JPS5979531A - Forming method of thin-film - Google Patents

Forming method of thin-film

Info

Publication number
JPS5979531A
JPS5979531A JP57189042A JP18904282A JPS5979531A JP S5979531 A JPS5979531 A JP S5979531A JP 57189042 A JP57189042 A JP 57189042A JP 18904282 A JP18904282 A JP 18904282A JP S5979531 A JPS5979531 A JP S5979531A
Authority
JP
Japan
Prior art keywords
film
substrate
irradiating
section
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57189042A
Other languages
Japanese (ja)
Inventor
Naoji Yoshihiro
吉広 尚次
Masao Tamura
田村 誠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57189042A priority Critical patent/JPS5979531A/en
Publication of JPS5979531A publication Critical patent/JPS5979531A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain an insulating film for isolating an element through a direct drawing without using a photoetching method, etc. by irradiating laser beams to the desired section of a Si film coated on the surface of a substrate in an atmosphere containing O2 and N2 when the insulating film is formed to the desired section of the Si film. CONSTITUTION:The Si substrate 1 is coated with a SiO2 film 2, a MoSi2 film 3 is laminated on the film 2, and the polycrystalline Si thin-film 4 is formed on the film 3. A holding base 6 supporting the substrate 1 is set up in an irradiating-box outer wall 5 with a gas inflow port 10 and a gas outflow port 11, the substrate 1 is placed on the base 6 while the film 4 is directed upward, and an irradiating window 9 made of quartz is fitted to the opening section of the upper end of the outer wall 5. Laser beams are projected to the window in the vertical direction 7, and scanned in the horizontal direction 8 to irradiate the desired section of the film 4. Accordingly, the irradiating section of the film 4 is changed directly into the insulating film, and a manufacturing process for the element is simplified.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は絶縁体(#膜の裏道方法に関し、詳しくは基板
表面上に仮着さ才した半導体膜に、制御さnた雰囲気中
でレーザーr照射し、上記半導体膜の被照射部分を絶縁
物とする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for forming an insulator film, and more specifically, a semiconductor film temporarily deposited on a substrate surface is exposed to a laser beam in a controlled atmosphere. The present invention relates to a method of irradiating the semiconductor film to make the irradiated portion of the semiconductor film an insulator.

CvE来技術〕 周知のように、半導体表直において絶縁体薄膜は種々の
方法で形成さ几、利用名nていゐ。例えは、基体ケ乾燥
酸素−′PI(zO忙含むぼ素中等、鹸化性雰囲気中で
高温に加熱することによる熱酸化法が最も広く用いられ
ている他、気相成長法、熱分解法、スパッタ法などによ
って水体表面上に堆積する方法も用いられている。蟹化
膜についてレユ、加熱による基体表面の窒化K特に高温
を袋すること/l”ら、気相成長法ないしスパッタ法な
どにょる堆積膜r用いるのが一般的である。
CvE Next Technology] As is well known, insulator thin films on semiconductor surfaces can be formed by various methods, and there are various usage names. For example, the most widely used method is thermal oxidation, in which the substrate is heated to a high temperature in a saponifying atmosphere, such as boron containing dry oxygen-PI (ZO), vapor phase growth, thermal decomposition, etc. Methods such as sputtering to deposit on the surface of water bodies are also used. For crabmide films, nitridation of the substrate surface by heating, especially at high temperatures, is also used, as well as other methods such as vapor phase growth or sputtering. It is common to use a deposited film r.

従来これら)摸形成技術は、基体全体r谷方法に特有の
温度才で高めて、基体イぐ而に一様な厚さの膜を形成す
ることt特徴としていた。微和1な半碑庫高子の形成に
必要なパタンの形成は、このようにして一様に形成した
膜に写真蝕刻法を適用することによって行ゎ1してきた
Conventionally, these sample forming techniques have been characterized by forming a film of uniform thickness on the substrate by raising the temperature over the entire substrate using a unique method. The formation of the pattern necessary to form a finely-sized half-inscription tower has been carried out by applying photolithography to the film uniformly formed in this way.

最遅、高子の仮組化、高米積化の盆々の進展とともに写
真−刻法によらず、基体表面に必要なバタン忙は徽形成
する、いわゆる直接描画法が、釉棟の素子製造プロセス
で実現されつつあめ。本発明に関是する杷緑膜形戟の分
野においても、レーサー光r用いた気相成長法による膜
准値孜術がガ」られている(例えばP、 K、Boye
r他、 Appz。
Lately, with the progress of temporary assembling of Takako and high-quality lamination over the years, the so-called direct drawing method, which forms the necessary stamps on the surface of the substrate, regardless of the photographic engraving method, was used to form the elements of the glaze. Tsukuame is realized through the manufacturing process. In the field of loquat film formation, which is the subject of the present invention, film deposition technology using a vapor phase growth method using laser light has been developed (e.g., P., K., Boye et al.
r et al., Appz.

Phys、Lett、 40. (8)、 71(j、
 15 Apr+t’82)。
Phys, Lett, 40. (8), 71(j,
15 Apr+t'82).

しかしながら、熱酸化のように基体のシリコン孕直接に
酸化ないし窒化した例は知られていない。
However, there are no known examples of directly oxidizing or nitriding the silicon of the substrate as in thermal oxidation.

〔発明の目的」 本発明の目的は半纏体表面の任意の局所唄域に直接酸化
あるいは窒化膜を選択的に形成する方法ケ提供すること
にめ/S、。
[Object of the Invention] The object of the present invention is to provide a method for selectively forming an oxidation or nitride film directly on any localized area on the surface of a semi-woven body.

〔冗明の概要〕[Summary of redundancy]

」・記のよ5に、気相成長法による基体表面への絶縁)
1すの堆積にレーザー?用いる方ぬは知られているが、
直最描画法r横用可能な膜形成技術の必要性はこれにつ
きるものではない。惚えば、堆積型の膜形)或法におい
ては、その目的か表面の不活性化(ハツシベーションJ
やMO8d)、;yンジスタのゲート絶縁膜であゐ場合
には、一度の直接描画ケ行なうことによって目的ケ達し
うるが、目的が素子間の分離であるような殉合には、−
回の直接描画によってこれ?成し得ないことは明らかで
ある。
”・Insulation to the substrate surface by vapor phase growth method)
Laser for deposition of 1s? Although it is known how to use it,
There is no need for a film forming technology that can be used horizontally with the direct drawing method. In some methods, the purpose is to inactivate the surface (deposited film type).
In the case of the gate insulating film of an insulator, the goal can be achieved by performing direct writing once, but in cases where the goal is isolation between elements, -
Is this by direct drawing? It is clear that this cannot be achieved.

即b5 このような場合、堆積法による絶縁j漠によっ
て素子間分術ケ行なうならば少くとも以下に述ベイ)よ
うな上程Vこよることが必要である。その第一μ、基体
人聞の素子間分離7行うべき狽域ケ予めエツチングして
(4ケ形成し、その溝の部分に肥jづ’l!l:γ堆、
慣する方法である。藍た、第2の方法は、糸子才形成す
べき部分に半畳体)胃ヤ形ノ戊(例えばエビタ千シャル
成長法r用いて)シ、シかる後に素子量分91Wのため
の領域に絶縁膜τ」■債する方法でめわ。
(b5) In such a case, if the isolation between the elements is performed by insulation by a deposition method, it is necessary to at least increase the height V as described below. In the first step, etching the gap areas to be performed on the substrate (7) in advance (forming 4 grooves, and applying fertilization to the grooves)
It's a way to get used to it. The second method is to insulate the part to be formed into a semi-convoluted body (for example, using the Evita Senshal growth method), and then insulate the area for an element weight of 91W after the formation. Membrane τ'■ Mewa in the way to bond.

以北述べたところによって明らかなように、堆イ1e法
Vこよる杷、縁膜゛ど用いて素子間分離を行なり(ホ)
合には、素子間分離に必要なパタンを二度プレ成ないし
描画することが必要であメ、このことは当然、工程数の
増加γ訂味す心と同時に、倣細な・バタンの立置苗すの
必要t7広;本する1、 一方、半導体人聞の一部ケ直接に咳比ないし欧化する方
法により形成された絶縁膜は、パノシベ=7ヨン等にF
i推撰法による1尺と四/l求に用いられつる他、素子
間分離に用いれば肘に効果があり、半導体索子X(# 
遣工程の向上で期待しうめ。
As is clear from what has been described above, isolation between elements is performed using the deposition method 1e method V, a film, etc.
In some cases, it is necessary to pre-form or draw the pattern required for element separation twice, which naturally increases the number of steps, and at the same time increases the need for detailed patterning and patterning. On the other hand, insulating films formed by directly converting or Europeanizing some semiconductor devices have a high temperature of 70%, such as Panosybe=7yon.
In addition to being used for finding 1 shaku and 4/l by the i-selection method, it is effective for elbows when used for separation between elements, and semiconductor rope X (#
We are looking forward to seeing improvements in the delivery process.

即ち、直接酸化(もしくに窒化)によrLば、基体ぺ面
の一部がその土1杷縁物となるので、素子間分離’n、
Q域ケ形成すべきtal1分への唯一度の描画によって
、高子間分離?行なうことができ、微細パタンの位置合
せtはじめ、工程の壇加盆避けることかでさる時、犬さ
な利イ託かあゐ。
That is, if direct oxidation (or nitridation) is performed, a part of the surface of the substrate will become a part of the substrate, so that the isolation between elements will be reduced.
Is it possible to separate between macromolecules by drawing only one time to the tal 1 minute that should be formed in the Q area? When it comes to aligning minute patterns and avoiding delays in the process, you can rely on your dog.

このように任意の半導体表面領域を直接に絶縁物化すね
方法μ有用であるが、いわゆる熱畝化法以外の、レーザ
ー等エネルギー・ビームvCよる、1Iii接描画可能
の方法は不OJ[にとさnて匹た。すなわち、パルス状
のレーザー元ケシリコンカ!−根に照射した場合、多量
の酸素の混入μ認められるが酸化膜のガ須戊は叱められ
なかった。
Although this method of directly converting an arbitrary semiconductor surface region into an insulator is useful, methods other than the so-called thermal ridge formation method that allow contact drawing using a beam of energy such as a laser are non-OJ. There were a lot of them. In other words, a pulsed laser source! - When the roots were irradiated, a large amount of oxygen was detected, but the oxidized gas was not criticized.

不祐明は、直接絶kj、)模化名几るべさ半導体頭載が
該千畳体の融点においてその形状を保つのに十分な強度
ケ有し、711)つ該千4体との反応性の小δい材料e
こよって形成された基体上に形成された薄膜であるなら
ば、酸系、蚕累、もしくはその両方7r、言むd囲気中
でレーザー照射することにより酸化膜、窒化膜ないしば
窒化膜r形成することかでさるとの新たな先見に基つく
ものであめ。
711) The reaction with the 1,400 yen body is that the semiconductor head has sufficient strength to maintain its shape at the melting point of the 1,000 yen body. Material with low δ
If it is a thin film formed on the substrate formed in this way, an oxide film, a nitride film, or a nitride film can be formed by laser irradiation in an acid-based, silica-based, or both atmosphere. This is based on Saru's new foresight.

実施例 以下、本発明の一実施汐0を第1図により祝明する。第
1図において基体はシリコン単結晶板lである。その主
表向には熱淑化法によるS 1O2ii≠(厚さ200
 n m ) 2が形成されており、さらにスパッタ法
によって形成ちれIC厚さ;30Q n mのモリブデ
ン・シリサイド(MOSi2)膜3が被着している。こ
のモリブデン・/リサイド膜上に、低圧CV JJ法に
よって厚さ10 n mの多結晶シリコン薄膜4r被着
したものが、第1図の購遺である。
EXAMPLE Hereinafter, one embodiment of the present invention will be explained with reference to FIG. In FIG. 1, the substrate is a silicon single crystal plate l. Its main surface is coated with S 1O2ii≠ (thickness 200
nm) 2 is formed, and a molybdenum silicide (MOSi2) film 3 formed by sputtering and having an IC thickness of 30Q nm is adhered. A polycrystalline silicon thin film 4r having a thickness of 10 nm was deposited on this molybdenum/silicide film by the low pressure CV JJ method, as shown in FIG.

次に、この第1図の博造にレーザー光の照射忙行なった
。照射装置の概念図忙第2・図Vこ示す。基体は尽囲気
制御可能な函体5甲に設けらBた、加熱可能な沫付台6
に保付され、細く絞ったレーザー・ビーム77基体に対
し相対lJ9に走査することによって、基体の所望の位
置?照射することができるようになっている。以下、照
射条件r述べる。
Next, a laser beam was irradiated onto Hakuzo shown in Figure 1. The second conceptual diagram of the irradiation device is shown in Figure V. The base is installed in a box 5 that can control the air inside, and has a heatable droplet base 6.
By scanning a finely focused laser beam 77 relative to the substrate, the desired position of the substrate is determined. It is now possible to irradiate. The irradiation conditions r will be described below.

雰囲気vi約1気圧のN2で、7゛υ分1.5tの流量
で照射面に流入、流出している。連体な真生により、4
00Cに加熱した保持酋上に保狩さlしている。
The atmosphere vi is N2 at about 1 atm, flowing into and out of the irradiated surface at a flow rate of 1.5 tons per 7゛υ. Due to the continuous true life, 4
It is kept on a holding rack heated to 00C.

レーザーは連続発m(CW)のアルゴン・イオン・レー
ザーで、基体位置で直径約60μmになるよう、光学系
によ#)調整ちれた。レール“−走査速度佑1ないし1
00cm/ sの間で種々変化し、照射wiの基体穴内
状fiQ f l、らべたところ、第3図に示す結果r
得罠。即9一定の定食速度についてり・れば、シ・−ナ
ー・パワーの低い狽域工ではイく而の多結晶シリコン層
に変化は見られず、ややパワーの1’fiJい加賊IJ
において窒化膜の形成が見られた。・いしにパワーの賜
い領域■ではモリブデン・シリサイド族の破壊ケ生じた
。定食速度10 twr / sにおいて・領域■と埴
截■の児井は約4W、領域J1と頭載Illの境界は朽
9Wでめった。
The laser was a continuous-wave (CW) argon ion laser, which was adjusted by an optical system to have a diameter of approximately 60 μm at the substrate position. Rail “-scan speed 1 to 1
The internal shape of the substrate hole fiQ f l of the irradiation wi varied variously between 00 cm/s and the results shown in Fig. 3 were obtained.
A good trap. 9 If you keep the fixed feeding speed at a constant rate, you won't notice any change in the polycrystalline silicon layer when using a low-power siege, but when you use a 1'fiJ high-power IJ.
Formation of a nitride film was observed.・In the region ■ of Ishini's power, the destruction of the molybdenum silicide tribe occurred. At a set meal speed of 10 twr/s, the Koi of area ■ and Hanakiri ■ was approximately 4W, and the boundary between area J1 and head Ill was met at 9W.

同様の効果はモリブデン・シリサイドの代りしくクンタ
ル・シリサイド(TaS 12)、タングステン・シリ
サイド(WS+z)’に用いても得られ1こ。得られた
絶7.啄j換はパノ7ベーション用ないし多ノ響配線の
屑間絶縁膜として用いら7した。
A similar effect can be obtained by using Kuntal silicide (TaS 12) or tungsten silicide (WS+z)' instead of molybdenum silicide. Obtained absolute 7. It was used as an insulating film between scraps for panovation and polyphonic wiring.

本尤四の他の実施例は、アルミナ単結晶(サファイア)
基板上に形成されたエピタキシャルなシリコンI竹結晶
層に関するものであめ。該エピタキシャル層は通常の公
知の気相成長法によって厚さ15nm形成芒れた。この
エピタキシャル・シリコン単梢晶層tもった基体Vよ、
前記実77I!i秒12に於けると同様に#朋気制御口
I能な1かj中の、400L?に加熱された医持台に真
空吸層法により保持された雰囲気は3%のは素を宮むア
ルゴンで、流はは毎分J−tでりった。(シシ■アルゴ
ン・イオン・レーーリーーの直1<+=忙基体表面で1
0μmVC調1にし、定食速ml 50 cm / s
で照射したところ、レーザー・パワー1.5〜2Wにお
いて巾3〜57日月の帯状の酸でヒ膜勿、−回の短資で
得ること刀1できた。照射13η後の基体の断面悄漬會
第4図に示す。回内(b)に示すようVこ、酸化膜15
(グ基体すファイア即、結晶に廃している。従って本実
施例に分いて所望の夙域の周囲忙照射″jろならば、該
領域で独立した素子値域として分離できることは明らか
であろう。このことはまた、実画Vこ、仄に述べ句方?
丑で確認さ、Itた。
Another example of this example is alumina single crystal (sapphire)
This relates to an epitaxial silicon I-bamboo crystal layer formed on a substrate. The epitaxial layer was formed to a thickness of 15 nm by a conventional, well-known vapor phase growth method. The substrate V with this epitaxial silicon monocrystalline layer t,
Said fruit 77I! Similarly at i second 12, #400L in the air control port I function 1 or j? The atmosphere, which was maintained by vacuum absorption on a heated medical table, was 3% argon, with a flow rate of J-t per minute. (Direction 1 of argon ion Rayleigh < + = 1 on the busy substrate surface
Set to 0 μm VC tone 1, set feeding speed ml 50 cm/s
When irradiated with laser power of 1.5 to 2 W, it was possible to obtain a band-shaped acid film with a width of 3 to 57 days in just a few seconds. A cross-section of the substrate after irradiation of 13η is shown in FIG. As shown in pronation (b), V, oxide film 15
It is clear that if the surrounding area of the desired area is irradiated in this embodiment, the area can be separated into an independent device value range. Is this also a vague way of saying this?
Confirmed by Ushi, it was.

上記の条件で、直焚する2方向に、それぞn間隔50 
t+ mで蛭り返し照射ケ行なったところ、大きさ約4
5μmx45μmの、!:Lに酸化1莫領賊によって分
離さ几た単結晶シリコン哄域ケ得た。次に、相接する単
結晶夙域間の漏洩電流1直τ測定したところ、t(*b
t= t 5 V vcおイY: 10−” A 以下
テおりた。即ち本実施例の方法によって形成されfc酸
化膜は光子間分離に十分な特性tもつものであった。
Under the above conditions, in each of the two directions for direct firing, the interval is 50 mm.
When I did the irradiation at t + m, the size was about 4
5μm x 45μm! A monocrystalline silicon region was obtained which was separated by oxidation of 100% to L. Next, when we measured the leakage current τ between adjacent single crystal regions, we found that t(*b
t=t 5 V vc Y: 10-'' A The fc oxide film formed by the method of this example had characteristics t sufficient for photon separation.

また、本実施例において雰囲気ガスとして酸素に換えて
窒素を用いることによって、同様の条件によって窒化膜
?形成することができた。即ち、雰囲気ガスとしては純
酸素、純窒素でなく、アルゴン等の不活性気体と酸素も
しくは窒素との混合気体r用いても、本発明の効果は何
ら損われなかった。
In addition, in this example, by using nitrogen instead of oxygen as the atmospheric gas, the nitride film could be formed under the same conditions. was able to form. That is, even if a mixed gas r of an inert gas such as argon and oxygen or nitrogen was used as the atmospheric gas instead of pure oxygen or pure nitrogen, the effects of the present invention were not impaired in any way.

本発明はまfこ、非晶質絶縁物基体上に被層したシリコ
ン薄膜に対しても有効であった。即ち、浴融石英ケ基体
として形成された祖大牟占晶(粒径的100μm ) 
粒より成るシリコン薄膜において、前実施例とほぼ同等
の条件によって絶縁体Vこよる領域分離7行なうことが
できた。
The present invention was also effective for silicon thin films coated on amorphous insulating substrates. In other words, the original large crystals (grain size 100 μm) formed as a bath-fused silica substrate.
In a silicon thin film consisting of grains, region separation 7 due to the insulator V could be performed under conditions almost the same as in the previous example.

〔発明の幼果] 本発明によれば半導体の表面の微小部分子短時間〃ll
 rvNすることVこよって所望の頭載ケ絶縁膜化する
ことができ句ので、素子間分離その他の絶縁腺の局所形
成r1 フォトンジス+4布、露光、現尿、エツチング
号の写真蝕刻法に伴う、]]i一工程忙いて直接描Ll
!it法によって形成できるので、光子製造工程の簡略
化と、七の1緩接的および素子歩留り向上などに伴う間
接的経済性向上効果が犬である。
[Young fruit of the invention] According to the present invention, minute molecules on the surface of a semiconductor can be
By performing rvN, it is possible to form the desired head-mounted insulating film, so local formation of isolation between elements and other insulating glands is performed.Accompanying with the photo-etching method of photon gas + 4 cloth, exposure, actual urine, and etching, ]] I am busy with one step and draw directly Ll
! Since it can be formed by the IT method, it has the advantage of simplifying the photon manufacturing process and indirectly improving economic efficiency due to gradual and improved device yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例r祝明すゐための試料の縦断面図
、第2図Vユレーザー・照射用試料室のl従断囲図、m
13図は照射効果の照射パラメータl(5<存性を示す
グラフ、第4凶は第2の実施例における試料の照射前(
a)、および照射後(b)の縦曲面図である。 ■・・・シリコン単結晶基体、2・・・熱酸化5IU2
jル敷3・・・モ1.1ブ、デン・シリサイドI換、4
・・・多結晶シリコン薄膜、5・・・照射函外健、6・
・・カI熱可能な試、1F保持台、7・・・レーザー・
ビーム入射方間、8・・・定食方向の−59・・・石英
製照射m、10・・・ガス流入口、11 ・ガス流出1
ml、12・・・水冷用パイプ、13〜15・・・照射
効果の異る領域r示す符号、16・・・サファイア嘔結
晶基14.17・・・多結晶シリコン膜、■1図 岩 z 図 第 3 図 高  4 図
Figure 1 is a vertical sectional view of the sample for the first embodiment, Figure 2 is a cross-sectional view of the sample chamber for laser irradiation, and
Figure 13 is a graph showing the irradiation effect of the irradiation parameter l(5<).
FIG. ■...Silicon single crystal substrate, 2...Thermal oxidation 5IU2
jru bed 3...mo 1.1bu, den silicide I exchange, 4
... Polycrystalline silicon thin film, 5... Ken outside the irradiation box, 6.
・・Test that can be heated, 1F holding table, 7...Laser・
Beam incidence direction, 8... -59 in the fixed meal direction... Quartz irradiation m, 10... Gas inlet, 11 ・Gas outflow 1
ml, 12...Water cooling pipe, 13-15...Region r indicating different irradiation effects, 16...Sapphire crystal group 14.17...Polycrystalline silicon film, ■1 Figure z Figure 3 Figure height Figure 4

Claims (1)

【特許請求の範囲】[Claims] 酸素およびまたは窒素ケ含む雰囲気中においてシリコン
の所望部分にレーザー光?照射することにより、上記所
望部分ケ絶縁物とすること?特徴とする薄膜形成方法。
Laser light on a desired part of silicon in an atmosphere containing oxygen and/or nitrogen? Is it possible to insulate the desired part by irradiating it? Characteristic thin film formation method.
JP57189042A 1982-10-29 1982-10-29 Forming method of thin-film Pending JPS5979531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189042A JPS5979531A (en) 1982-10-29 1982-10-29 Forming method of thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189042A JPS5979531A (en) 1982-10-29 1982-10-29 Forming method of thin-film

Publications (1)

Publication Number Publication Date
JPS5979531A true JPS5979531A (en) 1984-05-08

Family

ID=16234316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189042A Pending JPS5979531A (en) 1982-10-29 1982-10-29 Forming method of thin-film

Country Status (1)

Country Link
JP (1) JPS5979531A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116530A (en) * 1984-07-03 1986-01-24 Matsushita Electronics Corp Manufacture of semiconductor device
JPS61199638A (en) * 1985-02-28 1986-09-04 Sony Corp Method for formation of insulating film
JPS61279134A (en) * 1985-06-04 1986-12-09 Nec Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116530A (en) * 1984-07-03 1986-01-24 Matsushita Electronics Corp Manufacture of semiconductor device
JPS61199638A (en) * 1985-02-28 1986-09-04 Sony Corp Method for formation of insulating film
JPS61279134A (en) * 1985-06-04 1986-12-09 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
TW488079B (en) Thin film processing method and device
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
JPS6392012A (en) Laminated article and manufacture of the same
JPH05507390A (en) Method for thinning etching of substrates
JPH01187814A (en) Manufacture of thin film semiconductor device
US4773964A (en) Process for the production of an oriented monocrystalline silicon film with localized defects on an insulating support
JPH05326402A (en) Manufacture of semiconductor device
JPS62132311A (en) Recrystallizing method for conductor film
JPS5979531A (en) Forming method of thin-film
US4678538A (en) Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects
JPH0411722A (en) Forming method of semiconductor crystallized film
JPH06140321A (en) Method of crystallizing of semiconductor film
JPH07326769A (en) Plane display use thin film transistor
JPS56126914A (en) Manufacture of semiconductor device
JPS5522811A (en) Manufacturing of semiconductor apparatus
JPH08148692A (en) Manufacture of thin-film semiconductor device
JPS6230314A (en) Manufacture of crystalline semiconductor thin film
JPH06140324A (en) Method of crystallizing semiconductor film
US6794274B2 (en) Method for fabricating a polycrystalline silicon film
JPH04180624A (en) Formation of pattern
JPS62282430A (en) Formation of soi element
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
JPH05198504A (en) Silicon thin film and formation thereof
JPS5825220A (en) Manufacture of semiconductor substrate
JPH02307221A (en) Growing method for cvd film