JPH04121960A - Manufacture of metal hydride electrode - Google Patents

Manufacture of metal hydride electrode

Info

Publication number
JPH04121960A
JPH04121960A JP2240359A JP24035990A JPH04121960A JP H04121960 A JPH04121960 A JP H04121960A JP 2240359 A JP2240359 A JP 2240359A JP 24035990 A JP24035990 A JP 24035990A JP H04121960 A JPH04121960 A JP H04121960A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
pulverization
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2240359A
Other languages
Japanese (ja)
Other versions
JP2975658B2 (en
Inventor
Masayuki Doi
雅之 土井
Takashi Ueda
上田 高士
Shinsuke Nakahori
中堀 真介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2240359A priority Critical patent/JP2975658B2/en
Publication of JPH04121960A publication Critical patent/JPH04121960A/en
Application granted granted Critical
Publication of JP2975658B2 publication Critical patent/JP2975658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make the pulverization of hydrogen storage alloy safe and and simple and restrain the oxidization of the alloy surface at the process of electrode manufacturing, by bringing the hydrogen storage alloy into contact with an acid solution, and then, bringing the alloy into contact with an alkaline solution at the time of pulverization or after pulverization. CONSTITUTION:Hydrogen storage alloy powder is immersed in water regulated to pH 5 by bubbling carbonic acid gas beforehand, and then, the alloy and solution are put in a ball mill, and ball mill pulverization is conducted, and in addition, the solution is added with an 0.1 M potassium hydroxide solution, and regulated to pH 9. After the water washing of the alloy powder, a slurry is obtained by regulating 20 wt parts of water and 1 wt part of polyethylene oxide to 100 wt parts of the alloy powder, and after painting on the surface of a conductive support body consisting of a punching metal, a metal hydride electrode is obtained by conducting drying and pressurization.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、水素を吸蔵及び放出することのできる水素吸
蔵合金を負極材料として用いたアルカリ蓄電池用の水素
吸蔵合金電極の製造方法に関するものである。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method for manufacturing a hydrogen storage alloy electrode for an alkaline storage battery using a hydrogen storage alloy capable of absorbing and releasing hydrogen as a negative electrode material. It is.

(ロ)従来の技術 従来からよく用いられている蓄電池としては、ニッケル
ーカドミウム蓄電池、あるいは鉛蓄電池などがあるが、
近年、これらの電池より軽量且つ高容量で高エネルギー
密度となる可能性があるということで、水素吸蔵合金を
負極材料として用いる水素吸蔵合金電極を備えたニッケ
ルー水素アルカリ蓄電池が注目されている。
(b) Conventional technology Storage batteries that have been commonly used include nickel-cadmium storage batteries and lead-acid batteries.
In recent years, nickel-hydrogen alkaline storage batteries have attracted attention because they are lighter, have higher capacity, and may have higher energy density than these batteries, and are equipped with a hydrogen-absorbing alloy electrode that uses a hydrogen-absorbing alloy as a negative electrode material.

このアルカリ蓄電池の負極に用いる水素吸蔵合金電極は
、一般に特開昭61−66366号公報に示されるよう
に、ポリテトラフルオロエチレンやポリエチレンオキサ
イドなどの結着剤と水素吸蔵合金粉末とを混練してペー
ストを作製し、パンチングメタルやエクスパンドメタル
などの芯体の両面に前記ペーストを塗着、乾燥して製造
される。そして、このようにして作製された水素吸蔵合
金電極は、通常、ニッケルーカドミウム蓄電池に用いら
れる焼結式ニッケル正極との間にセパレータを介在させ
て、渦巻状に持回した状態で電池外装缶に収容され、電
池が構成される。
The hydrogen storage alloy electrode used as the negative electrode of this alkaline storage battery is generally made by kneading a binder such as polytetrafluoroethylene or polyethylene oxide with hydrogen storage alloy powder, as shown in JP-A No. 61-66366. It is manufactured by preparing a paste, applying the paste to both sides of a core such as punched metal or expanded metal, and drying it. The hydrogen-absorbing alloy electrode produced in this way is usually placed in a battery case while being carried around in a spiral shape with a separator interposed between it and the sintered nickel positive electrode used in nickel-cadmium storage batteries. is housed in the battery to form a battery.

このように、水素吸蔵合金粉末と結着剤とを主体とする
水素吸蔵合金電極を負極に用いる場合には、負極の性能
は水素吸蔵合金粉末の性能に大きく左右されることにな
る。この点を考慮して、特開昭62−154562号公
報では、水素吸蔵合金の粒径を20〜149μmに規制
して電極を構成することにより、充放電の繰り返しによ
るサイクル寿命が長く、高い性能を有する電池を提供す
ることを可能としている。
In this way, when a hydrogen storage alloy electrode mainly composed of hydrogen storage alloy powder and a binder is used as a negative electrode, the performance of the negative electrode is greatly influenced by the performance of the hydrogen storage alloy powder. Taking this point into consideration, Japanese Patent Application Laid-Open No. 154562/1983 proposes that the particle size of the hydrogen storage alloy is regulated to 20 to 149 μm to form an electrode, resulting in a long cycle life and high performance due to repeated charging and discharging. This makes it possible to provide batteries with

一方、この合金を粉砕する方法としては、特公紹60−
40668号公報に示されるように、水素吸蔵合金粉末
を密閉容器内で強制的に水素の吸蔵及び放出を行わせて
粉砕する方法や、特開昭62−154562号公報に示
されるように、空気中において水素吸蔵合金をボールミ
ルで粉砕する方法がある。
On the other hand, as a method for pulverizing this alloy,
As shown in Japanese Patent Publication No. 40668, there is a method of pulverizing hydrogen-absorbing alloy powder by forcibly absorbing and releasing hydrogen in a closed container, and as shown in Japanese Patent Application Laid-Open No. 154562-1982, Among them, there is a method of grinding a hydrogen storage alloy with a ball mill.

しかしながら、前者の方法では、−度に多くの合金を粉
砕するのは難しく、また、複雑で高価な製造設備を必要
とし、水素ガスを使用するため危険を伴うという問題が
あり好ましくない。後者の方法においても空気中で粉砕
を行うと、水素吸蔵合金は、活性であるため空気中の酸
素によって酸化され、充放t(水素吸蔵、放出)の反応
性が低下するという問題がある。さらに、前記粉砕を不
活性雰囲気下で行うことによって合金の酸化を抑制する
方法もあるが、この場合も粉砕前に合金表面に存在する
酸化物が、そのまま残ってしまうこと及び粉砕時に新し
く生成した活性面が、合金を空気中に取り出す時点で酸
化されることなどによって、合金の充放電の反応性が低
下するという間組があった。
However, the former method is not preferred because it is difficult to crush a large amount of alloy at one time, requires complicated and expensive production equipment, and is dangerous because hydrogen gas is used. Even in the latter method, when pulverization is performed in air, the hydrogen storage alloy is active and is oxidized by oxygen in the air, resulting in a problem that the reactivity of charging and discharging (hydrogen storage and release) decreases. Furthermore, there is a method of suppressing the oxidation of the alloy by performing the above-mentioned crushing under an inert atmosphere, but in this case too, the oxides existing on the alloy surface before crushing remain as they are, and the oxides newly generated during the crushing. There was a problem that the active surface was oxidized when the alloy was taken out into the air, resulting in a decrease in the charging and discharging reactivity of the alloy.

(ハ)発明が解決しようとする課順 本発明は、上記間組を解決するものであって、水素吸蔵
合金の粉砕を安全でしかも簡易に行えると共に、水素吸
蔵合金表面の酸化を電極製造工程において抑制できる水
素吸蔵合金tL極の製造方法を提供しようとするもので
ある。
(c) Problems to be Solved by the Invention The present invention solves the above-mentioned problems, and allows the hydrogen storage alloy to be pulverized safely and easily, and also prevents the oxidation of the surface of the hydrogen storage alloy in the electrode manufacturing process. The purpose is to provide a method for manufacturing a hydrogen storage alloy tL electrode that can suppress the amount of hydrogen absorbed.

に夕  課組を解決するための手段 本発明の水素吸蔵合金電極の製造方法は、水素吸蔵合金
を所定の粒径に粉砕して電極を製造する方法において、
前記合金を酸性水溶液に接触させた後、前記粉砕を行う
際または粉砕後に前記合金をアルカリ性水溶液に接触さ
せることを特徴とするものである。
A method for manufacturing a hydrogen storage alloy electrode of the present invention is a method for manufacturing an electrode by crushing a hydrogen storage alloy to a predetermined particle size.
After the alloy is brought into contact with an acidic aqueous solution, the alloy is brought into contact with an alkaline aqueous solution during or after the pulverization.

(ホ)作用 粉砕前の水素吸蔵合金は、一般にその表面に酸化物が形
成されており、また、粉砕することによって新たに表出
する合金表面は極めて活性であり、酸素によって酸化さ
れ易い状態にあるため、粉砕を不活性雰囲気下で行って
も、この合金を空気中に取り出した時点で、合金表面が
酸化して合金の反応性を低Fさせる。
(E) Effects Hydrogen storage alloys before pulverization generally have oxides formed on their surfaces, and the alloy surface newly exposed by pulverization is extremely active and easily oxidized by oxygen. Therefore, even if pulverization is carried out under an inert atmosphere, when the alloy is taken out into the air, the surface of the alloy is oxidized and the reactivity of the alloy is reduced to low F.

これに対して、合金を浸漬などによって酸性水溶液に接
触させると、合金表面に存在する酸化物は、酸性水溶液
中に溶解して活性な面が合金の表面に現れる。また、酸
性水溶液に浸漬した後、前記水溶液をアルカリ性にする
と、水溶液中に溶解した金属イオンが合金の表面に水酸
化物として析出して安定な被膜を形成する。
On the other hand, when the alloy is brought into contact with an acidic aqueous solution by immersion or the like, the oxides present on the alloy surface are dissolved in the acidic aqueous solution and an active surface appears on the surface of the alloy. Furthermore, when the aqueous solution is made alkaline after being immersed in an acidic aqueous solution, the metal ions dissolved in the aqueous solution precipitate as hydroxides on the surface of the alloy to form a stable film.

この水酸化物の被膜について詳細に検討した結果、空気
中の酸素による酸化とは異なり、充放電の反応性の低下
をもたらさないことが分かった。
As a result of a detailed study of this hydroxide film, it was found that unlike oxidation by oxygen in the air, it does not cause a decrease in charge/discharge reactivity.

更に、この合金を空気中に取り出しても、合金の活性面
は前記水産化物の被膜で被覆されているため、活性面が
空気中に露出することがなく、これによって、空気中の
酸素による酸化を受は難くなり、充放電の反応性の低ド
を抑制できる。
Furthermore, even if this alloy is taken out into the air, the active surface of the alloy is covered with a film of the aquatic product, so the active surface is not exposed to the air, and this prevents it from being oxidized by oxygen in the air. This makes it difficult for the battery to receive the charge and discharge, and it is possible to suppress the low reactivity of charging and discharging.

また、水酸化物の被膜の形成は、粉砕した合金の表面に
行わなければ、充分な効果が得られないため、合金とア
ルカリ性水溶液との接触は、合金を粉砕する際または粉
砕後に少なくとも1回行う必要がある。一方、合金を酸
性水溶液に接触するのは、前記合金とアルカリ性水溶液
との接触前であればいつでも構わない。
In addition, the formation of a hydroxide film must be applied to the surface of the pulverized alloy in order to obtain a sufficient effect, so the contact between the alloy and the alkaline aqueous solution should be made at least once during or after pulverizing the alloy. There is a need to do. On the other hand, the alloy may be brought into contact with the acidic aqueous solution at any time before the alloy comes into contact with the alkaline aqueous solution.

(へ)実施例 本発明の実施例を以下に示し、比較例との対比に言及す
る。
(f) Examples Examples of the present invention will be shown below, and comparisons with comparative examples will be mentioned.

