JPS6354715A - Beam annealing of semiconductor thin-film - Google Patents

Beam annealing of semiconductor thin-film

Info

Publication number
JPS6354715A
JPS6354715A JP19835386A JP19835386A JPS6354715A JP S6354715 A JPS6354715 A JP S6354715A JP 19835386 A JP19835386 A JP 19835386A JP 19835386 A JP19835386 A JP 19835386A JP S6354715 A JPS6354715 A JP S6354715A
Authority
JP
Japan
Prior art keywords
semiconductor thin
film
thin film
region
recrystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19835386A
Other languages
Japanese (ja)
Inventor
Masafumi Shinpo
新保 雅文
Nobuhiro Shimizu
信宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP19835386A priority Critical patent/JPS6354715A/en
Publication of JPS6354715A publication Critical patent/JPS6354715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To mass-produce a recrystallized semiconductor thin-film having a large area with excellent reproducibility by depositing an insulating film and a metallic film onto a semiconductor thin-film in succession and conducting specific scanning, projecting energy beams from the back of a transparent insulating substrate. CONSTITUTION:An amorphous or polycrystalline semiconductor thin-film 2, an insulating film 3 and a metallic film 4 are deposited onto a transparent insulating substrate 1 successively, and a first recrystallized region 101 is formed through scanning in the X direction, irradiating said semiconductor thin-film 2 with first energy beams 10 from the back of the substrate 1. A second recrystallized region 201 is shaped through scanning in the X direction, irradiating one part of the first recrystallized region 101 and said semiconductor thin-film 2 adjacent on the Y direction side along the X direction to the region 101 with second energy beams 20 from the back of the substrate 1. In such a beam annealing method for the semiconductor thin-film 2, the second beams 20 have intensity distribution or beam width distribution gradually increasing along the Y direction, and part of the first recrystallized region 101 is irradiated with a section having small intensity or beam width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、透明絶縁基板上の非晶質または多結晶半導体
薄膜をレーザ等のエネルギービームによって再結晶化す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for recrystallizing an amorphous or polycrystalline semiconductor thin film on a transparent insulating substrate using an energy beam such as a laser.

〔発明の概要〕[Summary of the invention]

本発明はビームアニールによる再結晶半導体薄膜の単結
晶領域を拡大する方法である。透明絶縁基板上に非晶質
または多結晶半導体薄膜、絶縁膜、金属膜を順次堆積後
、基板の裏面より半導体薄膜に第1エネルギービームを
照射しつつX方向に走査してシード結晶となる第1再結
晶領域を形成する。基板の裏面より第1再結晶領域の一
部と該領域と隣接する半導体薄膜に第2エネルギービー
ムを照射しつつX方向に走査して第2再結晶領域を形成
する。第2ビームはX方向に沿って徐々に増加する強度
分布またはビーム幅分布を有し、強度またはビーム幅の
小さい部分が第1再結晶領域の一部に照射され、シード
結晶から再結晶化が拡大する。さらなる再結晶領域の拡
大には第2ビームと同様な強度分布または形状をもつ第
nビームでX方向走査する。第1、第2、第nビームを
同時に半導体3膜上の異なる部分に照射できるが、金属
膜により温度分布を均一にできる。
The present invention is a method of enlarging a single crystal region of a recrystallized semiconductor thin film by beam annealing. After sequentially depositing an amorphous or polycrystalline semiconductor thin film, an insulating film, and a metal film on a transparent insulating substrate, a first energy beam is irradiated onto the semiconductor thin film from the back side of the substrate while scanning in the X direction to form a first energy beam that will become a seed crystal. 1. Form a recrystallized region. A second recrystallized region is formed by scanning in the X direction while irradiating a second energy beam onto a part of the first recrystallized region and the semiconductor thin film adjacent to the region from the back surface of the substrate. The second beam has an intensity distribution or a beam width distribution that gradually increases along the Expanding. To further enlarge the recrystallized region, scanning is performed in the X direction with the n-th beam having the same intensity distribution or shape as the second beam. Although the first, second, and nth beams can be irradiated to different parts of the three semiconductor films at the same time, the temperature distribution can be made uniform by the metal film.

〔従来の技術〕[Conventional technology]

レーザアニールをはじめとしたビームアニールはS O
(silicon on In5ulator)技術と
して三次元集積回路に使われようとしている。ビームア
ニールの方法としては、日経エレクトロニクス1985
年lO月7日号229真に詳述され(1)ビーム強度を
変化さ廿る(2)半導体膜表面に反射膜や吸収膜を設け
てビーム強度を変化させる(3)熱の逃げ方に差を付け
る方法などがある。第2図+alには+11の方法の一
例が示され、絶縁基板1上のa−5i膜2に第ル−ザビ
ーム10を照射し第1再結晶領域101を形成した断面
を示す。第1ビーム1oはX方向に走査され、第2図へ
)のようなX方向強度分布(t・0)10を持つ。
Beam annealing including laser annealing is SO
(silicon on in5ulator) technology is about to be used in three-dimensional integrated circuits. As a beam annealing method, Nikkei Electronics 1985
(1) Changing the beam intensity (2) Changing the beam intensity by providing a reflective or absorbing film on the surface of the semiconductor film (3) Changing the way heat escapes There are ways to make a difference. An example of method +11 is shown in FIG. 2+al, which shows a cross section where the a-5i film 2 on the insulating substrate 1 is irradiated with the laser beam 10 to form the first recrystallized region 101. The first beam 1o is scanned in the X direction and has an intensity distribution (t·0) 10 in the X direction as shown in FIG.

ビーム中央部が端部に比し強度(温度)が低いので再結
晶化は中央部から始まり単結晶領域102が形成され、
端部は多結晶領域103.104になる。ビーム照射直
後1=0には強度分布を反映した温度分布10になるが
時間経過後t=tlには分布10を反映した融点Lm以
下の温度分布1工となる。第2図(elでは第2ビーム
20走査で第2再結晶領域201を第1再結晶領域10
1に隣接して設けた例である。第2ビーム20は第2図
[d+のようにX方向に徐々に強くなる強度分布20を
持っているが、第1ビーム10の温度分布IHt=tl
)の影吉で第2ビーム照31直後の温度分布200(t
=tl)に楢大値が生じてしまう。第2再結晶領域20
1中の単結晶領域202は第1再結晶領域101中のそ
れ102との界面120に欠陥なくつながるが単結晶領
域202内部に粒界121を生じてしまう。この問題は
、特に第1.第2ビーム10゜20の照射時間間隔L1
が数秒以下の短いときに生じやすい。即ち量産時に問題
となる。
Since the intensity (temperature) at the center of the beam is lower than that at the ends, recrystallization starts from the center and a single crystal region 102 is formed.
The ends become polycrystalline regions 103 and 104. Immediately after the beam irradiation, at 1=0, the temperature distribution becomes 10, which reflects the intensity distribution, but after the elapse of time, at t=tl, the temperature distribution becomes 1, which is below the melting point Lm, reflecting the distribution 10. FIG. 2 (in el, the second recrystallized region 201 is scanned by the second beam 20)
This is an example in which it is provided adjacent to 1. The second beam 20 has an intensity distribution 20 that gradually becomes stronger in the X direction as shown in FIG.
) Temperature distribution 200 (t
= tl), a large oak value occurs. Second recrystallization region 20
Although the single crystal region 202 in the first recrystallized region 101 is connected to the interface 120 with that 102 in the first recrystallized region 101 without defects, a grain boundary 121 is generated inside the single crystal region 202. This problem is particularly important for the first. Irradiation time interval L1 of second beam 10°20
This tends to occur when the time is short, less than a few seconds. That is, it becomes a problem during mass production.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は叙上の直前のビームアニールの温度分布の影言
を減少すべくなされたものである。大面積の再結晶半導
体薄膜を再現性よく量産できるビームアニール方法の促
供を目的とする。
The present invention has been made in order to reduce the influence of the temperature distribution of the beam annealing immediately before the above description. The purpose is to promote a beam annealing method that can mass-produce large-area recrystallized semiconductor thin films with good reproducibility.

〔問題点を解決するための手段〕[Means for solving problems]

直前のビームアニールの温度分布の影ツを減少するため
に、本発明では半導体3膜上に絶縁膜、金、属膜を順次
堆積する。エネルギービームはツー絶縁基板の裏面から
照射される。!J体薄膜に第1エネルギービームを照射
しつつX方向に走査してシード結晶となる第1再結晶領
域を形成する。
In order to reduce the influence of the temperature distribution of the immediately preceding beam annealing, in the present invention, an insulating film, a gold film, and a metal film are sequentially deposited on the three semiconductor films. The energy beam is irradiated from the back side of the two insulating substrates. ! The J-body thin film is irradiated with a first energy beam while being scanned in the X direction to form a first recrystallized region that will become a seed crystal.

第1再結晶領域の一部と半導体薄膜に第2エネルギービ
ームを照射しつつX方向に走査して第2再結晶領域を形
成する。第2ビームはX方向に沿って徐々に増加する強
度分布またはビーム幅分布を有じ、強度またはビーム幅
の小さい部分が第1再結晶領域の一部に照射され、シー
ド結晶から再結晶化が拡大する。さらなる再結晶領域の
拡大には第2ビームと同様な強度分布または形状をもつ
第nビームでX方向走査する。第1、第2、第nビーム
を同時に半導体薄膜の異なる部分に照射できて量産性を
高めることができる。
A second recrystallized region is formed by scanning in the X direction while irradiating a part of the first recrystallized region and the semiconductor thin film with the second energy beam. The second beam has an intensity distribution or a beam width distribution that gradually increases along the Expanding. To further enlarge the recrystallized region, scanning is performed in the X direction with the n-th beam having the same intensity distribution or shape as the second beam. The first, second, and n-th beams can be simultaneously irradiated onto different parts of the semiconductor thin film, thereby increasing mass productivity.

〔作用〕[Effect]

第2図の従来方法例では、ビームアニール後の放熱は基
板側にされる。一般に絶縁基板は熱伝導しにくいのでア
ニール時の温度分布がそのままの形で残りやすい。本発
明では放熱は金rA膜と基板側にされる。しかも金属膜
のために放熱は横方向にもされ温度分布は均一になりや
すい。そのため第2ビーム照射時の半導体薄膜の温度上
昇はビーム強度分布を反映しやすくなり、粒界も発生し
にくくなる。
In the conventional method example shown in FIG. 2, heat radiation after beam annealing is performed on the substrate side. Generally, insulating substrates have poor thermal conductivity, so the temperature distribution during annealing tends to remain unchanged. In the present invention, heat is dissipated from the gold rA film and the substrate side. Moreover, because of the metal film, heat is radiated laterally, and the temperature distribution tends to be uniform. Therefore, the temperature rise of the semiconductor thin film during irradiation with the second beam tends to reflect the beam intensity distribution, and grain boundaries are less likely to occur.

〔実施例〕〔Example〕

第1図に本発明によるビームアニールプロセスと温度分
布を示した。第1(a)は透明絶縁基板1にa−5i膜
2.5i02膜3、金属膜4を順次堆積した断面である
。第1エネルギービーム10はx 方向定走査され、X
方向に第1図(blに示す温度分布10(t=o)形成
するように強度分布または形状が選ばれる。
FIG. 1 shows the beam annealing process and temperature distribution according to the present invention. 1(a) is a cross section of a transparent insulating substrate 1 on which an a-5i film 2.5i02 film 3 and a metal film 4 are sequentially deposited. The first energy beam 10 is fixedly scanned in the x direction, and
The intensity distribution or shape is chosen so as to form a temperature distribution 10 (t=o) shown in FIG.

a−5i膜2が溶融するのは融点Tm以上の領域で第1
再結晶領域101 となる。第1ビームlOは中央部の
温度が端部より低くなるように設定され、再結晶化は中
央から始まる。その結果、第1再結晶領域101は中央
の第1単結晶領域102と端部の多結晶領域103.1
04からなる。第1ビーム10照射後時間t1経過する
と基板1への放熱と金属膜4の良熱伝導性のためa−5
i膜2は第1図fblのなだらかな温度分布11(t−
tl)になる。第1(C)にはt=tlに第2ビーム2
0を基板1恵面から照射して第2再結晶領域201を形
成した断面を示す。第2ビーム20は第1図(d+に示
す温度分布20(t=tl)を本来的に与えるように強
度分布または形状をもっている。しかし第1ビーム10
の温度分布11(t=tl)の影響があるので実質的に
はこれが加わった温度分布200 (t=t1)でアニ
ールされる。温度分布11はなだらかなので合成温度分
布200もスムーズで第2再結晶領域201は第1単結
晶領域102をシードとして成長し界面120に欠陥の
ない第2単結晶領域202が形成される。
The a-5i film 2 melts first in the region above the melting point Tm.
This becomes a recrystallized region 101. The first beam IO is set such that the temperature at the center is lower than at the ends, and recrystallization starts from the center. As a result, the first recrystallized region 101 is divided into the first single crystal region 102 at the center and the polycrystalline region 103.1 at the end.
Consists of 04. When time t1 elapses after irradiation of the first beam 10, a-5
The i-film 2 has a gentle temperature distribution 11 (t-
tl). In the first (C), the second beam 2 at t=tl
2 shows a cross section in which a second recrystallized region 201 is formed by irradiating 0 from the surface of the substrate 1. The second beam 20 has an intensity distribution or shape that inherently provides the temperature distribution 20 (t=tl) shown in FIG.
Since there is an influence of the temperature distribution 11 (t=tl), the annealing is substantially performed with the added temperature distribution 200 (t=t1). Since the temperature distribution 11 is gentle, the synthetic temperature distribution 200 is also smooth, and the second recrystallized region 201 grows using the first single crystal region 102 as a seed, and the second single crystal region 202 without defects is formed at the interface 120.

さらに時間経過しt=t2になるとa−5i膜2はスム
ーズな温度分布21 (t、t2)を持つ。第1図te
lでは第3ビーム30で第3再結晶領域301を形成し
た断面を示す。第2ビーム2oによるアニールと同様な
本来的温度分布30 (t=t2)を与えるように第3
ビーム30も形状等が選ばれスムーズな合成温度分布3
00が得られる。欠陥のない界面230をもった第3単
結晶領域302得られる。以下同様に第nビームでX方
向走査すれば大面積の単結晶薄膜が形成できる。
As time further elapses and t=t2, the a-5i film 2 has a smooth temperature distribution 21 (t, t2). Figure 1te
1 shows a cross section in which a third recrystallized region 301 is formed using the third beam 30. The third beam 2o is heated so as to give the same original temperature distribution 30 (t=t2) as in the annealing by the second beam 2o.
The shape of the beam 30 is also selected to achieve a smooth composite temperature distribution 3
00 is obtained. A third single crystal region 302 with a defect-free interface 230 is obtained. Similarly, by scanning in the X direction with the n-th beam, a large-area single crystal thin film can be formed.

ここで用いる透明絶縁基板1としては石英、ガラス、サ
ファイヤ、スピネル等で、低融点ガラス等の場合には5
i02膜、SiN膜等で表面コートすることが望ましい
。a−5t膜2はPCVD、スパッタ、光CVD等で堆
積でき、熱容量の点から薄いことが好ましく通常300
0A以下に選ばれる。 a−5i膜2に水素等が含まれ
るときは次の絶縁膜3、金属膜4堆積前に500〜80
0℃程度の炉アニールや溶融しない程度にビームアニー
ルする。絶縁膜3としては半導体薄膜2の融点Tm以上
の融点をもつもので、5i02膜やSiN膜膜が用いら
れる。厚みは熱伝導の点から薄く選ばれ500〜100
OA程度である。金属4にはMO,W、Ta等の高融点
金属やこれとAI、Au、Ni、 Cu等の高熱伝導性
の金属との2層膜を用い、5000A以上と厚い。エネ
ルギービームとしては、Ar、CW。
The transparent insulating substrate 1 used here is quartz, glass, sapphire, spinel, etc., and in the case of low melting point glass, etc.
It is desirable to coat the surface with an i02 film, a SiN film, or the like. The a-5t film 2 can be deposited by PCVD, sputtering, photo-CVD, etc., and is preferably thin from the viewpoint of heat capacity, and usually has a thickness of 300 nm.
Selected below 0A. When the a-5i film 2 contains hydrogen, etc., the temperature is 500 to 80% before depositing the next insulation film 3 and metal film 4.
Furnace annealing is performed at approximately 0°C or beam annealing is performed to an extent that does not melt. The insulating film 3 has a melting point higher than the melting point Tm of the semiconductor thin film 2, such as a 5i02 film or a SiN film. The thickness is selected from the viewpoint of heat conduction, and is 500 to 100 mm.
It is about OA. The metal 4 is made of a high melting point metal such as MO, W, or Ta, or a two-layer film of a high thermal conductivity metal such as AI, Au, Ni, or Cu, and is as thick as 5000A or more. Energy beams include Ar and CW.

He−Cd CW、Nd−YAG、エキシマ−レーザビ
ーム等基板を透過するものを用いる。第2、第3、第n
ビーム20,30.、、、、にはX方向に徐々に強度ま
たはX方向ビーム幅が大きくなるもので第1、第2、第
n−1単結晶領域102,202.、、、、の一部に強
度または幅の小さい部分を照射し再溶融させる。
A laser beam that passes through the substrate, such as He-Cd CW, Nd-YAG, or excimer laser beam, is used. 2nd, 3rd, nth
Beam 20, 30. , , , the intensity or the beam width in the X direction gradually increases in the first, second, n-1th single crystal regions 102, 202 . , , , is irradiated with small intensity or width to remelt it.

本発明ではビームアニール後の熱放散が非常に素早いの
で第1、第2ビーム用レーザを2本もち2木のビーム走
査を同時にできる。第1ビームの走査直後に例えばIC
J11遅れて第2ビームを照射できるため装置のスルー
プットが大きい。これは第2、第3、第nビームについ
ても同様である。レーザを複数本もつ他にビーム分割に
よる方法もある。X方向にビームを往復してアニールす
るときは最初に例えば第1、第2、第3ビームで+X方
向に走査したのち、X方向に基板を移動し第2、第3ビ
ームで−X方向に走査する。さらにX方向に基板を移動
し第2、第3ビームでX方向に走査することにより大面
積の再結晶半導体薄膜が得られる。
In the present invention, heat dissipation after beam annealing is very quick, so two lasers are provided for the first and second beams, and two beams can be scanned simultaneously. Immediately after the first beam scans, for example, an IC
Since the second beam can be irradiated with a delay of J11, the throughput of the device is high. This also applies to the second, third, and n-th beams. In addition to using multiple lasers, there is also a method that uses beam splitting. When annealing is performed by reciprocating the beam in the X direction, first, for example, the first, second, and third beams are scanned in the +X direction, then the substrate is moved in the X direction, and the second and third beams are used to scan the substrate in the -X direction. scan. Further, by moving the substrate in the X direction and scanning in the X direction with the second and third beams, a recrystallized semiconductor thin film with a large area can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によればビーム照射後の放熱が金属膜のために素
早く行われ、半導体薄膜の温度分布はスムーズになる。
According to the present invention, heat dissipation after beam irradiation is performed quickly due to the metal film, and the temperature distribution of the semiconductor thin film becomes smooth.

直後のビーム照射はこの温度分布の影響を受けに<<、
従って再結晶薄膜内に粒界の発生もしにくい。その結果
大面積に欠陥の少ない再結晶半導体薄膜が高スループツ
トで得られる。
The beam irradiation immediately after is affected by this temperature distribution.
Therefore, grain boundaries are less likely to occur within the recrystallized thin film. As a result, a recrystallized semiconductor thin film with a large area and few defects can be obtained with high throughput.

以上主にa−5i膜の再結晶について述べてきたが、多
結晶Si、他の半導体薄膜にも本発明は適用できる。そ
の結果、透明絶縁基板上に高速のトランジスタが高集積
に得られ、S OS (SILICON ON 5AP
−P[I?E)に四滴するICが安価にできる。
Although the recrystallization of the a-5i film has been mainly described above, the present invention can also be applied to polycrystalline Si and other semiconductor thin films. As a result, high-speed transistors can be highly integrated on a transparent insulating substrate, resulting in SOS (SILICON ON 5AP)
-P[I? An IC that applies four drops to E) can be made at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTal〜fflは本発明によるビームアニール
の工程断面図と半導体薄膜内のy方向温度分布、第2図
(al〜fdlは従来の方法による工程断面図と半導体
薄膜内のy方向温度分布を示す。 1・・・基板     2・・・a−5i膜3・・・5
102膜    4・・・金属膜lO・・・第1ビーム
  20・・・第2ビーム30・・・第3ビーム 101・・・第1再結晶領域 102・・・第1単結晶9■域 103、104,20.1,30,1・・・多結晶領域
201・・・第2再結晶領域 202・・・第2単結晶領域 301・・・第3再結晶領域 302・・・第3単結晶領域 120.230・・・界面 121・・・粒界 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上  務(他1名)′電\ (−′−・、・すそ) 第1図1本発明のビームアニール方法);7.ブ■20
1            Y位置Y位置 第2図、従来のビームアニール方法R云j4Y位置 Yh2置
Figure 1 shows a cross-sectional view of the process of beam annealing according to the present invention and the temperature distribution in the y-direction within the semiconductor thin film; Distribution is shown. 1...Substrate 2...a-5i film 3...5
102 film 4...Metal film lO...First beam 20...Second beam 30...Third beam 101...First recrystallization region 102...First single crystal 9■ region 103 , 104, 20.1, 30, 1... Polycrystal region 201... Second recrystallized region 202... Second single crystal region 301... Third recrystallized region 302... Third single crystal region Crystal region 120.230...Interface 121...Grain boundary or above Applicant: Seiko Electronic Industries Co., Ltd. Agent Patent attorney: Tsutomu Mogami (and 1 other person) 'Den\ (-'-・,・heel) Figure 1 1. Beam annealing method of the present invention); 7. Bu■20
1 Y position Y position Figure 2, conventional beam annealing method Ryj4Y position Yh2 position

Claims (4)

【特許請求の範囲】[Claims] (1)透明絶縁基板上に非晶質または多結晶半導体薄膜
、絶縁膜、金属膜を順次堆積する第1工程と、前記基板
の裏面より前記半導体薄膜に第1エネルギービームを照
射しつつx方向に走査して第1再結晶領域を形成する第
2工程と、 前記基板の裏面より第1再結晶領域の一部と該領域とx
方向にそってy方向側に隣接する前記半導体薄膜に第2
エネルギービームを照射しつつx方向に走査して第2再
結晶領域を形成する第3工程とから成る半導体薄膜のビ
ームアニール方法において、第2ビームはy方向に沿っ
て徐々に増加する強度分布またはビーム幅分布を有し、
強度またはビーム幅の小さい部分が第1再結晶領域の一
部に照射されることを特徴とする半導体薄膜のビームア
ニール方法。
(1) A first step of sequentially depositing an amorphous or polycrystalline semiconductor thin film, an insulating film, and a metal film on a transparent insulating substrate, and irradiating the semiconductor thin film from the back surface of the substrate with a first energy beam in the x direction. a second step of forming a first recrystallized region by scanning a part of the first recrystallized region from the back surface of the substrate;
A second layer is formed on the semiconductor thin film adjacent to the y-direction side along the direction.
In a beam annealing method for a semiconductor thin film comprising a third step of irradiating an energy beam and scanning in the x direction to form a second recrystallized region, the second beam has an intensity distribution that gradually increases along the y direction or has a beam width distribution,
A beam annealing method for a semiconductor thin film, characterized in that a portion of a first recrystallized region is irradiated with a portion having a small intensity or beam width.
(2)第3工程に続いて第2ビームと同様な強度分布ま
たはビーム幅分布を有する第n(nは3以上の整数)エ
ネルギービームを前記基板の裏面より第n−1再結晶領
域の一部と該領域とx方向に沿ってy方向側に隣接する
前記半導体薄膜に照射しつつx方向に走査して第n再結
晶領域を形成する第n+1工程を含むことを特徴とする
特許請求の範囲第1項記載の半導体薄膜のビームアニー
ル方法。
(2) Following the third step, an n-th (n is an integer of 3 or more) energy beam having the same intensity distribution or beam width distribution as the second beam is applied to the n-1 recrystallized region from the back surface of the substrate. and an (n+1)th step of forming an n-th recrystallized region by scanning in the x-direction while irradiating the semiconductor thin film adjacent to the region in the y-direction along the x-direction. A beam annealing method for a semiconductor thin film according to scope 1.
(3)前記第1、第2ビームは同時に前記半導体薄膜の
異なる部分に照射されることを特徴とする特許請求の範
囲第1項記載または第2項記載の半導体薄膜のビームア
ニール方法。
(3) A beam annealing method for a semiconductor thin film according to claim 1 or 2, wherein the first and second beams are simultaneously irradiated onto different parts of the semiconductor thin film.
(4)前記第2、第nビームは同時に前記半導体薄膜の
異なる部分に照射されることを特徴とする特許請求の範
囲第1項から第3項のいずれか記載の半導体薄膜のビー
ムアニール方法。
(4) A beam annealing method for a semiconductor thin film according to any one of claims 1 to 3, characterized in that said second and n-th beams are simultaneously irradiated to different parts of said semiconductor thin film.
JP19835386A 1986-08-25 1986-08-25 Beam annealing of semiconductor thin-film Pending JPS6354715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19835386A JPS6354715A (en) 1986-08-25 1986-08-25 Beam annealing of semiconductor thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19835386A JPS6354715A (en) 1986-08-25 1986-08-25 Beam annealing of semiconductor thin-film

Publications (1)

Publication Number Publication Date
JPS6354715A true JPS6354715A (en) 1988-03-09

Family

ID=16389697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19835386A Pending JPS6354715A (en) 1986-08-25 1986-08-25 Beam annealing of semiconductor thin-film

Country Status (1)

Country Link
JP (1) JPS6354715A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372836A (en) * 1992-03-27 1994-12-13 Tokyo Electron Limited Method of forming polycrystalling silicon film in process of manufacturing LCD
US5413958A (en) * 1992-11-16 1995-05-09 Tokyo Electron Limited Method for manufacturing a liquid crystal display substrate
JP2002016015A (en) * 2000-04-28 2002-01-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372836A (en) * 1992-03-27 1994-12-13 Tokyo Electron Limited Method of forming polycrystalling silicon film in process of manufacturing LCD
USRE36371E (en) * 1992-03-27 1999-11-02 Tokyo Electron Limited Method of forming polycrystalline silicon film in process of manufacturing LCD
US5413958A (en) * 1992-11-16 1995-05-09 Tokyo Electron Limited Method for manufacturing a liquid crystal display substrate
US5529630A (en) * 1992-11-16 1996-06-25 Tokyo Electron Limited Apparatus for manufacturing a liquid crystal display substrate, and apparatus for evaluating semiconductor crystals
JP2002016015A (en) * 2000-04-28 2002-01-18 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US8329556B2 (en) Localized annealing during semiconductor device fabrication
JP2001007045A (en) Optical system for laser thermal treatment and laser thermal treatment apparatus
JPS6281709A (en) Manufacture of semiconductor device
JPS62181419A (en) Recrystallization method of polycrystalline silicon
JP3221149B2 (en) Heat treatment method for thin film
JPS59161014A (en) Crystallization of semiconductor thin film
JPS6354715A (en) Beam annealing of semiconductor thin-film
JPS61260621A (en) Retreatment for amorphous silicon film or polycrystalline silicon film
JPH06140321A (en) Method of crystallizing of semiconductor film
JPH0521343A (en) Thin film transistor and manufacture thereof
JP2554864B2 (en) Method for recrystallizing semiconductor thin film
JPS6310516A (en) Recrystalization of thin film
JPH07235498A (en) Formation of crystalline silicon film
JP2993107B2 (en) Semiconductor thin film manufacturing method
JP2892321B2 (en) Semiconductor device and manufacturing method thereof
JPH03284831A (en) Forming method for semiconductor thin-film
JPH03284832A (en) Method of single-crystallization of semiconductor film
JP2569402B2 (en) Manufacturing method of semiconductor thin film crystal layer
JPS6355925A (en) Recrystallization of semiconductor thin film
JPH027414A (en) Formation of soi thin film
JPS63142810A (en) Manufacture of semiconductor device
JPH05315362A (en) Manufacture of semiconductor device and liquid crystal display device
JPH02211617A (en) Manufacture of semiconductor device
JPS5974620A (en) Manufacture of semiconductor element
JP2003257857A (en) Method of forming polycrystalline silicon thin-film and method of manufacturing thin-film transistor