JPH0396224A - Manufacture of soi substrate - Google Patents

Manufacture of soi substrate

Info

Publication number
JPH0396224A
JPH0396224A JP23362089A JP23362089A JPH0396224A JP H0396224 A JPH0396224 A JP H0396224A JP 23362089 A JP23362089 A JP 23362089A JP 23362089 A JP23362089 A JP 23362089A JP H0396224 A JPH0396224 A JP H0396224A
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
silicon film
substrate
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23362089A
Other languages
Japanese (ja)
Inventor
Akira Saito
明 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23362089A priority Critical patent/JPH0396224A/en
Publication of JPH0396224A publication Critical patent/JPH0396224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To manufacture an SOI substrate having excellent surface smoothness with a low laser output by forming a high melting point film on an amorphous silicon film, forming a polycrystalline silicon thereon, and then irradiating it with a laser light to melt to recrystallize the amorphous silicon film. CONSTITUTION:An amorphous silicon film 3 is formed on an amorphous insulating film 2 of an insulator substrate or a single crystalline silicon substrate, a high melting point film 4 is formed on the film 3, a polycrystalline silicon film 5 is further formed on the film 4, and irradiated with a laser light to melt to recrystallize the film 3. For example, an amorphous silicon film 3, a silicon nitride film 4 and a polycrystalline silicon film 5 are sequentially laminated on an oxide film 2 on a single crystalline silicon substrate. Then, a laser light (60mum of diameter) having 5-20W of argon laser power is linearly scanned, further deviated 20mum at its center, again scanned, the film 3 is melted to be recrystallized, and the films 5, 4 are then removed by etching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造に用いられるS01 (S
ILICON ON INSULATOR)M板の製造
方法に係り、特に表面平滑性に優れるSol基板の製造
方法に関する. 〔従来の技術〕 絶縁体sFL上または単結晶シリコン基板の非晶賞絶綽
膜上に多結晶シリコン膜または非晶質シリコン膜を形威
し、レーザ光を照射して多結晶シリコン膜または非晶質
シリコン膜を溶融再結晶化して絶縁体の上に単結晶シリ
コン膜を形成する方法が知られている.再結晶シリコン
にMOSFETなどの素子を形成する場合には再結晶シ
リコンの表面は平坦性が要求される.このため再結晶化
を行う以前の膜としては威lI1時に平坦性の優れる非
晶質シリコン膜が用いられる.再結晶化により単結晶シ
リコン膜を形威する場合、非晶質シリコン膜は溶融され
るので再結晶時に表面に波状の凹凸が現われる場合があ
り、この凹凸の発生を防ぎ表面の平坦性を維持するため
非晶質シリコン膜の上にチッ化シリコン膜や酸化膜など
の高融点被膜が設けられる.この高融点被膜は非晶質シ
リコン膜の表面状熊を転写する被膜であるとともにレー
ザ光照射時のレーザ光反射防止膜としてI能する.第4
図は従来のSol基板の製造工程を示す断面図である.
非晶質酸化1112の上に減圧CVD法により非晶質シ
リコン膜3が、続いてチッ化シリコン11I4が形威さ
れる.IOWの双峰型のレーザビームlが走査しながら
照射され、非晶質シリコン膜の溶融再結晶化が行われる
.高融点被膜は非晶質シリコン膜の表面を転写している
ので非晶質シリコン膜の溶融再結晶に際し、初期の非晶
質シリコン膜の表面が再現される.再結晶後高融点被膜
はエッチングで除去される. 〔発明が解決しようとする課題〕 しかしながらこのような従来の301基板の製造方法に
おいては高融点被膜の表面平滑性が良好であるために、
高融点被膜内部に入射したレーザ光は非晶質シリコンと
の界面で反射されたあと高融点被膜より再び空気中へ出
射されることとなりそのためレーザの吸収率が悪く、非
晶質シリコンの溶融に大きなレーザ出力( IOW )
が必要になるという問題があった. この発明は上述のような点に鑑みてなされ、その目的は
高融点被膜の上に光吸収率の高い被膜を形成することに
より、低いレーザ出力で表面平滑性に優れるSol基板
を製造する方法を提供することにある. 〔課題を解決するための手段〕 上述の目的はこの発明によれば第1工程と、第2工程と
、第3工程と、第4工程、とを有し、第!工程は絶縁体
基板上また゜は単結晶シリコン基板の非晶質絶縁膜の上
に非晶質シリコン膜を形成するものであり、 第2工程は前記非晶質シリコン膜の上に高融点被膜を形
威するものであり、 第3工程は前記高融点被膜の上−に多結晶シリコン膜を
形成するものであり、 第4工程は、レーザ光を照射して前記非晶質シリコン膜
を溶融再結晶化させるとすることにまり達威される. 高融点被膜はレーザ光照射によって溶融することがなく
、非晶質シリコン膜の表面を転写した状履がレーザ光照
射中維持される. 〔作用〕 多結晶シリコン膜は第3図に示すように表面に凹凸があ
る.このために非晶質シリコン膜と高融点被膜と、多結
晶シリコン膜の積層体に垂直に投射されたレーザビーム
は、多結晶シリコンとの界面で屈折して多結晶シリコン
中に入射する.レーザビームは高融点被膜との界面で一
部反射されるが、この反射光はシリコンの屈折率が高い
(約ll)ため、空気との界面で全反射を受けやすい.
このようにしてレーザビームは多結晶シリコンから空気
中に出射することができず光吸収率が高くなる.〔実施
例〕 次にこの発明の実施例を図面に碁いて説明する.第lI
llはこの発明の実施例に係るSol基板の製造工程を
示す断面図で単結晶シリジン基板上の酸化112の上に
非晶貿シリコン膜3.′チッ化シリコン膜4.多結晶シ
リコン115が順次積層される.非晶賞シリコン膜3は
減圧CvO法によって次の条件で製造される.胸を20
%含むシランガスを250id/−1a.の流置で流す
.圧力は? O P a ’,碁板温度は520℃であ
る.  200〜300sin,ののち500〜soo
o人厚の非晶質シリコン膜が得られる.チッ化シリコン
膜4はアンモニアとシランガスをそれぞれ250d/m
1n.の流量で流す.圧力は100Pa,基板温度は2
50〜300℃である,RFパワー400Wで200〜
300sla,のあと0.1〜0.5nのチッ化シリコ
ン114が得られる.多結晶シリコンwA5は基板温度
を600℃.時間40sin,とする以外は非晶質シリ
コンの場合と同一の条件が用いられる.厚膜は0.5n
である.第2図は非晶質シリコン膜を威膜後島状にバタ
ーニングする場合の製造工程を示す断wtmである.第
1図,第2図の場合ともに出力5〜IOWのレーザ光(
直径60−)で走査される.走査速度は50ms/sで
ある.直線状に走査したあと、20IIm中心をずらし
て再度走査される.レーザはアルゴンレーザであり、レ
ーザ光の波長は541.5n曽および488■である.
走査後多結晶シリコン115とチフ化シリコン膜4はエ
ッチングで除去される.〔発明の効果〕 この発明によれば第1工程と、第2工程と、第3工程と
、第4工程、とを有し、 第1工程は絶縁体基板上または単結晶シリコン基板の非
晶質絶縁膜の上に非晶質シリコン膜を形放するものであ
り、 第2工程は前記非晶質シリコン膜の上に高融点被膜を形
戒するものであり、 第3工程は前記高融点被膜の上に多結晶シリコン膜を形
成するものであり、 第4工程は、レーザ光を照射して前記非晶質シリコン膜
を熔融再結晶化させるので、多結晶シリコン膜の凹凸と
大きな屈折率とにより、多結晶シリコン膜内に入射した
レーザ光は、空気中に再度出射することができず、多結
晶シリコン膜中のレーザ光の吸収率が高まって従来の約
Aのレーザ出力を用いて容易に非晶質シリコン膜を溶融
再結晶化させて、表面平滑性に優れるSol・基板を製
造することが可能となる.
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to S01 (S01) used in the manufacture of semiconductor devices.
This article relates to a method for manufacturing an ILICON (ILICON ON INSULATOR) M board, and particularly to a method for manufacturing a Sol board with excellent surface smoothness. [Prior art] A polycrystalline silicon film or an amorphous silicon film is formed on an insulator sFL or an amorphous film on a single crystal silicon substrate, and a laser beam is irradiated to form the polycrystalline silicon film or amorphous silicon film. A known method is to melt and recrystallize a crystalline silicon film to form a single crystal silicon film on an insulator. When forming elements such as MOSFETs on recrystallized silicon, the surface of the recrystallized silicon must be flat. For this reason, an amorphous silicon film with excellent flatness is used as the film before recrystallization. When forming a single-crystal silicon film by recrystallization, the amorphous silicon film is melted, so wavy irregularities may appear on the surface during recrystallization.The generation of these irregularities is prevented and the surface flatness is maintained. To achieve this, a high melting point film such as a silicon nitride film or an oxide film is provided on top of the amorphous silicon film. This high melting point film is a film that transfers the surface roughness of the amorphous silicon film, and also functions as an antireflection film for laser light during laser light irradiation. Fourth
The figure is a cross-sectional view showing the manufacturing process of a conventional Sol substrate.
An amorphous silicon film 3 is formed on the amorphous oxide 1112 by low pressure CVD, followed by a silicon nitride film 11I4. IOW's bimodal laser beam l is irradiated while scanning to melt and recrystallize the amorphous silicon film. Since the high melting point film is a transfer of the surface of the amorphous silicon film, when the amorphous silicon film is melted and recrystallized, the surface of the initial amorphous silicon film is reproduced. After recrystallization, the high melting point film is removed by etching. [Problems to be Solved by the Invention] However, in such a conventional method for manufacturing a 301 substrate, since the surface smoothness of the high melting point coating is good,
The laser light that enters the high melting point film is reflected at the interface with the amorphous silicon and then emitted from the high melting point film into the air again, resulting in poor laser absorption and the melting of the amorphous silicon. Large laser power (IOW)
The problem was that it required This invention was made in view of the above points, and its purpose is to provide a method for manufacturing a Sol substrate with excellent surface smoothness with low laser output by forming a film with high light absorption on a high melting point film. The purpose is to provide. [Means for Solving the Problem] According to the present invention, the above-mentioned object has a first step, a second step, a third step, a fourth step, and the first step! The step is to form an amorphous silicon film on an amorphous insulating film on an insulating substrate or a single crystal silicon substrate, and the second step is to form a high melting point film on the amorphous silicon film. The third step is to form a polycrystalline silicon film on the high melting point coating, and the fourth step is to irradiate laser light to melt and remelt the amorphous silicon film. I am very satisfied with the idea of crystallizing it. The high melting point coating does not melt when irradiated with laser light, and the transferred state of the surface of the amorphous silicon film is maintained during laser irradiation. [Function] As shown in Figure 3, the polycrystalline silicon film has an uneven surface. For this reason, a laser beam projected perpendicularly onto a stack of an amorphous silicon film, a high melting point film, and a polycrystalline silicon film is refracted at the interface with the polycrystalline silicon and enters the polycrystalline silicon. The laser beam is partially reflected at the interface with the high melting point coating, but this reflected light is susceptible to total reflection at the interface with air because silicon has a high refractive index (approximately ll).
In this way, the laser beam cannot be emitted from polycrystalline silicon into the air, resulting in a high light absorption rate. [Example] Next, an example of this invention will be explained with reference to the drawings. No. 1I
ll is a cross-sectional view showing the manufacturing process of a Sol substrate according to an embodiment of the present invention, in which an amorphous silicon film 3. 'Silicon nitride film 4. Polycrystalline silicon 115 is sequentially laminated. The amorphous silicon film 3 is manufactured by the reduced pressure CvO method under the following conditions. 20 chest
% of silane gas containing 250 id/-1a. Flow with a flow rate of . What's the pressure? O P a ', the Go board temperature is 520°C. 200~300sin, later 500~soo
An amorphous silicon film with a thickness of 100 cm can be obtained. The silicon nitride film 4 contains ammonia and silane gas at 250 d/m each.
1n. Flow at a flow rate of Pressure is 100 Pa, substrate temperature is 2
50~300℃, 200~ with RF power 400W
After 300 sla, 0.1-0.5n silicon nitride 114 is obtained. Polycrystalline silicon wA5 has a substrate temperature of 600°C. The same conditions as in the case of amorphous silicon are used except that the time is 40 sin. Thick film is 0.5n
It is. Figure 2 is a cross-sectional view showing the manufacturing process when buttering an amorphous silicon film into an island shape. In both cases of Fig. 1 and Fig. 2, the laser beam with an output of 5 to IOW (
60-) in diameter. The scanning speed was 50ms/s. After scanning in a straight line, the center is shifted by 20 IIm and scanned again. The laser is an argon laser, and the wavelength of the laser light is 541.5 nm and 488 cm.
After scanning, the polycrystalline silicon 115 and the silicon nitride film 4 are removed by etching. [Effects of the Invention] According to the present invention, there are a first step, a second step, a third step, and a fourth step. The second step is to form a high melting point film on the amorphous silicon film, and the third step is to form a high melting point film on the amorphous silicon film. A polycrystalline silicon film is formed on the film, and the fourth step is to melt and recrystallize the amorphous silicon film by irradiating laser light, so that the unevenness and large refractive index of the polycrystalline silicon film are reduced. As a result, the laser light that has entered the polycrystalline silicon film cannot be emitted into the air again, and the absorption rate of the laser light in the polycrystalline silicon film increases, making it difficult to use the conventional laser output of about A. It becomes possible to easily melt and recrystallize an amorphous silicon film to produce a Sol substrate with excellent surface smoothness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係るSol基板の製造工程
を示す断面図、第2図はこの発明の異なる実施例に係る
SOI基板の製造工程を示す断面図、第3図はこの発明
の実施例に係るSo1基板の製造工程においてレーザ光
が全反射される状態を示す断面図、第4図は従来のSo
l基板の製造工程を示す断面図である. 2二酸化膜、3:非晶質シリコン膜、4:チッ第1図 3 第2図 第4図
FIG. 1 is a sectional view showing the manufacturing process of a Sol substrate according to an embodiment of the invention, FIG. 2 is a sectional view showing the manufacturing process of an SOI substrate according to a different embodiment of the invention, and FIG. FIG. 4 is a cross-sectional view showing a state in which laser light is totally reflected in the manufacturing process of the So1 substrate according to the embodiment, and FIG.
1 is a cross-sectional view showing the manufacturing process of the L substrate. 2 Dioxide film, 3: Amorphous silicon film, 4: Chi Figure 1 Figure 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】 1)第1工程と、第2工程と、第3工程と、第4工程、
とを有し、 第1工程は絶縁体基板上または単結晶シリコン基板の非
晶質絶縁膜の上に非晶質シリコン膜を形成するものであ
り、 第2工程は前記非晶質シリコン膜の上に高融点被膜を形
成するものであり、 第3工程は前記高融点被膜の上に多結晶シリコン膜を形
成するものであり、 第4工程は、レーザ光を照射して前記非晶質シリコン膜
を溶融再結晶化させるものである、ことを特徴とするS
OI基板の製造方法。
[Claims] 1) a first step, a second step, a third step, a fourth step,
The first step is to form an amorphous silicon film on the insulating substrate or the amorphous insulating film of the single crystal silicon substrate, and the second step is to form an amorphous silicon film on the amorphous silicon film. The third step is to form a polycrystalline silicon film on the high melting point film, and the fourth step is to irradiate the amorphous silicon with laser light. S characterized by melting and recrystallizing the film.
A method for manufacturing an OI substrate.
JP23362089A 1989-09-08 1989-09-08 Manufacture of soi substrate Pending JPH0396224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23362089A JPH0396224A (en) 1989-09-08 1989-09-08 Manufacture of soi substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23362089A JPH0396224A (en) 1989-09-08 1989-09-08 Manufacture of soi substrate

Publications (1)

Publication Number Publication Date
JPH0396224A true JPH0396224A (en) 1991-04-22

Family

ID=16957901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23362089A Pending JPH0396224A (en) 1989-09-08 1989-09-08 Manufacture of soi substrate

Country Status (1)

Country Link
JP (1) JPH0396224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347765A (en) * 1999-08-31 2005-12-15 Sharp Corp Semiconductor device and manufacturing method therefor, and method of forming silicon thin film
JP2009075908A (en) * 2007-09-21 2009-04-09 Sony Corp Web page browsing history management system, web page browsing history management method, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347765A (en) * 1999-08-31 2005-12-15 Sharp Corp Semiconductor device and manufacturing method therefor, and method of forming silicon thin film
JP2009075908A (en) * 2007-09-21 2009-04-09 Sony Corp Web page browsing history management system, web page browsing history management method, and computer program

Similar Documents

Publication Publication Date Title
JPS59161014A (en) Crystallization of semiconductor thin film
JPS62132311A (en) Recrystallizing method for conductor film
JPH0396224A (en) Manufacture of soi substrate
JPS60143624A (en) Manufacture of semiconductor device
JPH027415A (en) Formation of soi thin film
JPH06140321A (en) Method of crystallizing of semiconductor film
JPH02295111A (en) Manufacture of semiconductor device having thin film crystal layer
JPS5886717A (en) Forming of single crystal silicon film
JPH0770479B2 (en) Method for manufacturing semiconductor device
JPH02177534A (en) Manufacture of semiconductor device
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPS5853824A (en) Manufacture of semiconductor device
JPH03293720A (en) Manufacture of crystalline semiconductor thin film
JPH0442358B2 (en)
JPS61102723A (en) Manufacture of semiconductor device
JPH0744149B2 (en) Method for single crystallization of silicon film
JPS59121823A (en) Fabrication of single crystal silicon film
JPS62206819A (en) Semiconductor device
JPH03284829A (en) Forming method for semiconductor crystallized film
JPS5979531A (en) Forming method of thin-film
JPS62179112A (en) Formation of soi structure
JPS58212124A (en) Manufacture of single crystal thin film
JPH04186722A (en) Manufacture of crystalline semiconductor thin film
JPS6151821A (en) Manufacture of semiconductor device
JPS59175120A (en) Beam shape forming device