JPH0799691B2 - Method for manufacturing hydrogen storage electrode - Google Patents
Method for manufacturing hydrogen storage electrodeInfo
- Publication number
- JPH0799691B2 JPH0799691B2 JP2305093A JP30509390A JPH0799691B2 JP H0799691 B2 JPH0799691 B2 JP H0799691B2 JP 2305093 A JP2305093 A JP 2305093A JP 30509390 A JP30509390 A JP 30509390A JP H0799691 B2 JPH0799691 B2 JP H0799691B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen storage
- electrode
- battery
- acid
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素吸蔵電極の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a hydrogen storage electrode.
水素吸蔵電極を構成する水素吸蔵合金粉末の組成とし
て、Mm(ミッシュメタル)、Ni,Coに、その他の微量成
分を含有するものが従来、一般的である。例えば、特開
昭60−250558号公報は水素吸蔵合金としてMmNixCoyMz
(M:Al、Sn、Mgなど)を使用し、特開昭63−164161号公
報は水素吸蔵合金としてMmNi5−x−y−zCoxMnyMz(M:
Al、Cr、Fe、etc、)を使用する。As the composition of the hydrogen storage alloy powder that constitutes the hydrogen storage electrode, it has been common that Mm (Misch metal), Ni, and Co contain other trace components. For example, Japanese Patent Laid-Open No. 60-250558 discloses MmNixCoyMz as a hydrogen storage alloy.
(M: Al, Sn, Mg, etc.) is used, and Japanese Patent Application Laid-Open No. 63-164161 discloses MmNi5-x-y-zCoxMnyMz (M:
Al, Cr, Fe, etc.) are used.
これら水素吸蔵合金粉末を一般にバインダや集電体など
とともに成形して水素吸蔵電極を作製している。These hydrogen storage alloy powders are generally molded together with a binder, a current collector, etc. to produce a hydrogen storage electrode.
特開昭60−176063、同61−233966、同61−233967、同61
−285658、同62−15760、同62−31947、同63−141258、
同63−146353、同63−146354、同63−175339、同63−17
5340、同63−175341、同63−175342、特開平1−132048
号公報は、水素吸蔵合金粉末又は水素吸蔵電極をアルカ
リ水溶液に浸漬することにより、サイクル寿命の向上や
自己放電特性の向上に効果があることを開示している。JP-A-60-176063, 61-233966, 61-233967, 61
-285658, 62-15760, 62-31947, 63-141258,
63-146353, 63-146354, 63-175339, 63-17
5340, 63-175341, 63-175342, JP-A-1-132048
The gazette discloses that by immersing the hydrogen storage alloy powder or the hydrogen storage electrode in an alkaline aqueous solution, it is effective in improving the cycle life and the self-discharge characteristics.
上記した従来の水素吸蔵合金粉末は、自然酸化などによ
り表面に酸化物層や水酸化物層が形成されており、その
量は一般に5〜10%程度である。The above-mentioned conventional hydrogen storage alloy powder has an oxide layer or a hydroxide layer formed on the surface by natural oxidation or the like, and the amount thereof is generally about 5 to 10%.
本発明者らは、このような酸化物層や水酸化物層は水素
吸収放出及び導電の障害となり、これを除去すれば放電
容量に向上させられるのではないかということに気がつ
いた。The present inventors have noticed that such an oxide layer or a hydroxide layer interferes with hydrogen absorption / desorption and conductivity, and that removal of this would improve the discharge capacity.
ただ、上記したアルカリ水溶液への浸漬では、酸化物層
や水酸化物層を十分に除去することはできなかった。However, it was not possible to sufficiently remove the oxide layer and the hydroxide layer by the above immersion in the alkaline aqueous solution.
本発明者らはこのような観点から各種試験を行い、上記
した酸化物層や水酸化物層を除去する好適な方法を見出
すとともに、それらの除去により電極の活性化サイクル
の大巾な短縮がはかれ、かつ電極利用率(すなわち、理
論放電容量に対する発現放電容量の割合)及びサイクル
寿命が向上することを見出した。The present inventors conducted various tests from such a viewpoint and found a suitable method for removing the above-mentioned oxide layer and hydroxide layer, and by removing them, the activation cycle of the electrode was significantly shortened. It was found that the electrode utilization rate (that is, the ratio of the developed discharge capacity to the theoretical discharge capacity) and the cycle life were improved.
したがって本発明が解決しようとする課題は、放電容量
及びサイクル寿命を向上する水素吸蔵電極の製造方法の
提供にある。Therefore, the problem to be solved by the present invention is to provide a method for manufacturing a hydrogen storage electrode, which improves discharge capacity and cycle life.
本発明の水素吸蔵電極の製造方法は、水素吸蔵合金粉末
を所定濃度範囲の酸性水溶液中に所定時間浸漬して前記
水素吸蔵合金粉末の表面を1〜15wt%エッチング除去し
た後、水洗して電極を作製することを特徴としている。The method for producing a hydrogen storage electrode of the present invention comprises immersing the hydrogen storage alloy powder in an acidic aqueous solution in a predetermined concentration range for a predetermined time to remove the surface of the hydrogen storage alloy powder by 1 to 15 wt% by etching, and then rinsing with water to form an electrode. Is manufactured.
酸性水溶液としては、例えば、塩酸、硫酸、硝酸、フッ
酸などの無機酸の水溶液の他、有機酸でもよい。The acidic aqueous solution may be, for example, an aqueous solution of an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid or hydrofluoric acid, or an organic acid.
実験によれば、水素吸蔵合金粉末表面の酸化物層又は水
酸化物層は水素吸蔵合金重量に対して、1乃至10重量
%、好ましくは3乃至8重量%除去することが好ましか
った。すなわち、これら酸化物層や水酸化物層が多少あ
る状態で最良の効果が得られた。酸化物層のこのような
部分的な除去は、酸水溶液の濃度及び量を制御すること
により、及び/又は酸洗時間を制御することにより行う
ことができる。According to experiments, it was preferable to remove the oxide layer or the hydroxide layer on the surface of the hydrogen storage alloy powder by 1 to 10% by weight, preferably 3 to 8% by weight based on the weight of the hydrogen storage alloy. That is, the best effect was obtained in the state where these oxide layers and hydroxide layers were somewhat present. Such partial removal of the oxide layer can be accomplished by controlling the concentration and amount of aqueous acid solution and / or by controlling the pickling time.
なお、酸洗後にまた自然酸化が開始されるが、酸洗して
から電池を組むまでの間における自然酸化量を考慮して
酸化物層の残存量を決定することは当然可能である。Although natural oxidation starts again after pickling, it is naturally possible to determine the remaining amount of the oxide layer in consideration of the amount of natural oxidation between pickling and assembling the battery.
(第1実施例) MmNi3.5Co0.7Al0.8を負極用の水素吸蔵合金として用い
た。この合金を機械的に100メッシュ以下の粉末とし、
この粉末100gに対し、0.05NのHCl水溶液を1の割合で
混合し、5分間程撹拌した後、水洗、乾燥した。Using (first embodiment) MmNi 3.5 Co 0.7 Al 0.8 as a hydrogen storage alloy for the negative electrode. This alloy is mechanically made into powder of 100 mesh or less,
To 100 g of this powder, 0.05N HCl aqueous solution was mixed at a ratio of 1, and the mixture was stirred for about 5 minutes, washed with water and dried.
この酸処理した粉末4.2gに0.5gのニッケル粉末(平均粒
径5μm)と0.25gのPTFEのディスパージョン(ダイキ
ン工業D−1)を加えて混練し、予備成型後、その両側
をニッケルエキスパンドメタルを挟んで室温にて300kg/
cm2の圧力で成型し負極とした。電極サイズは4×3cm2
で厚さは約1mmである。To 4.2 g of this acid-treated powder, 0.5 g of nickel powder (average particle size 5 μm) and 0.25 g of PTFE dispersion (Daikin Industries D-1) were added and kneaded, and after preforming, both sides of the nickel expanded metal 300kg / at room temperature
A negative electrode was formed by molding at a pressure of cm 2 . Electrode size is 4 × 3 cm 2
And the thickness is about 1 mm.
この電極をポリアミド不織布を介して負極よりはるかに
大きい容量の焼結式ニッケル極と組合せ6Nか性カリ水溶
液中に浸漬して負極規制の電池を構成した。This electrode was combined with a sintered nickel electrode having a much larger capacity than the negative electrode via a polyamide non-woven fabric and immersed in a 6N aqueous potassium hydroxide solution to form a negative electrode regulated battery.
また比較例として酸処理を実施しなかったこと以外は上
記実施例と同じ方法で電池を構成した。In addition, as a comparative example, a battery was constructed in the same manner as in the above example except that the acid treatment was not carried out.
この2つの電池を20℃で500mAの電流で3時間充電し、5
00mAで終止電圧0.8Vまで放電して負極の利用率(理論容
量に対する実際の容量の割合(%)を調べた。この結果
を第1図に示す。Charge these two batteries at 20 ° C with a current of 500mA for 3 hours.
The utilization factor (the ratio of the actual capacity to the theoretical capacity (%)) of the negative electrode was examined by discharging to a final voltage of 0.8 V at 00 mA. The results are shown in FIG.
結果から明らかなように本実施例の電極は比較例に比べ
て活性化サイクルが短く利用率が格段に高い。これは本
発明が合金粉末表面の酸化物層を酸処理により大部分を
除去してあるのに対し比較例は酸化物層が合金表面を被
っており、電気化学的反応が円滑に行われず、かつ内部
電気抵抗損失も大きいためと考えられる。As is clear from the results, the electrode of this example has a shorter activation cycle and a significantly higher utilization rate than the comparative example. This is because the present invention removes most of the oxide layer on the surface of the alloy powder by acid treatment, whereas the comparative example covers the surface of the alloy with the oxide layer, and the electrochemical reaction does not occur smoothly. It is also considered that the internal electric resistance loss is large.
(第2実施例) 次に、HCl水溶液の濃度を種々変えて、他は第1実施例
と同じ方法で電池を作製し、負極利用率とサイクル寿命
との関係を調べた。この結果を表1に示す。なおサイク
ル寿命は初期容量が50%となったところとした。(Second Example) Next, a battery was manufactured in the same manner as in the first example except that the concentration of the HCl aqueous solution was variously changed, and the relationship between the negative electrode utilization rate and the cycle life was examined. The results are shown in Table 1. The cycle life was set to the point where the initial capacity reached 50%.
結果から合金100gに対してHCl水溶液を1混合する場
合のHCl濃度は0.005N以上0.1N以下であることが望まし
い。更に好ましくは0.01N以上、0.05N以下であることが
望ましい。合金によって、表面酸化率は一概に言えない
が、水素吸蔵合金粉末表面のエッチング除去率(元の重
量に対するエッチング後の重量の割合)は1〜15wt%程
度が望ましい。これは0.005Nより少ないと 酸濃度が低い為、十分に酸化物層が除去できず、サイク
ル寿命は長いものの負極利用率が低くなり。0.1Nより多
いと酸化物層がすべて除去されてしまい充放電のくり返
しによる合金劣化が激しく、サイクル寿命が短くなるか
らと考えられる。また、酸洗時に酸に溶出する合金量も
増え、歩留りが悪くなる。From the results, it is desirable that the HCl concentration when one HCl aqueous solution is mixed with 100 g of the alloy is 0.005 N or more and 0.1 N or less. More preferably, it is 0.01 N or more and 0.05 N or less. Depending on the alloy, the surface oxidation rate cannot be generally stated, but the etching removal rate (the ratio of the weight after etching to the original weight after etching) on the surface of the hydrogen storage alloy powder is preferably about 1 to 15 wt%. If this is less than 0.005N Since the acid concentration is low, the oxide layer cannot be removed sufficiently and the cycle life is long, but the negative electrode utilization rate is low. It is considered that when the content is more than 0.1 N, the oxide layer is entirely removed, the alloy deteriorates repetitively due to repeated charging and discharging, and the cycle life becomes short. In addition, the amount of alloy eluted into the acid during pickling also increases, resulting in poor yield.
したがって上記の範囲に酸濃度(または酸のイオン量)
があれば、サイクル寿命を損なわない程度に酸化物層が
除去でき、かつ利用率も向上させることが出来る。Therefore, the acid concentration (or the amount of acid ions) within the above range
If so, the oxide layer can be removed and the utilization factor can be improved to the extent that the cycle life is not impaired.
(第3実施例) 第1実施例で示したものと同じ酸処理を施した合金粉末
90重量部に10重量部のNi粉末を混合し、PTFEの固形分が
3重量%(混合粉末とPTFE固形分の和に対して)となる
ようにPTFEディスパージョンを加え混練し、シート状に
したものをニッケルエキスパンドメタルの両側に圧着し
た。(Third Example) Alloy powder subjected to the same acid treatment as that shown in the first example
90 parts by weight of Ni powder was mixed with 10 parts by weight of Ni powder, and PTFE dispersion was added and kneaded so that the solid content of PTFE was 3% by weight (based on the total of the mixed powder and the solid content of PTFE), and kneaded into a sheet. The obtained product was crimped to both sides of nickel expanded metal.
また比較例として酸処理のかわりに、KOH溶液(濃度30w
t%、液温60℃)で5時間アルカリ処理したものおよび
まったく処理しなかったものを用いて、他は上記実施例
と同じ方法で電極を作製した。As a comparative example, instead of acid treatment, KOH solution (concentration 30 w
An electrode was prepared in the same manner as in the above-mentioned example except that the sample was subjected to alkali treatment for 5 hours at t% and a liquid temperature of 60 ° C.) or not treated at all.
これら電極シートを各々、幅33mm、長さ220mmに切断し
負極とした。厚さは約0.6mmである。この負極をポリプ
ロピレン不織布をセパレータとして介し、公知の焼結式
ニッケル正極と組合せてうず巻き状にし、サブCサイズ
の密閉型電池を構成した。Each of these electrode sheets was cut into a width of 33 mm and a length of 220 mm to obtain a negative electrode. The thickness is about 0.6 mm. This negative electrode was combined with a known sintered nickel positive electrode through a polypropylene non-woven fabric as a separator and formed into a spiral shape to form a sub-C size sealed battery.
作製した電池を充電:0.1C×15hr、放電:0.2C、1Vの条件
で充放電し、電池上部に取付けた圧力センサで充電終了
時の電池内圧およびサイクル寿命を調べた。その結果を
第2図および第3図に示す。The prepared battery was charged and discharged under the conditions of charging: 0.1 C × 15 hr, discharging: 0.2 C, 1 V, and the pressure sensor attached to the upper part of the battery was used to examine the internal pressure of the battery and the cycle life at the end of charging. The results are shown in FIGS. 2 and 3.
結果から明かなように、本実施例の電極を用いた電池は
アルカリ処理および未処理の電極を用いた電池に比べて
充電末期の電池内圧が低く、また充放電サイクルのくり
返しによる内圧上昇も小さい。その為、サイクル寿命に
ついても本発明電極を用いた電池が比較例に比べて良好
な結果を示している。As is clear from the results, the battery using the electrode of this example has a lower battery internal pressure at the end of charging and a smaller increase in internal pressure due to repeated charge / discharge cycles, as compared with the battery using the alkali-treated and untreated electrodes. . Therefore, as for the cycle life, the battery using the electrode of the present invention shows a better result than the comparative example.
これは合金表面を酸処理することによりサイクル寿命特
性が劣化しない程度に、酸化物層が効果的に除去されて
おり合金表面での電気化学的反応が円滑に進行している
為、充電効率が高く、水素ガスの発生が抑制され、かつ
酸素ガスの再結合反応が向上しているからである。This is because the oxide layer is effectively removed and the electrochemical reaction on the alloy surface proceeds smoothly to the extent that cycle life characteristics are not deteriorated by acid-treating the alloy surface, so charging efficiency is improved. This is because generation of hydrogen gas is suppressed and the recombination reaction of oxygen gas is improved.
アルカリ処理は未処理のものに比べれば、サイクル寿命
の向上、電池内圧上昇抑制に効果があるが、不均質部分
を除去しているのみで水酸化物層や酸化物層の除去はな
されていないため、酸処理に比べて電池性能が劣ると考
えられる。Compared with the untreated one, the alkaline treatment is effective in improving the cycle life and suppressing the rise in the internal pressure of the battery, but only the heterogeneous portion is removed, and the hydroxide layer and oxide layer are not removed. Therefore, it is considered that the battery performance is inferior to that of the acid treatment.
また今回は塩酸水溶液を使用したが、硫酸、硝酸、フッ
酸など他の酸性水溶液でも同様の効果がある。In addition, the hydrochloric acid aqueous solution was used this time, but other acidic aqueous solutions such as sulfuric acid, nitric acid, and hydrofluoric acid have the same effect.
以上のように、表面を酸性水溶液で1〜15wt%だけエッ
チング除去し、これにより水素吸蔵合金粉末の表面の酸
化物層を部分的に除去した水素吸蔵合金粉末を成型した
電力を用いれば電極の利用率が向上し、充放電のくり返
しによる電池内圧の上昇が少なくサイクル寿命特性の優
れた電池を提供することができる。As described above, the surface is etched and removed by an acidic aqueous solution in an amount of 1 to 15 wt%, whereby the hydrogen storage alloy powder in which the oxide layer on the surface of the hydrogen storage alloy powder is partially removed is molded. It is possible to provide a battery having an improved utilization rate, a small increase in battery internal pressure due to repeated charging and discharging, and excellent cycle life characteristics.
第1図は本発明の一実施例の水素吸蔵電極を用いる電池
の放電容量利用率を示す線図、第2図は本発明の一実施
例の水素吸蔵電極を用いる電池の内圧変化を示す線図、
第3図は本発明の一実施例の水素吸蔵電極を用いる電池
のサイクル寿命を示す線図である。FIG. 1 is a diagram showing a discharge capacity utilization rate of a battery using a hydrogen storage electrode of one embodiment of the present invention, and FIG. 2 is a line showing a change in internal pressure of a battery using a hydrogen storage electrode of one embodiment of the present invention. Figure,
FIG. 3 is a diagram showing the cycle life of a battery using the hydrogen storage electrode of one embodiment of the present invention.
フロントページの続き (72)発明者 牟田 光治 愛知県刈谷市豊田町2丁目1番地 株式会 社豊田自動織機製作所内 審査官 鈴木 正紀Front Page Continuation (72) Inventor Mitsuharu Muta 2-chome Toyota-cho, Kariya City, Aichi Prefecture Masanori Suzuki, Inspector, Toyota Industries Corporation
Claims (1)
溶液中に所定時間浸漬して前記水素吸蔵合金粉末の表面
を1〜15wt%エッチング除去した後、水洗して電極を作
製することを特徴とする水素吸蔵電極の製造方法。1. An electrode is prepared by immersing a hydrogen storage alloy powder in an acidic aqueous solution having a predetermined concentration range for a predetermined time to remove the surface of the hydrogen storage alloy powder by 1 to 15 wt% and then rinsing with water. And a method for manufacturing a hydrogen storage electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2305093A JPH0799691B2 (en) | 1990-11-10 | 1990-11-10 | Method for manufacturing hydrogen storage electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2305093A JPH0799691B2 (en) | 1990-11-10 | 1990-11-10 | Method for manufacturing hydrogen storage electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04179055A JPH04179055A (en) | 1992-06-25 |
JPH0799691B2 true JPH0799691B2 (en) | 1995-10-25 |
Family
ID=17941022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2305093A Expired - Lifetime JPH0799691B2 (en) | 1990-11-10 | 1990-11-10 | Method for manufacturing hydrogen storage electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0799691B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06283163A (en) * | 1993-03-30 | 1994-10-07 | Furukawa Battery Co Ltd:The | Manufacture of hydrogen storage alloy electrode |
EP1713139A1 (en) * | 1996-06-26 | 2006-10-18 | Sanyo Electric Co., Ltd. | Hydrogen-absorbing alloy electrode and process for making the same |
JP3433033B2 (en) * | 1996-11-28 | 2003-08-04 | 三洋電機株式会社 | Hydrogen storage alloy electrode and method of manufacturing hydrogen storage alloy electrode |
US5985057A (en) * | 1996-11-29 | 1999-11-16 | Sanyo Electric Co., Ltd. | Method of fabricating hydrogen absorbing alloy electrode |
JP3548004B2 (en) | 1998-06-17 | 2004-07-28 | 三洋電機株式会社 | Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same |
US6329100B1 (en) | 1998-12-22 | 2001-12-11 | Sanyo Electric Co., Ltd. | Hydrogen absorbing alloy electrode and process for producing same |
JP3998370B2 (en) | 1999-06-14 | 2007-10-24 | 松下電器産業株式会社 | Hydrogen storage alloy electrode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04121960A (en) * | 1990-09-10 | 1992-04-22 | Sanyo Electric Co Ltd | Manufacture of metal hydride electrode |
-
1990
- 1990-11-10 JP JP2305093A patent/JPH0799691B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04121960A (en) * | 1990-09-10 | 1992-04-22 | Sanyo Electric Co Ltd | Manufacture of metal hydride electrode |
Also Published As
Publication number | Publication date |
---|---|
JPH04179055A (en) | 1992-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2575840B2 (en) | Dry manufacturing method of hydrogen storage alloy electrode | |
JPH0799691B2 (en) | Method for manufacturing hydrogen storage electrode | |
JPH07122271A (en) | Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole | |
JP2003249222A (en) | Nickel/hydrogen storage battery | |
US6740450B2 (en) | Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same | |
JP3183414B2 (en) | Hydrogen storage alloy electrode and alkaline secondary battery using the same | |
JPH0247824B2 (en) | ||
JPH0221098B2 (en) | ||
JPH09171821A (en) | Manufacture of hydrogen storage alloy electrode | |
JP3387314B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JP3568337B2 (en) | Hydrogen storage alloy electrode and metal hydride storage battery | |
JP3547905B2 (en) | Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery | |
JP3737534B2 (en) | Manufacturing method of alkaline secondary battery | |
JPH097591A (en) | Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy | |
JP3619703B2 (en) | Method for producing nickel electrode for alkaline storage battery | |
JP3651324B2 (en) | Alkaline storage battery, hydrogen storage alloy powder used therefor, and manufacturing method thereof | |
JP3695982B2 (en) | Method for producing sintered nickel electrode for alkaline storage battery | |
JP3553752B2 (en) | Method for producing hydrogen storage alloy electrode | |
JP3454612B2 (en) | Manufacturing method of hydrogen storage alloy electrode | |
JP3942310B2 (en) | Method for producing hydrogen storage alloy for alkaline storage battery | |
JPH05190175A (en) | Surface treatment of hydrogen storage alloy for alkaline secondary battery | |
JPH10255779A (en) | Manufacture for nickel hydrogen storage battery | |
JP2692795B2 (en) | Paste type cadmium cathode for alkaline storage battery | |
JP2003187804A (en) | Nickel/hydrogen storage battery | |
JP3561597B2 (en) | Hydrogen storage alloy electrode and metal hydride storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 16 |