JPH04143288A - 電解フッ素化方法およびその装置 - Google Patents

電解フッ素化方法およびその装置

Info

Publication number
JPH04143288A
JPH04143288A JP2265688A JP26568890A JPH04143288A JP H04143288 A JPH04143288 A JP H04143288A JP 2265688 A JP2265688 A JP 2265688A JP 26568890 A JP26568890 A JP 26568890A JP H04143288 A JPH04143288 A JP H04143288A
Authority
JP
Japan
Prior art keywords
electrolytic
exhaust gas
electrode
stirring
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2265688A
Other languages
English (en)
Other versions
JP2986885B2 (ja
Inventor
Masatoshi Sakuma
佐久間 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2265688A priority Critical patent/JP2986885B2/ja
Publication of JPH04143288A publication Critical patent/JPH04143288A/ja
Application granted granted Critical
Publication of JP2986885B2 publication Critical patent/JP2986885B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、各種フッ素化合物の合成に利用される電解フ
ッ素化方法およびその装置に関し、電解液のフッ酸(H
F )の損失を増大させることなく電解液の対流・攪拌
を促進することにより、フッ素化合物の収率、電流効率
等の電解成績およびその再現性の向上を図るものである
「従来技術と発明が解決しようとする課題」パーフルオ
ロ化合物等のフッ素化合物の合成においては、無水フッ
化水素と有機化合物の混合溶液を直接電解して合成する
電解フッ素化法が工業的に採用されている。この方法は
、鉄(Fe)などの金属製電解槽に無水フッ化水素と有
機゛化合物を満たし、数枚ないし数十枚またはそれ以上
の陽極(例えばNi極)および陰極(NえばFe極)を
交互に狭い間隔(#IIえば2〜IO*m)置きに組み
立てた電極パックを電解槽に入れて、浴電圧4〜8vで
電解し、フッ素化合物を合成する方法であり、本発明は
その改良に関する。
この方法では、電解合成時に、陽極においてはフッ素イ
オンの電荷の移動を経てフッ素化反応が生じ、陰極にお
いては水素イオンの還元により水素ガスが発生する。そ
して電解槽中では、発生した水素ガスの気泡の上昇と、
電極間の電解液の通電による加熱に起因する上向きの液
流とによるいわゆる自然対流下で電解が行なわれる。
ところでこの電解合成時に、電解液を積極的に攪拌する
と、原料化合物または中間体の電極面への移動、反応生
成物の離脱を促進でき、またフッ素化反応時の多量の熱
を除去できるので、目的物の収率、電流効率および再現
性を向上できる。
このため、これまで以下のような攪拌方法が小実験レベ
ルで試みられてきた。
■ガス吹き込み法 電極の下にバブラー等で窒素ガスを吹き込み、ガス?こ
よる気泡で電解液を攪拌する方法である。
この方法は装置が簡単で可動な方法であるが、電解液に
用いた無水HF(沸点19.5℃)が吹き込みガスによ
りガス中に蒸発するため、無水HFの損失量が大幅に増
加するという欠点があった。通常−35〜−40℃の冷
媒で冷却したHP凝縮器を用いてHFの凝縮、環流を図
っているか、無水HFの蒸発損失の増加を満足できる程
度に避けることは困難であるため、このガス吹き込み法
は実用的には採用されていない。
■電解液循環法 無水HF電解液を満たした電解槽から無水HF電解液を
取り出し、これを外部ポンプ等を使って再び電解槽に循
環させて液を攪拌させる方法である。この方法は循環用
ポンプ、配管、および場合により外部貯留槽等を必要と
し、装置が複雑になると共に、ジヨイント部か増加し、
確率的に無水HFが漏れる危険性が増す。しかもこの方
法では、狭い電極間に均一な攪拌流を形成するのは困難
であり、さらに目的の電解生成物が槽底に重い液層とし
て留どまっている場合、この液層を乱さずに強力で均一
な攪拌液流を形成することは難かしい。
■機械的攪拌法 電解槽の底にマグネチックスクーラー等の攪拌器を設け
て攪拌する方法である。この方法は小実験レベルにおい
ては可能であるが、実用の電解槽においてはその構造上
から攪拌器を設置するのは難しく、また電極間に均一な
攪拌液流をもたらす効果はあまり期待できない。
■その他 電極本体を電解液中で回転させる方法、電極を多孔質体
で形成して、原料ガスをこの電極内部から噴き出させ、
かつ電極自体を回転させる方法等がある。しかしこの方
法も小実験レベルでは可能であるが、実用の電解槽にお
いては困難である。
以上記したように、実用の電解槽においては、電極パッ
クの構造や電解槽の大きさ等の理由により現在まで適切
な攪拌法がなく、これまで自然対流法による攪拌に頼っ
ているのが現状である。
本発明は舵記事情に鑑みてなされたもので、簡単な装置
および方法によって電解液の攪拌と対流を促進し、電解
液のHFの損失を増大させることなくフッ素化合物の収
率、電流効率等の電解成績および再現性を向上させるこ
とを目的とする。
「課題を解決するための手段」 請求項1の電解フッ素化方法では、電解中に生じた排ガ
スを循環させて電解槽の電極下部まで戻し、電極下部か
らこの排ガスを噴き出させることを課題解決の手段とし
た。
請求項2の電解フッ素化装置では、電解中に生した排ガ
スを電解槽の上部から取り出し電極下部まで戻して噴き
出させる排ガス循環路を設けることを課題解決の手段と
した。
この装置の排ガス指環路は、電解中?こ生ごた排ガスを
循環させて電解槽の電極下部まで戻すための送風機(ブ
ロワ−、ポンプ等)および配管と、電極下部からこの排
ガスを噴き出させるための気泡発生機で構成することが
できる。
電解中に発生した排ガスを循環させるための送風機は、
例えばテフロン(フッ素樹脂、米デュポン社商品名、以
下同じ)で製造されたものが好適である。またこの排ガ
スを運ぶための配管は、排ガスの主成分である水素およ
びHFガスに対する耐久性に優れた鉄(Fe)、飼(C
u)、=ッヶル(N i)またはモネルにッケルと銅を
主体とする合金)製のものか好ましい。さらにこの排ガ
スを噴き出さ仕るための気泡発生機は、テフロンや耐H
F性に優れた材料からなる多孔パイプ、または多孔膜等
から形成されることが望ましい。この気泡発生機は、電
極の底部に均一に気泡を当てるように電解槽の底部に設
置される。さらに気泡による攪拌効率を上げるために、
電極の底部外周にテフロン、ポリエチレン等からなるす
そ囲いを設けても良い。
また排ガスを電解槽に循環させる量は、通常電解排ガス
発生量(例えば、10Aの電流で電解した場合の水素ガ
ス発生量は、標準状態で約4100cc/Hr(68c
c/■in)である)以内の適当な量に設定すれば良い
「作用」 無水フッ酸に被フッ素化物を加えてなる電解液を電解す
ると、電解生成水素ガス、HPおよび生成フルオロカー
ボンガス等からなる電解排ガスが発生する。電解排ガス
を再び電解槽に循環させて送り込んでも、この排ガスは
電解液主成分であるHFで飽和されているので、窒素ガ
スを送り込んだ時のようにHFの損失が増加することは
ない。
さらにこの電解排ガスを電極下部から噴き出させると、
電極間の電解液の対流、攪拌が促進される。
以下、図面を参照して本発明の電解フッ素化方法および
その装置について詳しく説明する。
第1図は、請求項2の電解フッ素化装置を模式的に示す
ものである。この図において符号IはFe製の電解槽で
ある。この電解槽lの中には、電解液2が満たされてお
り、さらにNi製の陽極3aとFe製の陰極3bを交互
に2〜10−1の間隔で必要枚数(例えば、数枚から数
十枚またはそれ以上、第1図の場合は25枚)組み立て
た電極パック3が設置されている。電解槽蓋5には、電
解中発生する電解排ガス中のHFを凝縮し、環流させる
凝縮器9が配管10.11を介して接続されている。
さらに前記凝縮器9は配管I2を有しており、この配管
12から非凝縮排ガスがアルカリスクラバー(図示せず
)へ導かれる。
そしてこの凝縮器9に接続された配管lOには、排ガス
循環路I3が配管7を介して接続されている。この排ガ
ス循環路13は、ブロワ−6と、バブラー4と、これら
を接続する配管8とによって構成されている。ブロワ6
は前記配管IOから引き抜いた排ガスをバブラー4に送
るもので、テフロン製のものが用いられる。バブラー4
はテフロン製のもので、前記電極パック3の下部に配置
されている。前記電極パック3の底部外周には、電極パ
ック3の底部とバブラー4とを囲むようにテフロン製す
そ囲いI4が配置されている。このすそ囲い14はバブ
ラー4から発生する気泡の電極パック3外への逃げを防
ぎ、その気泡による攪拌効率を上げるものである。
次に以上のように構成された電解フッ素化装置を用いて
行なわれる電解フッ素化方法を説明する。
この電解フッ素化方法では、電極パック3に通電して電
解液2を電解処理する。この電解中に電極パック3から
発生した電解排ガスは、配管10を経て凝縮器9に行く
途中でその一部が配管7を介してブロワ−6により引き
抜かれ、配管8の経路を通ってバブラー4に送られ、気
泡として電解槽lの底部から噴き出される。そしてこの
気泡およびこの気泡により生じる上昇流によって電極3
a、3b間が攪拌される。
一方、電極パック3から発生した電解排ガスの残りは、
配管10の経路を通って凝縮器9に流入する。凝縮器9
に流入した電解排ガスは、この凝縮器9内で−35〜−
40℃の冷媒で冷却され、電解排ガスの成分であるHF
が凝縮される。この凝縮されたHFは配管11を通って
電解槽1に環流される。また残部は配管夏2を通してア
ルカリスクラバーへ導かれる。
前記排ガス循環路夏3に引き抜かれバブラー4より噴き
出される電解排ガスの量は、電解液の対流、攪拌を充分
引き起こすように電解排ガス総量の範囲内で任意に決め
られる。
以上説明したように、この電解フッ素化装置は、電解中
に生じた電解排ガスの一部を循環させて電極下部から噴
き出させる排ガス循環路13を有する構造であるため、
電極パック3間の電解液2の対流、攪拌が促進され、効
率的に電解、合成が行なわれる。しかも攪拌のために用
いた排ガスは、電解液成分のHFによって飽和している
ので、新たにHPが流出することはない。よってこの装
置によればHFの損失の増大を回避できる。
従ってこの電解フッ素化装置によれば、HFの損失の増
大を招くことなく、目的のフッ素化合物の収率、電流効
率等の電解成績および再現性を向上させることかできる
またこの電解フッ素化装置は、電解排ガスを循環させる
装置であるため、HF等の電解液を循環させる装置と比
較して構造が簡単な排ガス循環路を設けるだけで実施で
きるから、危険なHPの漏れの確率を最小限に止め、安
全性が高い。
「実施例」 第1図の装置になぞらえて実験室用にスケールダウンし
た1(電解槽1の装置を用いて、トリーn−ブチルアミ
ン(TBA)を電解フッ素化して、パーフルオロ−トリ
ーn−ブチルアミン(FBA)を合成した。電極パック
3は、4枚のNi陽極3aと5枚のFe陰極3bが4m
m間隔で配列されている。
合成に際しては、まず、原料TBAの濃度を4重量%と
した無水フッ化水素とTBAの混合溶液を電解液2とし
てI(の電解槽1に満たした。次いで電極面積7 d1
1’、浴電圧5〜6V、電流値7Aとして300Hr電
解を行なった。この間発生する電解排ガスの約90%を
電解槽Iに循環させ、電極パック3下部に噴き出させて
電解液2の対流、攪拌を促進させた。この結果、平均の
FBAの収率(理論量に対する合成量の割合)は38.
5%であり、電流効率(電極に通じた全電気量のうち目
的物の合成反応に消費された電気量の割合)は30.4
%となった。
また比較例として電解排ガスを循環させない以外は上記
と同様の条件を用いてFBAの合成を試みた。この結果
、平均のFBAの収率は24.7%であり、電流効率は
13.6%であった。
以上の結果から、発生する電解排ガスを電解槽!に循環
させ、電極パック3の下部に噴き出させて電解液2の対
流、攪拌を促進させることにより、目的物の収率を10
〜15%、電流効率を15〜20%向上できることが判
明した。
また電解成績、電解生成物組成の再現性が対流、攪拌の
促進により向上することも認められた。
「発明の効果」 以上説明したように本発明の電解フッ素化方法およびそ
の装置は、電解中に生じた排ガスを循環させて電解槽の
電極下部まで戻し、電極下部にこの排ガスを噴き出させ
る方法および装置であるため、電極間の電解液の対流、
攪拌が促進され、効率的に電解、合成が行なわれる。そ
のうえ攪拌に用いる電解排ガス中には電解液成分が飽和
しているので、電解液成分の新たな損失が防止される。
従って本発明の電解フッ素化方法およびその装置によれ
ば、電解液成分の損失増大を招くことなく、目的のフッ
素化合物の収率、電流効率等の電解成績および再現性を
向上させることができる。
また本発明の電解フッ素化方法およびその装置は、構造
が簡単な排ガス番環路を設けるだlすで安全イこ実施で
きる利点も有する。
【図面の簡単な説明】
第1図は請求項2の電解フッ素化装置の一実施例を示す
概略図である。 l・・・・電解槽、2・・・・電解液、3・・・・電極
ノくツク、4 ・・バブラー 6・・・ブロワ−7,8
・・配管、I3・・・・排ガス循環路。

Claims (2)

    【特許請求の範囲】
  1. (1)無水フッ酸に被フッ素化物を加えてなる電解液を
    電解してフッ素化合物を合成する電解フッ素化方法にお
    いて、電解中に生じた排ガスを循環させて電解槽の電極
    下部まで戻し、電極下部からこの排ガスを噴き出させる
    ことを特徴とする電解フッ素化方法。
  2. (2)無水フッ酸に被フッ素化物が加えられた電解液を
    収納する電解槽内に前記電解液を電解処理する電極が配
    置されてなる電解フッ素化装置において、電解中に生じ
    た排ガスを電解槽の上部から取り出し電極下部まで戻し
    て噴き出させる排ガス循環路を設けたことを特徴とする
    電解フッ素化装置。
JP2265688A 1990-10-03 1990-10-03 電解フッ素化方法およびその装置 Expired - Fee Related JP2986885B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2265688A JP2986885B2 (ja) 1990-10-03 1990-10-03 電解フッ素化方法およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2265688A JP2986885B2 (ja) 1990-10-03 1990-10-03 電解フッ素化方法およびその装置

Publications (2)

Publication Number Publication Date
JPH04143288A true JPH04143288A (ja) 1992-05-18
JP2986885B2 JP2986885B2 (ja) 1999-12-06

Family

ID=17420624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2265688A Expired - Fee Related JP2986885B2 (ja) 1990-10-03 1990-10-03 電解フッ素化方法およびその装置

Country Status (1)

Country Link
JP (1) JP2986885B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127068A (ja) * 2007-11-21 2009-06-11 Akita Prefectural Univ 電解処理用カソードおよび電解槽
JP2011017077A (ja) * 2009-06-12 2011-01-27 Central Glass Co Ltd フッ素ガス生成装置
EP2415906A1 (en) * 2009-04-01 2012-02-08 Central Glass Company, Limited Fluorine gas generation device
US8864960B2 (en) 2009-12-02 2014-10-21 Central Glass Company, Limited Fluorine gas generating apparatus
US8903190B2 (en) 2010-09-28 2014-12-02 Samsung Electronics Co., Ltd. Median filtering method and apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127068A (ja) * 2007-11-21 2009-06-11 Akita Prefectural Univ 電解処理用カソードおよび電解槽
EP2415906A1 (en) * 2009-04-01 2012-02-08 Central Glass Company, Limited Fluorine gas generation device
EP2415906A4 (en) * 2009-04-01 2012-08-29 Central Glass Co Ltd DEVICE FOR PRODUCING FLUORESCENT
JP2011017077A (ja) * 2009-06-12 2011-01-27 Central Glass Co Ltd フッ素ガス生成装置
EP2423354A1 (en) * 2009-06-12 2012-02-29 Central Glass Company, Limited Fluorine gas generating device
EP2423354A4 (en) * 2009-06-12 2012-09-12 Central Glass Co Ltd DEVICE FOR PRODUCING FLUORESCENT
US8864960B2 (en) 2009-12-02 2014-10-21 Central Glass Company, Limited Fluorine gas generating apparatus
US8903190B2 (en) 2010-09-28 2014-12-02 Samsung Electronics Co., Ltd. Median filtering method and apparatus

Also Published As

Publication number Publication date
JP2986885B2 (ja) 1999-12-06

Similar Documents

Publication Publication Date Title
US11560638B2 (en) Electrochemical method of ammonia generation
US5340447A (en) Process for the selective electrofluorination of alloys or metallic mixtures based on uranium
JPH04143288A (ja) 電解フッ素化方法およびその装置
US3345212A (en) Electrolytic process for preparing iron
US3779876A (en) Process for the preparation of glyoxylic acid
US3772201A (en) Electrode for electrolytic conversion cells including passage means in the electrode for electrolyte flow through the electrode
US4146443A (en) Introducing feed into externally circulating electrolyte in electrochemical process
US5744022A (en) Method and apparatus for producing sulfur hexafluoride
JPH1180069A (ja) 酸化方法
US2506438A (en) Electrolytic process for production of fluorine
US3312610A (en) Electrolytic process for producing phosphine
Lines et al. The electrochemical fluorination of octanoyl fluoride with electrolyte circulation
US3753876A (en) Process for electrochemical fluorination
JPS60224098A (ja) 酸化プルトニウムおよび、または酸化ネプツニウムの溶解方法と溶解装置
JPH0230785A (ja) 電解フッ素化方法
US3196091A (en) Process for producing fluorine and sodium-lead alloy
US2913382A (en) Method for producing metals electrolytically
US5543522A (en) Process for preparing an ambient temperature molten salt using thionyl chloride
US2716632A (en) Electrolytic method of producing fluorine or fluorine oxide
JPH0559579A (ja) 電解フツ素化方法
JPH10110284A (ja) 電解フッ素化方法
JPH08176872A (ja) 三フッ化窒素の製造方法
CN108893753B (zh) 一种咪唑类磷酸二烷基酯离子液体的制备方法
JP2000160382A (ja) 有機化合物の電解フッ素化装置
CA1278774C (en) Electrolysis system for the production of peroxy compounds

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees