JPS63158761A - Solid hydrogen battery - Google Patents

Solid hydrogen battery

Info

Publication number
JPS63158761A
JPS63158761A JP61304402A JP30440286A JPS63158761A JP S63158761 A JPS63158761 A JP S63158761A JP 61304402 A JP61304402 A JP 61304402A JP 30440286 A JP30440286 A JP 30440286A JP S63158761 A JPS63158761 A JP S63158761A
Authority
JP
Japan
Prior art keywords
manganese dioxide
battery
hydrogen
treated
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61304402A
Other languages
Japanese (ja)
Inventor
Takanao Matsumoto
松本 孝直
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Seiji Kameoka
亀岡 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61304402A priority Critical patent/JPS63158761A/en
Publication of JPS63158761A publication Critical patent/JPS63158761A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • H01M10/347Gastight metal hydride accumulators with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the charge-discharge cycle performance and the storage performance of a solid hydrogen battery by using manganese dioxide treated at a specified temperature as a positive active material. CONSTITUTION:In a solid hydrogen battery comprising a negative electrode mainly made of hydrogen storage alloy, a hydrogen ion conductive solid electrolyte, and a positive electrode using mainly manganese dioxide as active material, manganese dioxide treated at 350-430 deg.C is used. Thereby, the charge-discharge performance and the storage performance of the battery are improved.

Description

【発明の詳細な説明】 イ、JM業上の利用分野 本発明は水素吸蔵合金を主体とする負極と、水素イオン
導電性の固体電解質と、二酸化マンガン活物質を主体と
する正極とを備えた固体水素電池に関するものである。
[Detailed description of the invention] B. Field of application in the JM industry The present invention comprises a negative electrode mainly composed of a hydrogen storage alloy, a hydrogen ion conductive solid electrolyte, and a positive electrode mainly composed of a manganese dioxide active material. It relates to solid-state hydrogen batteries.

口、 従来の技術 水素吸蔵合金を主体とする負極を備えた電池としては、
特開昭61−99277号に開示されているように正極
に酸化ニッケル、電解質としてアルカリ水溶液を用いた
ニッケルー水素電池或いは特開昭61−163570号
に開示されているように正極に二酸化マンガン、電解質
として水素イオン導電性の固体電解質を用いた固体水素
電池が提案されている。
Conventional technology As a battery with a negative electrode mainly made of a hydrogen storage alloy,
A nickel-hydrogen battery using nickel oxide for the positive electrode and an alkaline aqueous solution as the electrolyte as disclosed in JP-A-61-99277, or a nickel-hydrogen battery using manganese dioxide for the positive electrode and an electrolyte as disclosed in JP-A-61-163570. A solid hydrogen battery using a hydrogen ion conductive solid electrolyte has been proposed.

ここで、特に後者の固体水素電池は電解質が固体である
ため漏液の心配がなく信頼性の高い電池として注目され
てし)る。
In particular, the latter type of solid-state hydrogen battery is attracting attention as a highly reliable battery that does not have to worry about leakage because the electrolyte is solid.

ハ、 発明が解決しようとする問題点 本発明は水素吸蔵合金(負極)−二酸化マンガン(正S
)系の固体水素電池の充放電サイクル特性及び保持特性
を改善することを目的とする。
C. Problems to be Solved by the Invention The present invention is based on hydrogen storage alloy (negative electrode) - manganese dioxide (positive S
The purpose of this study is to improve the charge/discharge cycle characteristics and retention characteristics of solid-state hydrogen batteries based on the following methods.

、−1問題点を解決するための手段 正極活物質に用いる二酸化マンガンとして350〜43
0℃の温度で熱処理した二酸化マンガンを用いることを
要旨とするものである。
, -1 Means for solving the problem 350-43 as manganese dioxide used in the positive electrode active material
The gist is to use manganese dioxide heat-treated at a temperature of 0°C.

ホ、 作用 正極活物質として350〜430℃の温度で熱処理した
二酸化マンガンを用いると、従来の市販の二酸化マンガ
ン(無処理)を用いる場合に比して充放電サイクル特性
及び保存特性が改善きれる。
E. Working When manganese dioxide heat-treated at a temperature of 350 to 430°C is used as the active cathode material, the charge/discharge cycle characteristics and storage characteristics can be improved compared to the case where conventional commercially available manganese dioxide (untreated) is used.

先づ充放電サイクル特性について言及すると、この種電
池の反応式は次式で表わされる(水素吸蔵合金としてL
aN15Hxを使用〉。
First, referring to the charge/discharge cycle characteristics, the reaction equation of this type of battery is expressed by the following equation (L as a hydrogen storage alloy).
Use aN15Hx>.

上式で明らかなように、放電時に負極から放出されたH
+は二酸化マンガン正極に受容きれるわけであるが、 二酸化マンガンは受容したHoを充電時に全て放出する
ことはできず、一部は二酸化マンガン中に残留する。
As is clear from the above equation, H released from the negative electrode during discharge
+ can be completely accepted by the manganese dioxide positive electrode, but manganese dioxide cannot release all the accepted Ho during charging, and some remains in the manganese dioxide.

さて、熱処理しない二酸化マンガンはHoを受容する部
分(チャネル)が多いため初期における電池容量は犬で
あるが、反面二酸化マンガン中に残留するHoは多くな
る。そしてこの残留H3により二酸化マンガンの結晶格
子はテンションがかかった状態で作動することになり、
その結果充放電の繰返し伴い結晶構造が崩れ、容量低下
を惹起する。
Now, since manganese dioxide that is not heat-treated has many parts (channels) that accept Ho, the initial battery capacity is small, but on the other hand, the amount of Ho remaining in manganese dioxide increases. This residual H3 causes the crystal lattice of manganese dioxide to operate under tension.
As a result, the crystal structure collapses with repeated charging and discharging, causing a decrease in capacity.

これに対して、350〜430℃の温度で熱処理した二
酸化マンガンはHoを受容する部分が減少し、初期にお
ける電池容量は小であるものの、二酸化マンガン中に残
留するHoは少くなり、二酸化マンガンの結晶格子にテ
ンションがかかり難くなるため結晶構造の崩れは生じ難
く充放電サイクル特性が向上する。
On the other hand, in manganese dioxide heat-treated at a temperature of 350 to 430°C, the portion that accepts Ho decreases, and although the initial battery capacity is small, the amount of Ho remaining in manganese dioxide decreases, and the amount of Ho remaining in manganese dioxide decreases. Since tension is less likely to be applied to the crystal lattice, the crystal structure is less likely to collapse and charge/discharge cycle characteristics are improved.

次に保存特性について言及するに、保存特性の劣化の要
因である自己放電は、電池保存時に負極から放出される
Hoを二酸化マンガン正極で受容する速度に密接な関係
がある。二酸化マンガン中に水分が存在するとこの水分
によってH+の親和性が犬となりH“を受容する速度が
高まる。
Next, referring to storage characteristics, self-discharge, which is a factor in deterioration of storage characteristics, is closely related to the rate at which the manganese dioxide positive electrode receives Ho released from the negative electrode during battery storage. When water is present in manganese dioxide, this water increases the affinity for H+ and increases the rate at which H" is accepted.

ここで350〜430℃の温度で熱処理した二酸化マン
ガンは熱処理をしない二酸化マンガンに比して残存水分
が少いため自己放電が抑制される。
Here, manganese dioxide heat-treated at a temperature of 350 to 430° C. has less residual moisture than manganese dioxide that is not heat-treated, so that self-discharge is suppressed.

へ、 実施例 市販のLaN(sをアルゴン雰囲気下で機械的に粉砕し
、加圧水素ガスを使用して活性化する。
Examples Commercially available LaN(s) is mechanically ground under an argon atmosphere and activated using pressurized hydrogen gas.

この処理済L a N i s 80重量%に、結着剤
としてのフッ素樹脂粉末5重量%、導電剤としてのアセ
チレンブラック10重量%及び後述する固体電解質材5
重量%を加えた混合物を圧縮成型してベレット状負極と
し、この負極を加圧水素下に置き十分に水素化する。
80% by weight of this treated L a Nis, 5% by weight of fluororesin powder as a binder, 10% by weight of acetylene black as a conductive agent, and solid electrolyte material 5 to be described later.
The mixture to which % by weight has been added is compression molded to form a pellet-shaped negative electrode, and the negative electrode is placed under pressurized hydrogen and thoroughly hydrogenated.

固体電解質は五酸化アンチモンを圧縮成型したものであ
る。
The solid electrolyte is compression molded antimony pentoxide.

次に市販されている電解二酸化マンガンを希硫酸中に浸
漬後十分に水洗し、ついで350〜430℃の温度で2
0時間熱処理する。この処理済二酸化マンガン80重量
%に、結着剤としてのフッ素樹脂粉末5!!fli%、
導電剤としてのアセチレンブラック10重量%及び固体
電解質材5重量%を加えた混合物を圧縮成型した後、更
に250〜350℃の温度で真空乾燥して正極とする。
Next, commercially available electrolytic manganese dioxide is immersed in dilute sulfuric acid, thoroughly washed with water, and then heated at a temperature of 350 to 430°C for 2 hours.
Heat treatment for 0 hours. 80% by weight of this treated manganese dioxide and 5% of fluororesin powder as a binder! ! fli%,
A mixture containing 10% by weight of acetylene black as a conductive agent and 5% by weight of a solid electrolyte material is compression molded, and then vacuum dried at a temperature of 250 to 350°C to form a positive electrode.

これらの発電要素を用いて組立てた本発明電池を(A)
とする。
The battery of the present invention assembled using these power generation elements is (A)
shall be.

又、比較のために正極活物質として市販の寛解二酸化マ
ンガンを熱処理せず、そのまま使用することを除いて他
は大発明の実施例と同様の比較電池(B)を作成した。
In addition, for comparison, a comparative battery (B) was prepared which was the same as the embodiment of the invention, except that commercially available ameliorated manganese dioxide was used as a positive electrode active material without being heat-treated.

第1図はこれらの電池を電極表面積当り200μ^/c
ff12の電流密度で充放電を夫々1時間行った時の放
電終了時の電池電圧とサイクル数との関係を示を図であ
り、第1図より本発明電池(A)は比較電池(B)に比
して充放電サイクル特性が改善されているのがわかる。
Figure 1 shows these batteries at 200 μ^/c per electrode surface area.
Figure 1 shows the relationship between the battery voltage at the end of discharge and the number of cycles when charging and discharging were performed for 1 hour at a current density of ff12, and from Figure 1, the battery of the present invention (A) was compared to the comparative battery (B). It can be seen that the charge/discharge cycle characteristics are improved compared to the previous model.

又、第2図はこれらの電池を!極表面積当り200+J
^/clT12の電流密度で満充電後そのまま室温で放
置した時の電池電圧と保存期間との関係を示す図であり
、第2図より本発明電池(A)は比較電池(B)に比し
て保存特性も改善されているのがわかる。
Also, Figure 2 shows these batteries! 200+J per extreme surface area
This is a diagram showing the relationship between battery voltage and storage period when the battery is left at room temperature after being fully charged at a current density of ^/clT12. Figure 2 shows that the battery of the present invention (A) has a higher battery life than the comparative battery (B). It can be seen that the storage characteristics are also improved.

尚、正極活物質として用いる二酸化マンガンの熱処理温
度を350〜430℃に限定したのは次の理由による。
The reason why the heat treatment temperature of manganese dioxide used as the positive electrode active material was limited to 350 to 430°C is as follows.

即ち、熱処理しない二酸化マンガンを熱処理した場合、
約300℃の温度付近よりH“を受容する部分(チャネ
ル)の減少が認められる。又、水分の除去については3
50℃の温度で付着水は勿論のこと結合水の除去も計れ
る。それ故、熱処理温度の下限値として350℃が規定
される。
That is, when manganese dioxide that is not heat treated is heat treated,
It is observed that the area (channel) that accepts H" decreases from around a temperature of about 300°C. Also, regarding the removal of moisture,
Not only attached water but also bound water can be removed at a temperature of 50°C. Therefore, 350° C. is specified as the lower limit of the heat treatment temperature.

一方、二酸化マンガンは約430 ’Cの温度で分解す
ると云われているので熱処理温度の上限値は430℃に
規定される。
On the other hand, since manganese dioxide is said to decompose at a temperature of about 430'C, the upper limit of the heat treatment temperature is set at 430'C.

又、固体電解質について五酸化アンチモンを例示したが
、これに限定きれず他の水素イオン導電性の固体電解質
を用いることができ、同様に水素吸蔵合金についてもL
aNi5に限定されず他の材料を用いることができる。
Furthermore, although antimony pentoxide is used as an example of the solid electrolyte, it is not limited to this, and other hydrogen ion conductive solid electrolytes can be used.
It is not limited to aNi5, but other materials can be used.

ト、 発明の効果 上述した如く、水素吸蔵合金を主体とする負極と、水素
イオン導電性の固体寛解質と、二酸化マンガン活物質を
主体とする正極とを備えた固体水素電池において、二酸
化マンガンとして350〜4306Cで熱処理した二酸
化マンガンを用いることによりこの種電池の充放電サイ
クル特性及び保存特性を改善しうるものであり、その工
業的価値は極めて大である。
G. Effects of the Invention As mentioned above, in a solid hydrogen battery comprising a negative electrode mainly made of a hydrogen storage alloy, a hydrogen ion conductive solid tolerate, and a positive electrode mainly made of a manganese dioxide active material, as manganese dioxide active material, By using manganese dioxide heat-treated at 350 to 4306C, the charge/discharge cycle characteristics and storage characteristics of this type of battery can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明電池と比較電池との電池特性
比較図であり、第1図は充放電サイクル特性図、第2図
は保存特性図を夫々示す。 (A)・・・本発明電池、(B)・・・比較電池。 第1図 0  1CX:)   魚  息  ■九放電すイクル
 (回) 第2図 4隊イ4!8間   (日)
1 and 2 are comparison diagrams of battery characteristics between a battery of the present invention and a comparative battery, with FIG. 1 showing a charge/discharge cycle characteristic diagram, and FIG. 2 a storage characteristic diagram, respectively. (A)...Battery of the present invention, (B)...Comparison battery. Fig. 1 0 1CX:) Fish breath ■9 discharge cycle (times) Fig. 2 4th group I 4!8 interval (day)

Claims (1)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を主体とする負極と、水素イオン導
電性の固体電解質と、350〜430℃の温度で熱処理
した二酸化マンガン活物質を主体とする正極とを備えた
固体水素電池。
(1) A solid hydrogen battery comprising a negative electrode mainly made of a hydrogen storage alloy, a hydrogen ion conductive solid electrolyte, and a positive electrode mainly made of a manganese dioxide active material heat-treated at a temperature of 350 to 430°C.
JP61304402A 1986-12-19 1986-12-19 Solid hydrogen battery Pending JPS63158761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61304402A JPS63158761A (en) 1986-12-19 1986-12-19 Solid hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61304402A JPS63158761A (en) 1986-12-19 1986-12-19 Solid hydrogen battery

Publications (1)

Publication Number Publication Date
JPS63158761A true JPS63158761A (en) 1988-07-01

Family

ID=17932577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61304402A Pending JPS63158761A (en) 1986-12-19 1986-12-19 Solid hydrogen battery

Country Status (1)

Country Link
JP (1) JPS63158761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517614A (en) * 2010-01-19 2013-05-16 オヴォニック バッテリー カンパニー インコーポレイテッド Low cost, high power, high energy density bipolar solid state metal hydride battery
US8755169B2 (en) 2009-09-30 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Electrochemical capacitor
US8952490B2 (en) 2009-09-30 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Redox capacitor and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220360A (en) * 1982-06-15 1983-12-21 Sanyo Electric Co Ltd Alkaline manganese secondary battery
JPS61163570A (en) * 1985-01-11 1986-07-24 Sharp Corp Solid hydrogen electric cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220360A (en) * 1982-06-15 1983-12-21 Sanyo Electric Co Ltd Alkaline manganese secondary battery
JPS61163570A (en) * 1985-01-11 1986-07-24 Sharp Corp Solid hydrogen electric cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755169B2 (en) 2009-09-30 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Electrochemical capacitor
US8952490B2 (en) 2009-09-30 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Redox capacitor and manufacturing method thereof
JP2013517614A (en) * 2010-01-19 2013-05-16 オヴォニック バッテリー カンパニー インコーポレイテッド Low cost, high power, high energy density bipolar solid state metal hydride battery

Similar Documents

Publication Publication Date Title
CN108878849B (en) Synthesis process of lithium-rich oxide and lithium ion battery containing lithium-rich oxide
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2002231247A (en) Control valve-type lead-acid battery
JPS63158761A (en) Solid hydrogen battery
JPH03272564A (en) Active substance of organic electrolyte battery and manufacture of the same
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPH01128371A (en) Nonaqueous electrolyte secondary cell
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3148905B2 (en) Manufacturing method of thin non-aqueous electrolyte secondary battery
JP3008627B2 (en) Non-aqueous electrolyte secondary battery
JP3503143B2 (en) Anode plate for sealed lead-acid battery
JPS61193378A (en) Nickel-cadmium alkaline cell
JPS5932867B2 (en) Paste mixing method for lead-acid battery electrode plates
JPH10134810A (en) Manufacture of lead-acid battery
JP2553624B2 (en) Paste type cadmium negative electrode
JPS62272470A (en) Alkaline storage battery
JPS63307662A (en) Organic electrolyte battery
JPH11191405A (en) Sealed lead-acid battery
JPH097596A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode
JPS5968172A (en) Manufacture of catalyst for oxygen electrode
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS6050861A (en) Positive plate for quick use type lead storage battery
JPS58133786A (en) Nonaqueous-electrolyte secondary battery
JPH0536404A (en) Manufacture of hydrogen-storage alloy electrode