JPH04179055A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPH04179055A
JPH04179055A JP2305093A JP30509390A JPH04179055A JP H04179055 A JPH04179055 A JP H04179055A JP 2305093 A JP2305093 A JP 2305093A JP 30509390 A JP30509390 A JP 30509390A JP H04179055 A JPH04179055 A JP H04179055A
Authority
JP
Japan
Prior art keywords
hydrogen storage
acid
electrode
powder
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2305093A
Other languages
Japanese (ja)
Other versions
JPH0799691B2 (en
Inventor
Tetsuo Sakai
哲男 境
Hiroshi Ishikawa
博 石川
Atsushi Takagi
淳 高木
Mitsuharu Muta
光治 牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyoda Automatic Loom Works Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP2305093A priority Critical patent/JPH0799691B2/en
Publication of JPH04179055A publication Critical patent/JPH04179055A/en
Publication of JPH0799691B2 publication Critical patent/JPH0799691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a battery having excellent cyclic lifetime characteristic by immersing a powder oif hydrogen storage alloy in an acid aqueous solution in the specific range of concentration for a certain specified period of time, followed by rinsing, and thus fabricating an electrode as object of invention. CONSTITUTION:Powder of hydrogen storage alloy is immersed in an acid aqueous solution in a specific range of concentration for a certain period, followed by rinsing, and thereby an electrode is fabricated. The rinse is made by immersing in aqueous solution of an inorganic acid-for example, chloric acid, sulfuric acid, and fluoric acid-and it is preferable to remove oxide layer or hydroxide layer in amount 1-10wt.% of the hydrogen storage alloy from the surfaces of the alloy powder, and a condition is generated, in which the oxide layer or hydroxide layer remains to a certain degree. This ensures that electrochemical reactions are made smoothly, and the discharge capacity and cyclic lifetime can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素吸蔵電極の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a hydrogen storage electrode.

〔従来の技術〕[Conventional technology]

水素吸蔵電極を構成する水素吸蔵合金粉末の組成として
、Mm (ミツシュメタル)、Ni、C。
The composition of the hydrogen storage alloy powder constituting the hydrogen storage electrode is Mm (Mitshu Metal), Ni, and C.

に、その他の微量成分を含有するものが従来、−船釣で
ある。例えば、特開昭60−250558号公報は水素
吸蔵合金としてMmNixCoyMz(M:Al1、S
n、Mgなど)を使用し、特開昭63−164161号
公報は水素吸蔵合金としてMmNi 5−x−y−zC
oxMnyMz (M:AI、Cr、Fe、e t c
、)を使用する。
In addition, those containing other trace ingredients are conventionally - boat fishing. For example, Japanese Patent Application Laid-open No. 60-250558 discloses MmNixCoyMz (M: Al1, S
JP-A-63-164161 uses MmNi 5-x-y-zC as a hydrogen storage alloy.
oxMnyMz (M: AI, Cr, Fe, et c
, ).

これら水素吸蔵合金粉末を一般にバインダや集電体など
とともに成形して水素吸蔵電極を作製している。
These hydrogen storage alloy powders are generally molded together with a binder, a current collector, etc. to produce a hydrogen storage electrode.

特開昭61−176068、同61−288966、同
61−283967、同61−285658、同62−
15760、同62−81947、同63−14125
8、同63−146358、同63−146354、同
6B−175339、同63−175340、同63−
175341、同63−175842、特開平1−13
2048号公報は、水素吸蔵合金粉末又は水素吸蔵電極
をアルカリ水溶液に浸漬することにより、サイクル寿命
の向上や自己放電特性の向上に効果があることを開示し
ている。
JP 61-176068, JP 61-288966, JP 61-283967, JP 61-285658, JP 62-
15760, 62-81947, 63-14125
8, 63-146358, 63-146354, 6B-175339, 63-175340, 63-
175341, 63-175842, JP-A-1-13
Publication No. 2048 discloses that immersing a hydrogen storage alloy powder or a hydrogen storage electrode in an alkaline aqueous solution is effective in improving cycle life and self-discharge characteristics.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来の水素吸蔵合金粉末は、自然酸化などによ
り表面に酸化物層や水酸化物層が形成されており、その
量は一般に5〜10%程度である。
The conventional hydrogen storage alloy powder described above has an oxide layer or a hydroxide layer formed on its surface by natural oxidation or the like, and the amount thereof is generally about 5 to 10%.

本発明者らは、このような酸化物層や水酸化物層は水素
吸収放出及び導電の障害となり、これを除去すれば放電
容量を向上させられるのではないかということに気がつ
いた。
The inventors of the present invention have realized that such oxide layers and hydroxide layers become obstacles to hydrogen absorption and release and conduction, and that removing them may improve discharge capacity.

ただ、上記したアルカリ水溶液への浸漬では、酸化物層
や水酸化物層を十分に除去することはできなかった。
However, the oxide layer and hydroxide layer could not be sufficiently removed by immersion in the alkali aqueous solution described above.

本発明者らはこのような観点から各種試験を行い、上記
した酸化物層や水酸化物層を除去する好適な方法を見出
すとともに、それらの除去により電極の活性化サイクル
の大巾な短縮がはかれ、かつ電極利用率(すなわち、理
論放電容量に対する発現放電容量の割合)及びサイクル
寿命が向上することを見出した。
The present inventors conducted various tests from this viewpoint and found a suitable method for removing the above-mentioned oxide layer and hydroxide layer, and also found that their removal significantly shortened the electrode activation cycle. It has been found that the electrode utilization rate (that is, the ratio of the developed discharge capacity to the theoretical discharge capacity) and the cycle life are improved.

したがって本発明が解決しようとする課題は、放電容量
及びサイクル寿命を向上する水素吸蔵電極の製造方法の
提供にある。
Therefore, the problem to be solved by the present invention is to provide a method for manufacturing a hydrogen storage electrode that improves discharge capacity and cycle life.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の水素吸蔵電極の製造方法は、水素吸蔵合金粉末
を所定濃度範囲の酸性水溶液中に所定時間浸漬した後、
水洗して電極を作製することを特徴としている。
The method for manufacturing a hydrogen storage electrode of the present invention includes immersing hydrogen storage alloy powder in an acidic aqueous solution having a predetermined concentration range for a predetermined time, and then
The feature is that the electrodes are prepared by washing with water.

酸性水溶液としては、例えば、塩酸、硫酸、硝酸、フッ
酸などの無機酸の水溶液の他、有機酸でもよい。
Examples of the acidic aqueous solution include aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid, as well as organic acids.

実験によれば、水素吸蔵合金粉末表面の酸化物層又は水
酸化物層は水素吸蔵合金重量に対して、1乃至10重量
%、好ましくは3乃至8重量%除去することが好ましか
った。すなわち、これら酸化物層や水酸化物層が多少あ
る状態で最良の効果が得られた。酸化物層のこのような
部分的な除去は、酸水溶液の濃度及び量を制御すること
により、及び/又は酸洗時間を制御することにより行う
ことができる。
According to experiments, it was preferable to remove the oxide layer or hydroxide layer on the surface of the hydrogen storage alloy powder by 1 to 10% by weight, preferably 3 to 8% by weight, based on the weight of the hydrogen storage alloy. That is, the best effect was obtained in a state where some of these oxide layers and hydroxide layers were present. Such partial removal of the oxide layer can be achieved by controlling the concentration and amount of the aqueous acid solution and/or by controlling the pickling time.

なお、酸洗後にまた自然酸化が開始されるが、酸洗して
から電池を組むまでの間における自然酸化量を考慮して
酸化物層の残存量を決定することは当然可能である。
Note that natural oxidation starts again after pickling, but it is naturally possible to determine the remaining amount of the oxide layer by considering the amount of natural oxidation between pickling and assembling the battery.

〔実施例〕〔Example〕

(第1実施例) MmNim 、s COo、t Alo、*を負極用の
水素吸蔵合金として用いた。この合金を機械的に100
メツシユ以下の粉末とし、この粉末100gに対し、0
.05NのHCI!水溶液を11の割合で混合し、5分
間程攪拌した後、水洗、乾燥した。
(First Example) MmNim, s COo, t Alo, * was used as a hydrogen storage alloy for the negative electrode. This alloy is mechanically
The powder should be less than mesh, and per 100g of this powder, 0
.. 05N HCI! The aqueous solutions were mixed in a ratio of 11 parts and stirred for about 5 minutes, then washed with water and dried.

この酸処理した粉末4.5gに0.5gのニッケル粉末
(平均粒径5μm)と0.25gのPTFEのディスバ
ージョン(ダイキン工業D−1)を加えて混練し、予備
成型後、その両側をニッケルエキスバンドメタルで挟ん
で室温にて300kg/alの圧力で成型し負極とした
。電極サイズは4×8dlで厚さは約1mmである。
To 4.5 g of this acid-treated powder, 0.5 g of nickel powder (average particle size 5 μm) and 0.25 g of PTFE dispersion (Daikin Industries D-1) were added and kneaded, and after preforming, both sides of the powder were mixed. It was sandwiched between nickel expanded band metals and molded at room temperature under a pressure of 300 kg/al to form a negative electrode. The electrode size is 4×8 dl and the thickness is about 1 mm.

この電極をポリアミド不織布を介して負極よりはるかに
大きい容量の焼結式ニッケル極と組合せ6Nか性カリ水
溶液中に浸漬して負極規制の電池を構成した。
This electrode was combined with a sintered nickel electrode having a much larger capacity than the negative electrode via a polyamide nonwoven fabric, and immersed in a 6N caustic potassium aqueous solution to construct a negative electrode regulated battery.

また比較例として酸処理を実施しなかったこと以外は上
記実施例と同じ方法で電池を構成した。
Further, as a comparative example, a battery was constructed in the same manner as in the above example except that acid treatment was not performed.

この2つの電池を20℃で500mAの電流で8時間充
電し、500mAで終止電圧0.8vまで放電して負極
の利用率を調べた。この結果を第1図に示す。
These two batteries were charged at 20° C. for 8 hours with a current of 500 mA, and then discharged at 500 mA to a final voltage of 0.8 V to examine the utilization rate of the negative electrode. The results are shown in FIG.

結果から明らかなように本実施例の電極は比較例に比べ
て活性化サイクルが短く利用率が格段に高い。これは本
発明が合金粉末表面の酸化物層を酸処理により大部分を
除去しであるのに対し比較例は酸化物層が合金表面を被
っており、電気化学的反応が円滑に行われず、かつ内部
電気抵抗損失も大きいためと考えられる。
As is clear from the results, the electrode of this example has a shorter activation cycle and a much higher utilization rate than the comparative example. This is because in the present invention, most of the oxide layer on the surface of the alloy powder is removed by acid treatment, whereas in the comparative example, the oxide layer covers the alloy surface, and the electrochemical reaction does not occur smoothly. This is also considered to be because the internal electrical resistance loss is also large.

(第2実施例) 次に、HC1水溶液の濃度を種々変えて、他は第1実施
例と同じ方法で電池を作製し、負極利用率とサイクル寿
命との関係を調べた。この結果を表1に示す。なおサイ
クル寿命は初期容量が50%となったところとした。
(Second Example) Next, batteries were produced in the same manner as in the first example except for varying the concentration of the HC1 aqueous solution, and the relationship between the negative electrode utilization rate and the cycle life was investigated. The results are shown in Table 1. Note that the cycle life was defined as the point at which the initial capacity reached 50%.

結果から合金100gに対してHCI!水溶液を11混
合する場合のHCf濃度は0,005N以上0.IN以
下であることが望ましい。更に好ましくは0.OIN以
上、0.05N以下であることが望ましい。合金によっ
て、表面酸化率は一概に言えないが、表面エツチング率
は1〜15%程度が望ましい。これは0.005Nより
少ないと第1表 C冶艷:100劇二吋しH(J号中牌夜=1りα刊泊) 酸濃度が低い為、十分に酸化物層が除去できず、サイク
ル寿命は長いものの負極利用率が低くなり。
From the results, HCI for 100g of alloy! When mixing 11 aqueous solutions, the HCf concentration is 0.005N or more. It is desirable that it be below IN. More preferably 0. It is desirable that it is not less than OIN and not more than 0.05N. Although the surface oxidation rate cannot be determined unconditionally depending on the alloy, it is desirable that the surface etching rate is about 1 to 15%. If this is less than 0.005N, the oxide layer cannot be removed sufficiently as shown in Table 1. Although the life is long, the negative electrode utilization rate is low.

061Nより多いと酸化物層がすべて除去されてしまい
充放電のくり返しによる合金劣化が激しく、サイクル寿
命が短(なるからと考えられる。また、酸洗時に酸に溶
出する合金量も増え、歩留りが悪くなる。
If the amount exceeds 061N, the entire oxide layer will be removed, resulting in severe alloy deterioration due to repeated charging and discharging, and the cycle life will be shortened (this is thought to be the case).Also, the amount of alloy eluted into the acid during pickling increases, resulting in lower yield. Deteriorate.

したがって上記の範囲に酸濃度(または酸のイオン量)
があれば、サイクル寿命を損なわない程度に酸化物層か
除去でき、かつ利用率も向上させることが出来る。
Therefore, the acid concentration (or acid ion amount) falls within the above range.
If there is, the oxide layer can be removed to the extent that the cycle life is not impaired, and the utilization rate can also be improved.

(第3実施例) 第1実施例で示したものと同じ酸処理を施した合金粉末
90重量部に10重量部のNi粉末を混合し、PTFE
の固形分が3重量%(混合粉末とPTFE固形分の和に
対して)となるようにPTFEディスバージョンを加え
混練し、シート状にしたものをニッケルエキスバンドメ
タルの両側に圧着した。
(Third Example) 10 parts by weight of Ni powder was mixed with 90 parts by weight of alloy powder which had been subjected to the same acid treatment as that shown in the first example, and PTFE
PTFE dispersion was added and kneaded so that the solid content of the mixture was 3% by weight (based on the sum of the mixed powder and PTFE solid content), and the sheet was pressed onto both sides of nickel expanded band metal.

また比較例として酸処理のかわりに、KOH溶液(濃度
30wt%、液温60℃)で5時間アルカリ処理したも
のおよびまったく処理しなかったものを用いて、他は上
記実施例と同じ方法で電極を作製した。
In addition, as a comparative example, electrodes were treated in the same manner as in the above example except that instead of acid treatment, electrodes were treated with alkali for 5 hours using KOH solution (concentration 30 wt%, liquid temperature 60°C) and electrodes were not treated at all. was created.

これら電極シートを各々、幅33mm、長さ220mm
に切断し負極とした。厚さは約0.6mmである。この
負極をポリプロピレン不織布をセパレータとして介し、
公知の焼結式ニッケル正極と組合せてうず巻き状にし、
サブCサイズの密閉型電池を構成した。
Each of these electrode sheets has a width of 33 mm and a length of 220 mm.
It was cut into pieces and used as a negative electrode. The thickness is approximately 0.6 mm. This negative electrode is passed through a polypropylene nonwoven fabric as a separator,
Combined with a known sintered nickel positive electrode to create a spiral shape,
A sub-C size sealed battery was constructed.

作製した電池を充電: 0.ICXI 5hr、放電:
0.2C,IVの条件で充放電し、電池上部に取付けた
圧力センサで充電終了時の電池内圧およびサイクル寿命
を調べた。その結果を第2図および第3図に示す。
Charging the manufactured battery: 0. ICXI 5hr, discharge:
The battery was charged and discharged under the conditions of 0.2C and IV, and the internal battery pressure and cycle life at the end of charging were examined using a pressure sensor attached to the top of the battery. The results are shown in FIGS. 2 and 3.

結果から明かなように、本実施例の電極を用いた電池は
アルカリ処理および未処理の電極を用いた電池に比べて
充電末期の電池内圧が低(、また充放電サイクルのくり
返しによる内圧上昇も小さい。その為、サイクル寿命に
ついても本発明電極を用いた電池が比較例に比べて良好
な結果を示している。
As is clear from the results, the battery using the electrode of this example had a lower internal pressure at the end of charging (and was also less prone to internal pressure increase due to repeated charge/discharge cycles) than batteries using alkali-treated and untreated electrodes. Therefore, the battery using the electrode of the present invention shows better results in terms of cycle life than the comparative example.

これは合金表面を酸処理することによりサイクル寿命特
性が劣化しない程度に、酸化物層が効果的に除去されて
おり合金表面での電気化学的反応が円滑に進行している
為、充電効率が高く、水素ガスの発生が抑制され、かつ
酸素ガスの再結合反応が向上しているからである。
This is because the oxide layer is effectively removed by acid treatment of the alloy surface to the extent that cycle life characteristics do not deteriorate, and the electrochemical reaction on the alloy surface progresses smoothly, resulting in improved charging efficiency. This is because hydrogen gas generation is suppressed and the recombination reaction of oxygen gas is improved.

アルカリ処理は未処理のものに比べれば、サイクル寿命
の向上、電池内圧上昇抑制に効果があるが、不均質部分
を除去しているのみで水酸化物層や酸化物層の除去はな
されていないため、酸処理に比べて電池性能が劣ると考
えられる。
Compared to untreated cells, alkaline treatment is effective in improving cycle life and suppressing increases in battery internal pressure, but it only removes inhomogeneous parts and does not remove the hydroxide or oxide layers. Therefore, it is thought that the battery performance is inferior to acid treatment.

また今回は塩酸水溶液を使用したが、硫酸、硝酸、フッ
酸など他の酸性水溶液でも同様の効果がある。
Also, although a hydrochloric acid aqueous solution was used this time, other acidic aqueous solutions such as sulfuric acid, nitric acid, and hydrofluoric acid can have the same effect.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明の酸処理を施した電極を用いれば電
極の利用率が向上し、充放電のくり返しによる電池内圧
の上昇が少なくサイクル寿命特性の優れた電池を提供す
ることができる。
As described above, by using the acid-treated electrode of the present invention, the utilization rate of the electrode is improved, and it is possible to provide a battery with excellent cycle life characteristics with less increase in battery internal pressure due to repeated charging and discharging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の水素吸蔵電極を用いる電池
の放電容量利用率を示す線図、第2図は本発明の一実施
例の水素吸蔵電極を用いる電池の内圧変化を示す線図、
第3図は本発明の一実施例の水素吸蔵電極を用いる電池
のサイクル寿命を示す線図である。
FIG. 1 is a diagram showing the discharge capacity utilization rate of a battery using a hydrogen storage electrode according to an embodiment of the present invention, and FIG. 2 is a diagram showing internal pressure changes of a battery using a hydrogen storage electrode according to an embodiment of the present invention. figure,
FIG. 3 is a diagram showing the cycle life of a battery using a hydrogen storage electrode according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵合金粉末を所定濃度範囲の酸性水溶液中に所定
時間浸漬した後、水洗して電極を作製することを特徴と
する水素吸蔵電極の製造方法。
1. A method for producing a hydrogen storage electrode, which comprises immersing a hydrogen storage alloy powder in an acidic aqueous solution having a predetermined concentration range for a predetermined time, and then washing the powder with water to produce an electrode.
JP2305093A 1990-11-10 1990-11-10 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0799691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305093A JPH0799691B2 (en) 1990-11-10 1990-11-10 Method for manufacturing hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305093A JPH0799691B2 (en) 1990-11-10 1990-11-10 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH04179055A true JPH04179055A (en) 1992-06-25
JPH0799691B2 JPH0799691B2 (en) 1995-10-25

Family

ID=17941022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305093A Expired - Lifetime JPH0799691B2 (en) 1990-11-10 1990-11-10 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0799691B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283163A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage alloy electrode
EP0945907A1 (en) * 1996-06-26 1999-09-29 SANYO ELECTRIC Co., Ltd. Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
US5985057A (en) * 1996-11-29 1999-11-16 Sanyo Electric Co., Ltd. Method of fabricating hydrogen absorbing alloy electrode
US6068948A (en) * 1996-11-28 2000-05-30 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali secondary battery
US6221528B1 (en) 1998-06-17 2001-04-24 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacturing thereof
US6329100B1 (en) 1998-12-22 2001-12-11 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for producing same
US6444361B1 (en) 1999-06-14 2002-09-03 Matsushita Electric Industrial Co., Ltd. Active material for hydrogen storage alloy electrode and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121960A (en) * 1990-09-10 1992-04-22 Sanyo Electric Co Ltd Manufacture of metal hydride electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121960A (en) * 1990-09-10 1992-04-22 Sanyo Electric Co Ltd Manufacture of metal hydride electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283163A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage alloy electrode
EP0945907A1 (en) * 1996-06-26 1999-09-29 SANYO ELECTRIC Co., Ltd. Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
EP0945907A4 (en) * 1996-06-26 2002-01-16 Sanyo Electric Co Hydrogen storing alloy electrode and process for producing hydrogen storage alloy electrode
US6068948A (en) * 1996-11-28 2000-05-30 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating hydrogen absorbing alloy electrode, and alkali secondary battery
US5985057A (en) * 1996-11-29 1999-11-16 Sanyo Electric Co., Ltd. Method of fabricating hydrogen absorbing alloy electrode
US6221528B1 (en) 1998-06-17 2001-04-24 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacturing thereof
US6329100B1 (en) 1998-12-22 2001-12-11 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and process for producing same
US6444361B1 (en) 1999-06-14 2002-09-03 Matsushita Electric Industrial Co., Ltd. Active material for hydrogen storage alloy electrode and method for producing the same

Also Published As

Publication number Publication date
JPH0799691B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JP2003007294A (en) Nickel electrode for alkaline storage battery, and the alkaline storage battery
JPH0773878A (en) Manufacture of metal hydride electrode
JPH04179055A (en) Manufacture of hydrogen storage electrode
US6740450B2 (en) Hydrogen-absorbing alloy for battery, method for producing the same, and alkaline storage battery using the same
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3547905B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery
JP2003077468A (en) Manufacturing method of nickel electrode material
JP2002260721A (en) Nickel hydrogen secondary battery
JPH02267872A (en) Manufacture of metal-hydrogen alkaline storage battery
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2000138050A (en) Nickel/hydrogen secondary battery
JPH0945331A (en) Hydrogen storage alloy electrode and nickel-hydrogen secondary battery using it
JP2627310B2 (en) Manufacturing method of metal monohydrogen alkaline storage battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JPH08279356A (en) Manufacture of hydrogen absorbing alloy for alkali storage battery
JPS63158761A (en) Solid hydrogen battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP3553752B2 (en) Method for producing hydrogen storage alloy electrode
JP3322449B2 (en) Method for producing metal hydride electrode
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP3561597B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JPH0462763A (en) Manufacture of metal hydride storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 16