(実施例1) 水素吸蔵合金の原料金属としての市販のミツシュメタル
(M m、希土類元素の混合物)とニッケルとコバルト
とアルミニウムとマンガンを、元素比で1.O:3.2
:1.O:0,2:0,6に秤験したのち、高周波誘導
炉内で溶解、鋳造する。これにより、MmN i 3.
*Co A l o、tMn o、sという組成の合金
を得る。さらに、この合金を窒素雰囲気中で粗粉砕し5
0メンシユ以下の粉末を得る。
(Example 1) Commercially available Mitshumetal (Mm, a mixture of rare earth elements) as a raw material metal for a hydrogen storage alloy, nickel, cobalt, aluminum, and manganese were mixed in an elemental ratio of 1. O: 3.2
:1. After weighing at O: 0, 2: 0, 6, it is melted and cast in a high frequency induction furnace. This results in MmN i 3.
*An alloy with the composition CoA lo, tMno, s is obtained. Furthermore, this alloy was coarsely pulverized in a nitrogen atmosphere.
A powder with a size of 0 or less is obtained.

次に、この粉末を、予め炭酸ガスをバブリングしてpH
を5に調整した水に浸漬した後、この合金及び水溶液を
アルミナ製のポットとボールからなるボールミルに入れ
、5時間ボールミル粉砕を行い、更に、この水溶液にO
,1M水酸化カリウム水溶液を添加してp I−1を9
に調整する。
Next, this powder is adjusted to pH by bubbling carbon dioxide gas in advance.
After immersing the alloy in water adjusted to 5, the alloy and aqueous solution were placed in a ball mill consisting of an alumina pot and balls, and ball milled for 5 hours.
, 1M potassium hydroxide aqueous solution was added to reduce p I-1 to 9
Adjust to.

前記合金粉末を水洗した後、合金粉末100重量部に対
して、水20重量部及びポリエチレンオキサイド1重量
部となるよう調整してスラリーを作製し、パンチングメ
タルからなる導電性支持体の表面に塗着した後、乾燥及
び加圧を行い本発明の水素吸蔵合金電極aを得た。
After washing the alloy powder with water, prepare a slurry by adjusting 100 parts by weight of the alloy powder to 20 parts by weight of water and 1 part by weight of polyethylene oxide, and apply it on the surface of a conductive support made of punched metal. After drying and pressurizing, the hydrogen storage alloy electrode a of the present invention was obtained.

次いで、この電極を負極とし、正極に焼結式ニッケル電
極を使用して、これら正、負極の間に不織布からなるセ
パレータを介して持回することにより渦を電極体を得た
。そして、この渦巻電極体を電池外装缶に挿入し:30
重騎%の水酸化カリウム水溶液を電解液として注液した
のち、封目して公称容tlooomAhの本発明の密閉
型ニッケルー水素電池Aを組み立てた。
Next, this electrode was used as a negative electrode, a sintered nickel electrode was used as a positive electrode, and a vortex electrode body was obtained by rotating the electrode with a separator made of nonwoven fabric interposed between the positive and negative electrodes. Then, insert this spiral electrode body into the battery outer can: 30
After injecting an aqueous solution of potassium hydroxide with a concentration of 10% as an electrolyte, the battery was sealed to assemble a sealed nickel-metal hydride battery A of the present invention having a nominal capacity of tloooomAh.

(実施例2) 前記実施例1において合金の浸漬及びボールミル粉砕を
、予めpH3、pH4及びpH6に調整した水溶液中で
行った後、この水溶液に水酸化力Jラムを添加しpHを
9に調整する以外は全く同一の条件で本発明の水素吸蔵
合金を極す、c及びdを作製し、更に同様にして本発明
の密閉型ニッケルー水素電池B、C及びDを組み立てた
(Example 2) In Example 1, the alloy was immersed and ground in a ball mill in an aqueous solution adjusted to pH 3, pH 4, and pH 6 in advance, and then hydroxide J ram was added to this aqueous solution to adjust the pH to 9. The hydrogen storage alloys of the present invention, c and d, were produced under the same conditions except for the above, and the sealed nickel-metal hydride batteries B, C and D of the present invention were assembled in the same manner.

(実施例3) 前記実施例1において合金の浸漬及びボールミル粉砕を
、予めpHを5に調整した水溶液中で行った後、水;8
液のpHを8.10及び11に調整する以外は全く同一
の条件で本発明の水素吸蔵合金電極e、f及びgを作製
し、更に同様にして本発明の密閉型ニッケルー水素電池
E、F及びGを組み立てた。
(Example 3) In Example 1, the alloy was immersed and ball milled in an aqueous solution whose pH was adjusted to 5 in advance, and then water;
Hydrogen storage alloy electrodes e, f, and g of the present invention were produced under exactly the same conditions except that the pH of the solution was adjusted to 8.10 and 11, and sealed nickel-hydrogen batteries E, F of the present invention were produced in the same manner. and G were assembled.

(実施例4) 前記実施例1においてpH5に調整した水溶液中に合金
を浸漬した後、この水溶液に水酸化カリウムを添加しp
Hを9及び10に調整した状態でボールミル粉砕を行う
以外は全く同一の条件で本発明の水素吸蔵合金電極り及
び1を作製し、更に同様にして本発明の密閉型ニッケル
ー水素電池H及びIを組み立てた。
(Example 4) After immersing the alloy in the aqueous solution adjusted to pH 5 in Example 1, potassium hydroxide was added to this aqueous solution and p
Hydrogen storage alloy electrodes H and I of the present invention were produced under exactly the same conditions except that ball milling was carried out with H adjusted to 9 and 10, and sealed nickel-hydrogen batteries H and I of the present invention were produced in the same manner. assembled.

(比較例1) 前記実施例1においてボールミル粉砕を水を加えずに窒
素雰囲気中で行い、粉砕後この粉末を空気中に取り出し
、ポリエチレンオキサイド及び分敵媒としての水を加え
てスラリーを作製する以外は全く同一の条件で比較の水
素吸蔵合金電tfijを作製し、また比較の密閉型ニッ
ケルー水素電池Jを組み立てた。
(Comparative Example 1) In Example 1, ball mill pulverization is performed in a nitrogen atmosphere without adding water, and after pulverization, this powder is taken out into the air, and polyethylene oxide and water as a dividing medium are added to prepare a slurry. A comparative hydrogen-absorbing alloy electrode tfij was produced under the same conditions except for that, and a comparative sealed nickel-metal hydride battery J was assembled.

(比較例2) 前記実施例1において合金の浸漬及びボールミル粉砕を
、pH7の中性の水中で行った後、この粉末にポリエチ
レンオキサイドを加えてスラリーを作製する以外は全く
同一の条件で比較の水素吸蔵合金電極kを作製し、また
比較の密閉型ニッケルー水素電池Kを組み立てた。
(Comparative Example 2) A comparative example was prepared under exactly the same conditions as in Example 1, except that the alloy was immersed and ball milled in neutral water with a pH of 7, and then polyethylene oxide was added to the powder to prepare a slurry. A hydrogen storage alloy electrode K was fabricated, and a comparative sealed nickel-hydrogen battery K was assembled.

(比較例3) 前記実施例1において合金の浸漬及びボールミル粉砕を
、p H7の中性の水中で行った後、この水溶液に水酸
化カリウムを添加しp)Iを9に調整する以外は全く同
一の条件で比較の水素吸蔵合金t&+1を作製し、また
比較の密閉型ニッケルー水素電池りを組み立てた。
(Comparative Example 3) In Example 1, the alloy was immersed and ball milled in neutral water with a pH of 7, and then potassium hydroxide was added to this aqueous solution to adjust p)I to 9. A comparative hydrogen storage alloy t&+1 was produced under the same conditions, and a comparative sealed nickel-metal hydride battery was assembled.

以上の、本発明の水素吸蔵合金電極及び比較の水素吸蔵
合金電極に対して30%KOHを満たした5atmの加
圧容器中で充放電テストを行った。その時の充放電条件
は、50 m A / gの電流値で8時間充電した後
、50mA、’gの電流値で放電し、電極電位が一〇 
、  7 V v s Hg / Hg Oに達した時
点で放電停止するものである。
A charge/discharge test was conducted on the hydrogen storage alloy electrode of the present invention and the comparative hydrogen storage alloy electrode in a 5 atm pressurized container filled with 30% KOH. The charging/discharging conditions at that time were to charge at a current value of 50 mA/g for 8 hours, then discharge at a current value of 50 mA/g, and the electrode potential reached 10
, 7 V v s Hg/Hg O, the discharge is stopped.

この結果を第1表に示した。The results are shown in Table 1.

以下余白 第1表 第1表から明らかなように、本発明の水素吸蔵合金電極
a乃至lの放電容量が、比較の水素吸蔵合金t%NJ、
k及びlに比べて高くなることがわかる。
As is clear from Table 1 in Table 1 below, the discharge capacities of the hydrogen storage alloy electrodes a to l of the present invention are the same as those of the comparative hydrogen storage alloy t%NJ,
It can be seen that it is higher than k and l.

すなわち、本発明電極では、粉砕時または粉砕後に合金
を酸性水溶液中に浸漬するため、粉砕前から合金表面に
存在する酸化物か溶解ビて活性面が生成−1また。この
酸化物の溶解によって生成口な活性面と粉砕時に生成す
る活性面が、アルカJ性水溶液中で水酸化物被膜で被覆
され、これによって酸素による酸化が抑制でき、充放電
の反応性の低下が抑制されるためである。
That is, in the electrode of the present invention, since the alloy is immersed in an acidic aqueous solution during or after pulverization, the oxides existing on the alloy surface even before pulverization are dissolved to form an active surface. By dissolving this oxide, the active surface that is the production opening and the active surface that is generated during pulverization are coated with a hydroxide film in the alkali J aqueous solution, which suppresses oxidation by oxygen and reduces reactivity during charging and discharging. This is because it is suppressed.

これに対して比較電極Jでは、粉砕時に生成−だ合金表
面の活性面が、合金を取り出し時に空気中の酸素によっ
て酸化されるため、充放電の反応性が低下口なものと考
えられる。
On the other hand, in comparison electrode J, the active surface on the surface of the alloy produced during pulverization is oxidized by oxygen in the air when the alloy is taken out, so it is thought that the reactivity during charging and discharging is reduced.

また、比較電極にでは、粉砕によって生成した活性面が
、1極製造時の乾燥によって空気中に露出し、空気中の
酸素によって酸化されたために充放電の反応性が低下し
たものと考えられる。
In addition, in the comparison electrode, the active surface generated by pulverization was exposed to the air during drying during the manufacture of the single electrode, and was oxidized by oxygen in the air, resulting in a decrease in charge/discharge reactivity.

一方、比較電極1では、合金粉砕時に生成した活性面は
水酸化物被膜で被覆され、乾燥などで合金を空気中に取
り呂しても活性面が酸化されることはないが、粉砕前か
ら合金表面に存在する酸化物がそのまま存在するため合
金の充放電の反応性の低下をもたらしたものと考えられ
る。
On the other hand, in comparison electrode 1, the active surface generated during alloy pulverization is covered with a hydroxide film, and even if the alloy is exposed to air for drying, the active surface will not be oxidized. It is thought that the presence of oxides on the alloy surface caused a decrease in the charging and discharging reactivity of the alloy.

次に、本発明及び比較の密閉型二ンケルー水素電池A乃
至りを、夫々100mAの電流で16時間充電した後、
200mAの電流で放電し、電池電圧が1.OVに達し
た時点で放電を停止するサイクル条件で、充放電サイク
ル試験を行い、サイクル寿命を測定した。尚、このサイ
クル試験では、初期容量の50%以下になった時点をサ
イクル寿命とした。
Next, after charging the sealed two-layer hydrogen batteries A to Comparative of the present invention and comparison with a current of 100 mA for 16 hours,
Discharge with a current of 200mA, and the battery voltage will be 1. A charge/discharge cycle test was conducted under cycle conditions in which discharging was stopped when OV was reached, and the cycle life was measured. In this cycle test, the cycle life was defined as the time when the capacity became 50% or less of the initial capacity.

また・、同様の電池を使用し、前記充放電を5サイクル
行った後、電池外装缶の底部に開孔を設け、この開孔部
に内圧測定用の圧力センサーを取り付けた。この電池を
10100Oの電流で充電を行い、電池電圧がピーク値
に到達した後、このピーク値から10mV低下した時点
で充電を停止させ、この間の電池内部圧力を測定した。
In addition, after using the same battery and carrying out 5 cycles of charging and discharging, an opening was provided at the bottom of the battery outer can, and a pressure sensor for measuring the internal pressure was attached to this opening. This battery was charged with a current of 10,100 O, and after the battery voltage reached a peak value, charging was stopped when the battery voltage decreased by 10 mV from this peak value, and the internal battery pressure during this period was measured.

この結果を第2表に示す。但し、電池内部圧力は前記充
電中における最大値で示している。
The results are shown in Table 2. However, the battery internal pressure is shown as the maximum value during the charging.

り下糸臼 第2表 第2表に示すように、本発明電池A乃至lは、サイクル
寿命が長く、電池内圧の上昇も少ないことが分かる。こ
れに対して比較電池J、K及びLは、サイクル寿命が短
く電池内圧の上昇も大きいことが分かる。
As shown in Table 2, it can be seen that the batteries A to I of the present invention have a long cycle life and a small increase in battery internal pressure. On the other hand, it can be seen that comparative batteries J, K, and L have a short cycle life and a large increase in battery internal pressure.

すなわち、本発明電池では、負極の水素p及蔵合fL電
極中の合金は、粉砕前から合金表面に存在する酸化物が
除去され活性面が生成しており、この活性面が水酸化物
被膜で被覆されているため、酸素による合金の酸化が抑
制され、負極の充放電の反応性の低下を防ぎ、電池の内
圧上昇を抑制し、より長期にわたって電池容量を維持す
ることができるものと考えられる。
That is, in the battery of the present invention, the oxide present on the alloy surface is removed from the alloy in the hydrogen p and fL electrode of the negative electrode before it is crushed, and an active surface is formed, and this active surface is covered with a hydroxide film. It is believed that this coating suppresses the oxidation of the alloy due to oxygen, prevents a decrease in the reactivity of the negative electrode during charging and discharging, suppresses the rise in internal pressure of the battery, and maintains the battery capacity for a longer period of time. It will be done.

これに対して比較電池では、合金表面に酸化物が生成し
ており、負極の充放電の反応性が低下しているため、充
電時に水素発生などを伴い電池内圧の上昇をもたらす。
On the other hand, in the comparative battery, oxides are formed on the alloy surface and the reactivity of the negative electrode during charging and discharging is reduced, resulting in hydrogen generation during charging and an increase in the internal pressure of the battery.

さらにサイクルの進行と共に電池内圧が増加して、安全
弁が作動して電池内のガスを放出し、また、このガスの
放出時に、電解液が同時に電池外部に放出され、電池内
の電解液量が不足して、サイクル寿命の低下が生じたも
のと考えられる。
Furthermore, as the cycle progresses, the internal pressure of the battery increases and the safety valve operates to release the gas inside the battery.Also, when this gas is released, the electrolyte is simultaneously released to the outside of the battery, reducing the amount of electrolyte inside the battery. It is thought that the cycle life was shortened due to a shortage.

尚、前記実施例の水素吸蔵合金を酸性水溶液に浸漬した
際に金属イオンが溶解すると、前記水溶液のpHはアル
カリ性側に移行していく。したかって、水素吸蔵合金を
浸漬する酸性水溶液の量及びpHを調整しておくことに
より、別途アルカjを添加しなくとも、水溶液のpHを
アルカリ性にすることが可能であり、より有効である。
Note that when the hydrogen storage alloy of the above embodiment is immersed in an acidic aqueous solution and metal ions are dissolved, the pH of the aqueous solution shifts to the alkaline side. Therefore, by adjusting the amount and pH of the acidic aqueous solution in which the hydrogen storage alloy is immersed, it is possible to make the pH of the aqueous solution alkaline without separately adding alkali, which is more effective.

(ト)発明の効果 本発明の水素吸蔵合金を極の製造方法は、水素吸蔵合金
を酸性水溶液に接触させた後、粉砕を行う際または粉砕
後に前記合金をアルカリ性水溶液に接触させるものであ
るから、合金の表面を活性にでき、その表面の酸化を抑
制することができるので、電極の充放電の反応性を高く
維持することができる。また、本発明電極を負極に使用
した電池は、電池内の圧力上昇を抑制でき、より長期に
わたって電池容量を維持することできる。
(g) Effects of the Invention The method for producing an electrode using a hydrogen storage alloy of the present invention involves contacting the hydrogen storage alloy with an acidic aqueous solution and then contacting the alloy with an alkaline aqueous solution during or after pulverization. Since the surface of the alloy can be activated and oxidation of the surface can be suppressed, the reactivity of charging and discharging the electrode can be maintained at a high level. In addition, a battery using the electrode of the present invention as a negative electrode can suppress pressure increase within the battery, and can maintain battery capacity for a longer period of time.

Claims (1)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を所定の粒径に粉砕して電極を製造
する方法において、前記合金を酸性水溶液に接触させた
後、前記粉砕を行う際または粉砕後に前記合金をアルカ
リ性水溶液に接触させることを特徴とする水素吸蔵合金
の製造方法。
(1) In a method of manufacturing an electrode by pulverizing a hydrogen storage alloy to a predetermined particle size, the alloy is brought into contact with an acidic aqueous solution, and then the alloy is brought into contact with an alkaline aqueous solution during or after the pulverization. A method for producing a hydrogen storage alloy characterized by:
JP2240359A 1990-09-10 1990-09-10 Manufacturing method of hydrogen storage alloy electrode Expired - Fee Related JP2975658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2240359A JP2975658B2 (en) 1990-09-10 1990-09-10 Manufacturing method of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2240359A JP2975658B2 (en) 1990-09-10 1990-09-10 Manufacturing method of hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH04121960A true JPH04121960A (en) 1992-04-22
JP2975658B2 JP2975658B2 (en) 1999-11-10

Family

ID=17058319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2240359A Expired - Fee Related JP2975658B2 (en) 1990-09-10 1990-09-10 Manufacturing method of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2975658B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179055A (en) * 1990-11-10 1992-06-25 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
EP0936686A1 (en) * 1998-02-16 1999-08-18 Canon Kabushiki Kaisha Alkaline secondary battery and method of manufacturing the same
DE10337970B4 (en) * 2003-08-19 2009-04-23 Gkss-Forschungszentrum Geesthacht Gmbh Metal-containing, hydrogen storage material and process for its preparation
JPWO2022091662A1 (en) * 2020-10-30 2022-05-05

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179055A (en) * 1990-11-10 1992-06-25 Agency Of Ind Science & Technol Manufacture of hydrogen storage electrode
JPH0799691B2 (en) * 1990-11-10 1995-10-25 工業技術院長 Method for manufacturing hydrogen storage electrode
EP0936686A1 (en) * 1998-02-16 1999-08-18 Canon Kabushiki Kaisha Alkaline secondary battery and method of manufacturing the same
US6171727B1 (en) 1998-02-16 2001-01-09 Canon Kabushiki Kaisha Alkaline secondary battery and method of manufacturing the same
DE10337970B4 (en) * 2003-08-19 2009-04-23 Gkss-Forschungszentrum Geesthacht Gmbh Metal-containing, hydrogen storage material and process for its preparation
JPWO2022091662A1 (en) * 2020-10-30 2022-05-05

Also Published As

Publication number Publication date
JP2975658B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
EP0271043A1 (en) Sealed storage battery and method for making its electrode
JP2004179064A (en) Nickel-hydrogen secondary battery
CN103794797B (en) Nickel-hydrogen chargeable cell
JP3196605B2 (en) Non-sintered nickel positive electrode and alkaline storage battery using the positive electrode
JPH04121960A (en) Manufacture of metal hydride electrode
JP3433033B2 (en) Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP2944152B2 (en) Method for manufacturing nickel-hydrogen storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JPS6215769A (en) Nickel-hydrogen alkaline battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPH0320966A (en) Manufacture of hydrogen storage alloy electrode
JP2919544B2 (en) Hydrogen storage electrode
JPH05225974A (en) Hydrogen storage alloy electrode
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH01204371A (en) Manufacture of alkaline secondary battery
JPH1197002A (en) Hydrogen storage alloy electrode for alkaline storage battery
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP2004011004A (en) Hydrogen storage alloy powder, its producing method, and nickel-hydrogen storage battery using it
JPH10172547A (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees