JPH04149092A - コーン部育成制御方法及び装置 - Google Patents

コーン部育成制御方法及び装置

Info

Publication number
JPH04149092A
JPH04149092A JP2274124A JP27412490A JPH04149092A JP H04149092 A JPH04149092 A JP H04149092A JP 2274124 A JP2274124 A JP 2274124A JP 27412490 A JP27412490 A JP 27412490A JP H04149092 A JPH04149092 A JP H04149092A
Authority
JP
Japan
Prior art keywords
diameter
temperature
target
value
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2274124A
Other languages
English (en)
Other versions
JPH0777996B2 (ja
Inventor
Akio Maeda
前田 秋穂
Atsushi Ozaki
篤志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2274124A priority Critical patent/JPH0777996B2/ja
Priority to DE69103119T priority patent/DE69103119T2/de
Priority to EP91117283A priority patent/EP0482438B1/en
Priority to US07/776,774 priority patent/US5223078A/en
Publication of JPH04149092A publication Critical patent/JPH04149092A/ja
Publication of JPH0777996B2 publication Critical patent/JPH0777996B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/901Levitation, reduced gravity, microgravity, space
    • Y10S117/902Specified orientation, shape, crystallography, or size of seed or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 【産業トの利用分野】
本発明は、チョクラルスキー法により、原料融液から単
結晶棒のコーン部を引上、育成する、コーン部育成制御
方法及び装置に関する。
【従来の技術】
この種のコーン部育成制御方法及び装置では、直径10
 mm程度の種結晶を融液に漬け、種結晶を引き」二げ
ることにより単結晶を育成する。すなわち、結晶直径を
3111.[11程度まで絞って転位を無くした後、結
晶直径を増大させでて、目的とする円柱状の直胴部を育
成する。 この結晶直径増大部(コーン部)は製品として使用され
ないので、できるだけ短くして単結晶製造コストを低減
する必要がある。しかし、コー=ン部を短くし過ぎると
、すなわち結晶直径を急に増大させると、結晶が乱れて
、直胴部を育成することが不可能となる。 ここで、融液温度を下げたり、結晶用」−げ速度を下げ
たりすると、結晶直径が増大する。結晶弓トげ速度の変
化に対する結晶直径の変化の応答性は、融液温度の変化
に対する結晶直径の変化の応答性よりも相当速いが、結
晶が乱れ易い。一方、コーン部の目標形状を設定してお
き、結晶直径を測定し、目標形状になるように、融液を
加熱するし−タに供給A−る電力を制御すると、ハンチ
ングが大きくて、結晶表面に大きな凹凸が形成される。 このたy〕、目標形状の傾斜を、コーン部をできるだけ
短くするだめの理想的な形状の傾斜よりも緩やかにして
、結晶が乱れるのを防止する必要がある。換言すれば、
コーン部の長さが必要以上に長くなる。 そこで、従来では、時間の経過とともに融液温度が低く
なる目標温度パターンを設定しでおき、この目標温度に
なるように、融液を加熱するヒタへの供給電力を調節し
ていた。この制御方法によれば、ハンチングが小さいの
で、結晶表面に形成される凹凸が小さくなる。
【発明が解決しようとする課題】
しかし、コーン部の形状は、絞り部の直径、直胴部の目
標直径、結晶引上げ速度、引上げ軸回転速度、坩堝回転
速度、ヒータに対する坩堝の上下方向位置、坩堝の内径
及び坩堝内の融液の量等にも依存するので、再現性の良
いコーン部形状が得られない。このた杓、経過時間に対
する目標温度パターンの傾斜を、コーン部をできるだけ
短くするための理想的な温度パターンの傾斜よりも緩や
かにして、結晶が乱れるのを防止する必要があり、コー
ン部の長さが必要以上に長くなる。 本発明の目的は、このような問題点に鑑み、コーン部形
状の再現性を向上させてコーン部を短くすることができ
るコーン部育成制御方法及び装置を提供することにある
【課題を解決するたtの手段】
本方法発明では、チョクラルスキー法により、ヒータで
加熱された融液から単結晶棒のコーン部を引上育成する
コーン部育成制御方法において、該融液に関する温度の
目標値(To又はT。+△To)及び該結晶の育成部の
直径変化率の目標値を予め設定しておき、該結晶の育成
部の直径を測定し、該直径の変化率を算出し、該融液に
関する温度を測定し、該直径変化率の算出値と目標値と
の差に基づいて、該目標温度を補正し、該測定温度が補
正された該目標温度になるように、該ヒタに供給する電
力を調節するステップを有している。 また、本装置発明では、チョクラルスキー法により、ヒ
ータで加熱された融液から単結晶棒のコーン部を引上育
成するコーン部育成制御装置において、該結晶の育成部
の直径を測定する手段と、該直径の変化率を算出する手
段と、該直径の変化率の目標値が設定された第1設定手
段と、該融液に関する温度を測定する手段と、該融液に
関する温度の目標値が設定された第2設定手段と、該直
径変化率の算出値と目標値との差に基づいて、該目標温
度を補正する目標温度補正手段と、該測定温度が補正さ
れた該目標温度になるように、該ヒ夕に供給する電力を
調節するヒータ電力調節手段と、を有している。 上記方法及び装置の発明において、前記温度及びの直径
変化率の目標値は、時間、引上げ長さ又は直径の関数と
して設定されるが、コーン部形状の再現性向上のために
は、直径変化率の目標値は直径の関数で設定するのが最
も好ましい。この再現性の向上により、温度の目標値は
、最も構成が簡単になる時間の関数で充分となる。 前記温度は、例えば、前記ヒータを囲繞する断熱材に形
成した凹部の温度又は融液表面温度である。 前記目標温度の補正は、好ましくは、前記直径変化率の
算出値と目標値との差に関する比例成分と微分成分と積
分成分との和を前記目標温度に加えることにより行う。 また、前記電力調節は、例えば、前記測定温度と前記補
正された目標温度との差に関しPID動作を行う調節で
ある。
【作用及び効果】
本発明では、結晶直径を直接制御せずに、(1)融液温
度が目標温度T0になるように制御し、かつ、 (2)直径自体ではなく、直径変化率 △D/Δtとその目標値(ΔD/Δt)。との差に基づ
いて、目標温度T。を補正しているので、コーン部形状
の再現性を向上させることができ、これにより、結晶の
乱れを生じさせずにコーン部の長さを従来よりも短くす
ることができる。
【実施例】
以下、図面に基づいて本発明の一実施例を説明する。 第1図は、コーン部育成制御装置が適用された、チョク
ラルスキー法による結晶育成装置を示す。 黒鉛坩堝10内に嵌合された石英坩堝12内には、シリ
コーン多結晶の塊が収容され、これは、黒鉛坩堝10を
囲繞するヒータ14に電力を供給することにより、加熱
溶融されて融液16になる。 ヒータ14は黒鉛の断熱材18で囲繞され、これら構成
要素10〜18は、真空吸引されるチャンバ20内に収
容されている。 黒鉛坩堝10は、これと同心の坩堝回転軸22を介し不
図示のモータで、矢印方向に回転、昇降される。一方、
黒鉛坩堝10の上方には、これと同心の引上軸26の下
端に、ホルダ28を介して種結晶30が保持されている
。 種結晶30の下端を融液16に漬けて矢印方向に引き上
げながら回転させることにより、単結晶32が育成され
る。この単結晶32は、結晶を無転位にするための絞り
部32A1結晶を目標直径DBまで増大させるためのコ
ーン部32B、目標直径DBの直胴部32Cの順に育成
される。 チャンバ20の肩部には、単結晶32と融液16との界
面に形成された輝環34を撮像するた約に、覗き窓36
が設けられ、かつ、この覗き窓36に対向して撮像装置
38がチャンバ20に固定されている。撮像装置38か
ら出力される複合映像信号は直径計測器40に供給され
、直径計測器40は画像処理により輝厖:34の直径を
計測する。 一方、融液16に関する温度を測定するために、チャン
バ20の側面に覗き窓44が設けられ、断熱材18の側
面に凹部46が形成され、かつ、覗き窓44を通し凹部
46を覗くようにして放射温度計48がチャンバ20に
固定されている。 放射温度計48で検出された温度Tの目標値Toは、マ
イクロコーンピュータ5(]で決定される。 このマイクロコーンピュータ50は、周知の如く、CP
 T、J 52、ROM54、RAM56、人カボト5
8及び出力ポートロ0を備えて構成されている。人力ボ
ート58には、直径計測器40から直径りが供給される
。また、例えば、絞り部32Aを手動制御で育成した後
、自動制御に切換えると、コーン部育成開始信号が人力
ボート58に供給される。入力ポート58にはまた、磁
気ディスクドライバ62及びキーボード63が接続され
ている。 この磁気ディスクドライバ62を介して、目標直径突化
率ファイル64及び目標温度ファイル66がマイクロコ
ーンピュータ50に読み込まれ、RAM56に格納され
る。目標直径変化率ファイル64は、図示の如く、結晶
直径りの時間tに関する変化率の目標値(ΔD/Δt)
oを直径りの関数で表したデータファイルである。また
、目標温度ファイル66は、図示の如く、凹部46の温
度の目標値T。を時間tの関数で表したデータファイル
である。 CPU52は、ROM54に格納さt17’aグラノ4
に従って、キーボード63から人力ボート58を介し後
述する初期補正値ΔT、を読み込み、直径計測器40か
ら入力ポート58を介し直径りを読み込み、RAM56
に格納された目標直径変化率ファイル64及び目標温度
ファイル66を参照して、補正した目標温度T、。を算
出し、この目標温度T。0を、出カポ−)60及びD/
A変換器68を介して温度調節器70に供給する。 温度調節器70は、例えばPID動作を行ってTが目標
温度T。flになるように、駆動回路72を介しヒータ
14に電力を供給する。 次に、第2図に基づいてマイクロフンピユータ50の処
理を説明する。 (98)絞り部最終時点での結晶直径り及び弓Fげ速度
をそれぞれ標準的な値と比較し、これらの差に基づいて
、目標温度T、の初期補正値Δ1゛。を算出し、キーボ
ード63を操作してマイクロコーンピュータ50に入力
する。 (100)直径計測器40から直径りを一定時間Δτ毎
にに回読ろ込ろ、その平均値をり、とする。 (102>直径D、が設定値DAに達したかどうかを判
定する。単結晶32が乱れないようにするために、DI
<DAでは、直径変゛イヒ率の目標値が比較的小さな値
に設定されているので、目標温度T。の補正の必要性は
少ないと考えられる。 (104)D、<[)Aであれば、RAM56に格納さ
れている目標温度ファイル66から、時刻t == i
△tにおける目標温度T。を読ろ出し、T、+ΔToを
To。とする。ここに、Δt=にΔτである。 D、≧DAであれば、 (106)直径り、が直胴部32Cの目標直径D3に達
したかどうかを判定する。 (108)D、<D、であれば、直径り、の時間に対す
る変化率△D/△tを算出する。ここに、ΔD−(D、
−D、、)7mである。 (1]、O)RAM56に格納されている目標直径変化
率ファイル64及び目標温度ファイル66から、時刻t
=i△tにおける目標直径変化率(△D/△t)。及び
目標温度T。を読み出す。 (112)d、=△D/△t (△D/△t)  ・ (1) を算出する。 (11,4>コーン部32Bの凹凸を大きくすることな
くコーン部32Bの形状の再現性を向上させるための、
目標温度T。の補正値Sを算出する例えば、前記d、に
関する比例成分と微分成分と積分成分との和を補正値S
とする。この場合、5=Kpd+KIΣd、△t + 
K n△d/△tとなる。 ここに、K−、K+ 、Knは、補正が最も効果的に行
われるように経験的に選定される定数であり、また、Δ
d = d 1d i−+である。 (116)T、+ΔTo+SをT。oとする。 (118)D/A変換器68を介し温度調節器70に、
補正された目標温度T。0を供給する。そして、lをイ
ンクリメントし、上記ステップ100へ戻る。 第3図乃至第5図は本装置を用いてコーン部32Bを実
際に育成したときの、直径り、直径変化率△D/△t1
目標直径変化率(ΔD/△t)o。 目標温度T0及び石英坩堝12の回転速度CRの時間1
 (1=0でコーン部自動育成制御開始)に対する変化
を示す。コーン部32Bの育成の際の試験条件は次の通
りである。 石英坩堝12:上下方向位置一定 引上軸26:引上げ速度一定 温度調節器70:PIDli節器 Δτ=6秒、Δt=1分、m=2 DA :80mm Da:158mm m△tは、短か過ぎると目標温度T0゜がハンチングし
、長ずぎると補正が不正確になるので、m△tの選定は
重要である。m△tの好ましい範囲は1〜3分であった
。 第3〜5図において、ダイアル(dial)値は温度と
線形の関係にある。t<2分でT。が急降下しているの
はコーン部育成速度を速めるためである。また、t<2
分でT0+ΔToくT。0となっているのは、次の理由
である。すなわち、駆動回路72がダイアルをモータで
回転させてヒータ14に供給する電力を調整しており、
目標温度の変化率があまり大きいとこのモータの回転速
度が上限値に達して追従が遅れるためである。 第3図では、直径変化率の目標値に対する偏差dがD≧
DAにおいて比較的小さい。t−60〜65分で目標温
度T。が+側に補正されている。 第4図では、t−45〜50分でdが比較的大きくなり
、目標温度T0が+側に補正されている。 t〉50では、積分定数が補正値として残っており、T
o、l!:Tooの傾きが等しくなっている。 第5図では、t〉40でdが負になったために、目標温
度T。が−側に補正されている。 目標温度T。を補正しない従来法でコーン部32Bを育
成した場合と、目標温度T0を補正した本方法でコーン
部32Bを育成した場合とを、それぞれ40本の単結晶
棒について比較した結果は次の通りであった。 コーン部長さの平均値 従来法:1(]、’1cm   本方法:]、0.1c
mコーン部長さの標準偏差 従来法:1.49    本方法:0.65不良品発生
率(転位発生本数/40本)従来法:0,45    
本方法:0.10なお、不良品とは、転位が発生したた
め結晶を降下・させて融液中で溶融し、再度引上げ直す
ものをいう。 従来力で不良品発生率が大きいのは、コーン部長さを短
くし目標直径変化率(ΔD/Δt)。を比較的大きくし
たことと、表面形状の再現性が悪いことのだ約に、実際
の直径変化率ΔD/Δtが部分的に大きくなり過ぎ%転
位が発生したと考えられる。、−のような厳1−い条件
下においては、本実施例のように、温度の自動補正を行
うこ1!−により、表面形状の再現性が向上し2て、不
良発生軍人きく低下することがわかった。
【図面の簡単な説明】
第1図乃至第5図1i本発明に係る二)−ン部育成制御
方法及び装置の一実施例に係り、 第1図はコーン部育成制御方法及び装置が適用された結
晶育成装置の概略構成図、 第2図は第1図のマイクロコーンピュータ50の処理手
厘を示すフローチャー 1−1第3図乃至第5図は本実
施例装置を実際に用いた結果を示す線図である。 図中、 10は黒鉛坩堝 12は石英用鍋 14はヒータ 16は融液 18は断熱材 201よJヤンバ 22は坩堝回転軸 2日は引上軸 28はホルダ 30は種結晶 ;321ま単結晶 32Aは絞り部 32F3はコーン部 32 Cは直胴部 34は輝環 36.44は覗き窓 38は撮像装置 48は放射温度計 5(]はマイクロコーンピュータ 64は目標直径変化Wファイル 66は目標温度ファイル

Claims (1)

  1. 【特許請求の範囲】 1)、チョクラルスキー法により、ヒータ(14)で加
    熱された融液(16)から単結晶棒(32)のコーン部
    (32B)を引上育成するコーン部育成制御方法におい
    て、 該融液に関する温度の目標値(66)及び該結晶の育成
    部の直径変化率の目標値(64)を予め設定しておき、 該結晶の育成部の直径を測定し(100)、該直径の変
    化率を算出し(108)、 該融液に関する温度を測定し、 該直径変化率の算出値と目標値との差に基づいて、該目
    標温度を補正し(112〜116)、該測定温度が補正
    された該目標温度になるように、該ヒータに供給する電
    力を調節する、 ステップを有することを特徴とするコーン部育成制御方
    法。 2)、前記温度の前記目標値(64)は時間の関数であ
    り、前記直径変化率の前記目標値(66)は直径の関数
    であることを特徴とする請求項1記載の方法。 3)、前記温度は、前記ヒータ(14)を囲繞する断熱
    材(18)に形成した凹部(46)の温度であることを
    特徴とする請求項1又は2に記載の方法。 4)、前記目標温度の補正は、前記直径変化率の算出値
    と目標値との差に関する比例成分と微分成分と積分成分
    との和を前記目標温度に加えることを特徴とする請求項
    1乃至3のいずれか1つに記載の方法。 5)、前記電力調節は、前記測定温度と前記補正された
    目標温度との差に関しPID動作を行う調節であること
    を特徴とする請求項1乃至4のいずれか1つに記載の方
    法。 6)、チョクラルスキー法により、ヒータ(14)で加
    熱された融液(16)から単結晶棒(32)のコーン部
    (32B)を引上育成するコーン部育成制御装置におい
    て、 該結晶の育成部の直径を測定する手段(38、40)と
    、 該直径の変化率を算出する手段(50、108)と、 該直径の変化率の目標値が設定された第1設定手段(6
    4)と、 該融液に関する温度を測定する手段(48)と、該融液
    に関する温度の目標値が設定された第2設定手段(66
    )と、 該直径変化率の算出値と目標値との差に基づいて、該目
    標温度を補正する目標温度補正手段(50、112〜1
    16)と、 該測定温度が補正された該目標温度になるように、該ヒ
    ータに供給する電力を調節するヒータ電力調節手段(7
    0、72)と、 を有することを特徴とするコーン部育成制御装置。 7)、前記第1設定手段で設定された前記目標値(64
    )は直径の関数であり、前記第2設定手段で設定された
    前記目標値(66)は時間の関数であることを特徴とす
    る請求項6記載の装置。 8)、前記温度測定手段(48)は、前記ヒータ(14
    )を囲繞する断熱材(18)に形成した凹部(46)の
    温度を検出することを特徴とする請求項6又は7に記載
    の装置 9)、前記目標温度補正手段(50、112〜116)
    は、前記直径変化率の算出値と目標値との差に関する比
    例成分と微分成分と積分成分との和を前記目標温度に加
    えることを特徴とする請求項5乃至8のいずれか1つに
    記載の方法。 10)、前記ヒータ電力調節手段(70、72)は、前
    記測定温度と前記補正された目標温度との差に関しPI
    D動作を行う調節器であることを特徴とする請求項6乃
    至8のいずれか1つに記載の装置。
JP2274124A 1990-10-12 1990-10-12 コーン部育成制御方法及び装置 Expired - Fee Related JPH0777996B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2274124A JPH0777996B2 (ja) 1990-10-12 1990-10-12 コーン部育成制御方法及び装置
DE69103119T DE69103119T2 (de) 1990-10-12 1991-10-10 Verfahren und Vorrichtung zur Steuerung der Züchtung eines Kegelförmigen Teiles eines Einkristalles.
EP91117283A EP0482438B1 (en) 1990-10-12 1991-10-10 Single crystal conical portion growth control method and apparatus
US07/776,774 US5223078A (en) 1990-10-12 1991-10-15 Conical portion growth control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274124A JPH0777996B2 (ja) 1990-10-12 1990-10-12 コーン部育成制御方法及び装置

Publications (2)

Publication Number Publication Date
JPH04149092A true JPH04149092A (ja) 1992-05-22
JPH0777996B2 JPH0777996B2 (ja) 1995-08-23

Family

ID=17537359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274124A Expired - Fee Related JPH0777996B2 (ja) 1990-10-12 1990-10-12 コーン部育成制御方法及び装置

Country Status (4)

Country Link
US (1) US5223078A (ja)
EP (1) EP0482438B1 (ja)
JP (1) JPH0777996B2 (ja)
DE (1) DE69103119T2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528017A (ja) * 1999-03-22 2003-09-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 育成プロセス中のシリコン結晶に係る径を制御するための方法及び装置
JP2019108239A (ja) * 2017-12-18 2019-07-04 信越半導体株式会社 Fz用シリコン原料棒の製造方法およびfzシリコン単結晶の製造方法
CN110004492A (zh) * 2019-04-25 2019-07-12 苏州新美光纳米科技有限公司 长晶炉内监测方法及长晶炉
JP2020083714A (ja) * 2018-11-28 2020-06-04 住友金属鉱山株式会社 酸化物単結晶の製造方法及び結晶育成装置
JP2020132483A (ja) * 2019-02-21 2020-08-31 信越半導体株式会社 Czシリコン単結晶製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529485A1 (de) * 1995-08-10 1997-02-13 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zur Bestimmung des Durchmessers eines wachsenden Einkristalls
JPH09221386A (ja) * 1996-02-08 1997-08-26 Komatsu Electron Metals Co Ltd 単結晶引上装置
US6503594B2 (en) 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
SG64470A1 (en) 1997-02-13 1999-04-27 Samsung Electronics Co Ltd Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnace and ingots and wafers manufactured thereby
US6485807B1 (en) 1997-02-13 2002-11-26 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects, and methods of preparing the same
US6045610A (en) * 1997-02-13 2000-04-04 Samsung Electronics Co., Ltd. Methods of manufacturing monocrystalline silicon ingots and wafers by controlling pull rate profiles in a hot zone furnance
US6340392B1 (en) 1997-10-24 2002-01-22 Samsung Electronics Co., Ltd. Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
US5968263A (en) * 1998-04-01 1999-10-19 Memc Electronic Materials, Inc. Open-loop method and system for controlling growth of semiconductor crystal
US6241818B1 (en) * 1999-04-07 2001-06-05 Memc Electronic Materials, Inc. Method and system of controlling taper growth in a semiconductor crystal growth process
US6203611B1 (en) 1999-10-19 2001-03-20 Memc Electronic Materials, Inc. Method of controlling growth of a semiconductor crystal to automatically transition from taper growth to target diameter growth
TW498402B (en) * 2000-04-26 2002-08-11 Mitsubishi Material Silicon Method for simulating the shape of the solid-liquid interface between a single crystal and a molten liquid, and the distribution of point defect of a single crystal
DE10025870A1 (de) * 2000-05-25 2001-12-06 Wacker Siltronic Halbleitermat Einkristallstab und Verfahren zur Herstellung desselben
JP2002005745A (ja) * 2000-06-26 2002-01-09 Nec Corp 温度測定装置、および温度測定方法
AU2003290909A1 (en) * 2002-07-05 2004-03-11 Sumitomo Mitsubishi Silicon Corporation Method of producing silicon monocrystal
US7282094B2 (en) * 2003-05-28 2007-10-16 Sumco Corporation Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal
US8496765B2 (en) * 2009-09-10 2013-07-30 Sumco Phoenix Corporation Method for correcting speed deviations between actual and nominal pull speed during crystal growth
CN109183141A (zh) * 2018-10-29 2019-01-11 上海新昇半导体科技有限公司 一种晶体生长控制方法、装置、系统及计算机存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761692A (en) * 1971-10-01 1973-09-25 Texas Instruments Inc Automated crystal pulling system
GB1465191A (en) * 1974-03-29 1977-02-23 Nat Res Dev Automatically controlled crystal growth
DE2446293C2 (de) * 1974-04-03 1986-01-30 National Research Development Corp., London Vorrichtung zur Regelung des Stabquerschnitts beim Czochralski-Ziehen
US3958129A (en) * 1974-08-05 1976-05-18 Motorola, Inc. Automatic crystal diameter control for growth of semiconductor crystals
US4710258A (en) * 1984-11-30 1987-12-01 General Signal Corporation System for controlling the diameter of a crystal in a crystal growing furnace
JPH0649631B2 (ja) * 1986-10-29 1994-06-29 信越半導体株式会社 結晶径測定装置
JPS63242991A (ja) * 1987-03-31 1988-10-07 Shin Etsu Handotai Co Ltd 結晶径制御方法
JPS63307186A (ja) * 1987-06-05 1988-12-14 Shin Etsu Handotai Co Ltd 晶出結晶径制御装置
JPS6483595A (en) * 1987-09-25 1989-03-29 Shinetsu Handotai Kk Device for measuring crystal diameter
JP2678383B2 (ja) * 1989-05-30 1997-11-17 信越半導体 株式会社 単結晶上装置
JPH0774117B2 (ja) * 1989-10-20 1995-08-09 信越半導体株式会社 ヒータの温度パターン作成方法及びこの温度パターンを用いたSi単結晶育成制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528017A (ja) * 1999-03-22 2003-09-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 育成プロセス中のシリコン結晶に係る径を制御するための方法及び装置
JP2019108239A (ja) * 2017-12-18 2019-07-04 信越半導体株式会社 Fz用シリコン原料棒の製造方法およびfzシリコン単結晶の製造方法
JP2020083714A (ja) * 2018-11-28 2020-06-04 住友金属鉱山株式会社 酸化物単結晶の製造方法及び結晶育成装置
JP2020132483A (ja) * 2019-02-21 2020-08-31 信越半導体株式会社 Czシリコン単結晶製造方法
CN110004492A (zh) * 2019-04-25 2019-07-12 苏州新美光纳米科技有限公司 长晶炉内监测方法及长晶炉

Also Published As

Publication number Publication date
DE69103119T2 (de) 1995-01-12
EP0482438A1 (en) 1992-04-29
JPH0777996B2 (ja) 1995-08-23
US5223078A (en) 1993-06-29
DE69103119D1 (de) 1994-09-01
EP0482438B1 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JPH04149092A (ja) コーン部育成制御方法及び装置
US5183528A (en) Method of automatic control of growing neck portion of a single crystal by the cz method
US6776840B1 (en) Method and apparatus for controlling diameter of a silicon crystal in a locked seed lift growth process
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
US4973377A (en) Crystal diameter controlling method
KR20020081287A (ko) 성장 속도 및 직경 편차를 최소화하도록 실리콘 결정의성장을 제어하는 방법
US7582160B2 (en) Silicone single crystal production process
EP1068375B1 (en) Open-loop method and system for controlling growth of semiconductor crystal
EP2071060B1 (en) Single crystal manufacturing method
EP0134680A2 (en) Apparatus for manufacturing a single crystal
JP2001019588A (ja) 単結晶直径の制御方法及び結晶成長装置
JP3867476B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶の製造装置
JP2735960B2 (ja) 液面制御方法
JPH07133186A (ja) シリコン単結晶の製造装置および製造方法
JPH0651599B2 (ja) 浮遊帯域制御方法
JPH04219388A (ja) シリコン単結晶の直径制御方法及び装置
KR20030020474A (ko) 잉곳 성장 장치 제어 시스템
JPS6054994A (ja) 化合物半導体結晶の製造方法
JPH09118585A (ja) 単結晶引上装置および単結晶の引上方法
JPS61122187A (ja) 単結晶引上機
JP2004035353A (ja) シリコン単結晶の製造方法
JPH05208893A (ja) 単結晶引上げ装置およびその制御方法
JPH0859388A (ja) 単結晶体の製造装置
JPH078754B2 (ja) 単結晶の製造方法
JPS635360B2 (ja)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees