きさは制御された
ものとなり、膜中のでたらめな制御されない位置に結晶
粒が構成されることはない、さらに、レーザービーム3
の照射によって融解されなれることのない結晶領域4が
存在するため、融解時の膜の流動も押えられ、形成され
た結晶性5illi6の表面は平坦なままである。
First, as shown in FIG. 1(a), an amorphous Si tl! is placed on an insulating substrate l. After forming the (amorphous silicon film) 2, a laser beam 3 is irradiated to a part of the amorphous Si film 2 to melt and crystallize only a part of the amorphous 5iu2, as shown in FIG. ) After laminating the second amorphous 5illi 5 as shown in FIG. The crystalline Si film 6 shown in FIG. 1(d) as
Convert the amorphous region to Due to the presence of the crystalline region 4, the rearrangement of 81 atoms proceeds within a short time of several seconds when the crystalline region 4 is cooled by the irradiation of the laser beam 3, resulting in large grains with the crystalline region 4 as the central core. It consists of crystal grains of diameter. Therefore, the position and size of the crystal grains are controlled, and the crystal grains are not formed in haphazard and uncontrolled positions in the film.Furthermore, the laser beam 3
Since there is a crystalline region 4 that cannot be melted by the irradiation, the flow of the film during melting is also suppressed, and the surface of the formed crystalline 5illi6 remains flat.

したがって平坦性を得るために、Siと異なる異種の膜
を積層する必要もない。
Therefore, in order to obtain flatness, there is no need to laminate a film of a different type than Si.

[発明の効果] 以上説明したように、本発明の結晶性半導体薄膜の製造
方法は、短時間のレーザービーム照射工程を2回繰り返
すことにより、結晶粒の位置と大きさを制御しえる平坦
な結晶性Sl膜を得られるとい゛う効果を有する。また
、平坦性確保のために熱膨張率の異なる膜を積層する必
要もないため。
[Effects of the Invention] As explained above, the method for manufacturing a crystalline semiconductor thin film of the present invention repeats the short-time laser beam irradiation process twice to produce a flat crystalline semiconductor thin film in which the position and size of crystal grains can be controlled. This has the effect that a crystalline Sl film can be obtained. Additionally, there is no need to stack films with different coefficients of thermal expansion to ensure flatness.

融解冷却時に生じる応力による結晶欠陥が生じることも
なく、良質な膜が得られるという効果を有する。
This has the effect that a high-quality film can be obtained without crystal defects caused by stress generated during melting and cooling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明に係る結晶性半導体薄膜
の製造方法の実施例を示す工程順断面図、第2図(a)
〜(C)及び第3図は従来の結晶性半導体薄膜の製造方
法の実施例を示す工程順断面図。 l・・・・・絶縁性基板 2・・・・・第1非晶性S i ll!3・・ ・・・
レーザービーム 4・・・・・結晶領域 5  ・・・第2非晶性Si膿 6・・・・・結晶性Si膜 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)第1図
1(a) to 1(d) are step-by-step sectional views showing an embodiment of the method for manufacturing a crystalline semiconductor thin film according to the present invention, and FIG. 2(a)
-(C) and FIG. 3 are step-by-step sectional views showing an example of a conventional method for manufacturing a crystalline semiconductor thin film. l... Insulating substrate 2... First amorphous Si ll! 3......
Laser beam 4...Crystalline region 5...Second amorphous Si pus 6...Crystalline Si film or above Applicant: Seiko Epson Corporation Agent Patent attorney Kizobe Suzuki (and 1 others) name) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 絶縁性基体上に形成した非晶性半導体膜を結晶化させる
ことにより多結晶半導体膜を得るようにした結晶性半導
体薄膜の製造方法において、前記絶縁性基体上に第1非
晶性半導体薄膜を形成する工程と、前記第1非晶性半導
体薄膜の一部領域にレーザービームを照射して前記第1
非晶性半導体薄膜内に結晶領域を形成した後、第2非晶
性半導体薄膜を積層する工程と、前記第1非晶性半導体
薄膜と前記第2非晶質半導体薄膜へ前記レーザービーム
を照射して結晶性半導体薄膜へ変換する工程を含むこと
を特徴とする結晶性半導体薄膜の製造方法。
In a method for producing a crystalline semiconductor thin film, in which a polycrystalline semiconductor film is obtained by crystallizing an amorphous semiconductor film formed on an insulating substrate, a first amorphous semiconductor thin film is formed on the insulating substrate. a step of forming the first amorphous semiconductor thin film by irradiating a partial region of the first amorphous semiconductor thin film with a laser beam;
After forming a crystalline region in the amorphous semiconductor thin film, laminating a second amorphous semiconductor thin film, and irradiating the first amorphous semiconductor thin film and the second amorphous semiconductor thin film with the laser beam. A method for producing a crystalline semiconductor thin film, comprising the step of converting the crystalline semiconductor thin film into a crystalline semiconductor thin film.
JP2315419A 1990-11-20 1990-11-20 Semiconductor thin film manufacturing method Expired - Fee Related JP2993107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2315419A JP2993107B2 (en) 1990-11-20 1990-11-20 Semiconductor thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2315419A JP2993107B2 (en) 1990-11-20 1990-11-20 Semiconductor thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH04186722A true JPH04186722A (en) 1992-07-03
JP2993107B2 JP2993107B2 (en) 1999-12-20

Family

ID=18065156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2315419A Expired - Fee Related JP2993107B2 (en) 1990-11-20 1990-11-20 Semiconductor thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP2993107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234388B1 (en) * 1996-08-30 1999-12-15 윤종용 Crystalizing method of silicon film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100234388B1 (en) * 1996-08-30 1999-12-15 윤종용 Crystalizing method of silicon film

Also Published As

Publication number Publication date
JP2993107B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JPH0454370B2 (en)
JP3221149B2 (en) Heat treatment method for thin film
JPH04186722A (en) Manufacture of crystalline semiconductor thin film
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPS60143624A (en) Manufacture of semiconductor device
JP2929660B2 (en) Method for manufacturing semiconductor device
JPH04186723A (en) Manufacture of crystalline semiconductor thin film
JPS61135110A (en) Manufacture of semiconductor device
JPH02177534A (en) Manufacture of semiconductor device
JPS5853824A (en) Manufacture of semiconductor device
JPS59184517A (en) Manufacture of lamination-type semiconductor device
JPH046823A (en) Manufacture of crystalline semiconductor thin film
JPH03292718A (en) Manufacture of crystalline semiconductor thin film
JPS59158515A (en) Manufacture of semiconductor device
JPS62130510A (en) Manufacture of semiconductor substrate
JPH0396224A (en) Manufacture of soi substrate
JPH03286520A (en) Manufacture of thin crystalline semiconductor film
JPH04186721A (en) Manufacture of crystalline semiconductor thin film
JPS6354715A (en) Beam annealing of semiconductor thin-film
JPH03292717A (en) Manufacture of crystalline semiconductor thin film
JPH02211617A (en) Manufacture of semiconductor device
JPS59158514A (en) Manufacture of semiconductor device
JPS63142810A (en) Manufacture of semiconductor device
JPS60191090A (en) Manufacture of semiconductor device
JPH046824A (en) Manufacture of crystalline semiconductor thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees