JPH097596A - Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode

Info

Publication number
JPH097596A
JPH097596A JP7147195A JP14719595A JPH097596A JP H097596 A JPH097596 A JP H097596A JP 7147195 A JP7147195 A JP 7147195A JP 14719595 A JP14719595 A JP 14719595A JP H097596 A JPH097596 A JP H097596A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7147195A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nitta
芳明 新田
Kazuhiro Okamura
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7147195A priority Critical patent/JPH097596A/en
Publication of JPH097596A publication Critical patent/JPH097596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To suppress forming a needle crystal in a negative electrode surface when charged/discharged with a large charge/discharge capacity per volume, by using a compound oxide represented by Lix CeO2 (0<=x<=1.0) as a negative electrode active material. CONSTITUTION: A battery comprises metal lithium 4 in contact bonding to inside a sealing plate 2, negative electrode 5, fine porous polypropylene-made separator 6, insulating gasket 7, etc. As a negative electrode active material, cerium chloride serves as a start substance, to be melted by adding thick hydrochloric acid to this substance, and to obtain nitrate in nitric acidic bath. After filtering, washing and drying deposited nitrate, selenium oxide, obtained by burning for four hours at 800 deg.C under circulating air, is used. A prescribed amount of compound, obtained by mixing 10 pts.wt. polyfluorovinylidene as a binder relating to 90 pts.wt. CeO2 , is formed on a collector 3, to be dried by reducing a pressure at 150 deg.C, thereafter to obtain the negative electrode. When carried a current in the metal lithium 4 in a discharge direction, lithium is melted also to store a lithium ion in the negative electrode 5, and to be charged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池の負
極とこれを用いた電池の高性能化、特に、体積当たりの
容量密度の向上に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery and a high performance battery using the same, and more particularly to an improvement in capacity density per volume.

【0002】[0002]

【従来の技術】非水電解液二次電池は、小型、軽量で、
かつ高エネルギー密度を有するため、機器のポータブル
化、コードレス化が進む中で、その期待は高まってい
る。従来、非水電解液二次電池用の正極活物質としてL
xCoO2、LixNiO2などのリチウム含有金属酸化
物が提案されている。一方、負極活物質としては金属リ
チウム、リチウム合金およびリチウムイオンを吸蔵・放
出することのできる黒鉛材料などが提案され、一部実用
化されている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are small and lightweight,
Moreover, since it has a high energy density, its expectations are increasing as the equipment becomes more portable and cordless. Conventionally, L has been used as a positive electrode active material for non-aqueous electrolyte secondary batteries.
Lithium-containing metal oxides such as i x CoO 2 and Li x NiO 2 have been proposed. On the other hand, as a negative electrode active material, metallic lithium, a lithium alloy, and a graphite material capable of inserting and extracting lithium ions have been proposed and partially put into practical use.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
金属リチウムを用いた負極では、充電時において負極極
板表面に金属リチウムが針状結晶となって析出し、この
針状結晶がセパレーターを突き破って、正極と接触して
内部短絡を起こすことがあった。この問題を解決するた
めに、リチウムを吸蔵・放出可能な炭素材料を負極に用
いる検討がなされているが、この場合には炭素は理論的
にC6Li(炭素原子6個に対してLi原子1個)まで
Liイオンを吸蔵し理論容量は370mAh/g程度で
あるが、これら炭素材料の比重が小さく、比較的比重が
大きい黒鉛材料を用いた場合でも、実際の電池を構成す
る場合の極板体積あたりの充填容量密度はおよそ480
mAh/cc程度に止どまり、体積あたりのエネルギ−
効率を高めることが困難であった。
However, in the conventional negative electrode using metallic lithium, metallic lithium is deposited as needle-like crystals on the surface of the negative electrode plate during charging, and the needle-like crystals pierce the separator. , In some cases, it may come into contact with the positive electrode to cause an internal short circuit. In order to solve this problem, a carbon material capable of occluding / releasing lithium has been studied for use in the negative electrode. In this case, carbon is theoretically C 6 Li (6 carbon atoms to 6 Li atoms). The theoretical capacity is about 370 mAh / g, and the specific capacity of these carbon materials is small. Packing volume density per plate volume is approximately 480
Energy per volume staying around mAh / cc
It was difficult to increase efficiency.

【0004】本発明は、このような課題を解決するもの
で、負極の表面で金属リチウムが針状に析出することを
防止するとともに、黒鉛材料を用いた時の負極体積あた
りの充填容量密度を越えることのできる新規な負極活物
質を用いることにより体積当たりのエネルギ−密度が高
い非水電解液二次電池を提供するものである。
The present invention solves such a problem and prevents metallic lithium from accumulating in the shape of needles on the surface of the negative electrode, and the filling capacity density per negative electrode volume when a graphite material is used. It is intended to provide a non-aqueous electrolyte secondary battery having a high energy density per volume by using a novel negative electrode active material that can be exceeded.

【0005】[0005]

【課題を解決するための手段】本発明は一般式Lix
eO2(0≦x≦1.0)で表される複合酸化物を活物
質に用いた非水電解液二次電池用負極を提供し、さらに
この負極とリチウムを吸蔵・放出可能な活物質を用いた
正極と、有機溶媒にリチウム塩を溶解させた非水電解液
とを備えた電池を構成することにより、高性能の非水電
解液二次電池を提供し、上記の課題を解決するものであ
る。
The present invention has the general formula Li x C.
Provided is a negative electrode for a non-aqueous electrolyte secondary battery using a composite oxide represented by eO 2 (0 ≦ x ≦ 1.0) as an active material, and further, this negative electrode and an active material capable of inserting and extracting lithium. A high-performance non-aqueous electrolyte secondary battery is provided by constructing a battery including a positive electrode using a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent, and solving the above problems. It is a thing.

【0006】[0006]

【作用】LixCeO2は単斜晶系(空間群P121/c
1、格子定数a0が5.824オングストローム
(Å)、b0が6.616Å、c0が5.793Å、β角
が102.48deg.)に属し、中心のCeイオンの
まわりに酸素5配位で構成された酸化物ユニットの隙間
位置に可動リチウムイオンが収容された材料である。こ
の材料の式量から得られる理論電気容量は、1電子反応
と仮定するとおよそ150mAh/gであるが、比重が
大きいためにこれを用いた負極板を作成した場合の見か
け比重が黒鉛材料を用いた場合の1.3g/ccと較べ
て、約3.55g/ccと高いため、体積あたりの活物
質の充填容量密度は530mAh/cc程度の大きな値
が期待でき、負極の高容量化が可能となる。
Function: Li x CeO 2 is monoclinic (space group P121 / c
1, lattice constant a 0 is 5.824 angstrom (Å), b 0 is 6.616 Å, c 0 is 5.793 Å, β angle is 102.48 deg. ), In which movable lithium ions are housed in the interstitial position of the oxide unit composed of five-coordinate oxygen around the central Ce ion. The theoretical electric capacity obtained from the formula weight of this material is about 150 mAh / g assuming a one-electron reaction, but since the specific gravity is large, the apparent specific gravity when a negative electrode plate using this is made of a graphite material. Since it is as high as about 3.55 g / cc compared to 1.3 g / cc in the case where it is present, a large packing capacity density of the active material per volume of about 530 mAh / cc can be expected, and a high capacity of the negative electrode is possible. Becomes

【0007】また、LixCeO2のリチウムイオンの吸
蔵・放出反応は金属リチウムの溶解析出電位より貴な電
位で起こるため、リチウムが析出する電位を経ずリチウ
ムの析出は起こらない。
Further, since the lithium ion storage / release reaction of Li x CeO 2 occurs at a potential nobler than the dissolution and deposition potential of metallic lithium, the deposition of lithium does not occur without passing through the potential for deposition of lithium.

【0008】上記により、負極活物質としてLixCe
2を用いることにより、充電反応による負極表面での
リチウムの析出が起こらない体積効率の良い負極が得ら
れ、高容量で内部短絡が起こりにくい非水電解液二次電
池を提供することが可能となる。
Based on the above, Li x Ce is used as the negative electrode active material.
By using O 2 , it is possible to obtain a negative electrode with high volume efficiency in which lithium is not deposited on the surface of the negative electrode due to the charging reaction, and it is possible to provide a non-aqueous electrolyte secondary battery with high capacity and in which internal short circuit hardly occurs. Becomes

【0009】[0009]

【実施例】図1に本発明による負極の特性を評価するた
めの電池の縦断面図を示す。図1において、1は耐有機
電解液性のステンレス鋼板を加工した電池ケース、2は
同材質の封口板、3は同材質の集電体で、電池ケース1
の内面にスポット溶接されている。4は金属リチウム
で、封口板2の内部に圧着されている。5は本発明の負
極であり、6は微孔性のポリプロピレン製セパレータ
ー、7はポリプロピレン製絶縁ガスケットである。この
評価用電池の寸法は直径20mm、電池総高1.6mm
である。負極活物質としては、塩化セリウムを出発物質
とし、これに濃塩酸を加えて溶解させ、ついでこれを硝
酸酸性浴中で硝酸塩とした。この沈殿した硝酸塩を濾過
洗浄、乾燥後、空気流通下800℃で4時間焼成して得
た酸化セレン(CeO2)を用いた。負極活物質のCe
290重量部に対し、結着剤としてポリフッ化ビニリ
デン10重量部を混合して得られる合剤の所定量を集電
体3の上に成形し、これを150℃で減圧乾燥した後、
これを負極として電池を組立てた。電解液は炭酸エチレ
ン、1、3−ジメトキシエタンの等体積混合溶媒に溶質
として過塩素酸リチウムを1モル/リットルの濃度で溶
解して用いた。上記負極活物質(CeO2)は電池の組
み立て後、充電することにより電気化学的にリチウムイ
オンが挿入され、一般式LixCeO2(0≦x≦1.
0)となる。
EXAMPLE FIG. 1 shows a vertical sectional view of a battery for evaluating the characteristics of the negative electrode according to the present invention. In FIG. 1, 1 is a battery case made of a stainless steel plate resistant to organic electrolyte, 2 is a sealing plate made of the same material, and 3 is a current collector made of the same material.
It is spot welded to the inner surface of. Reference numeral 4 denotes metallic lithium, which is pressed inside the sealing plate 2. 5 is the negative electrode of the present invention, 6 is a microporous polypropylene separator, and 7 is a polypropylene insulating gasket. The battery for evaluation has a diameter of 20 mm and a total battery height of 1.6 mm.
It is. As the negative electrode active material, cerium chloride was used as a starting material, concentrated hydrochloric acid was added to and dissolved in the starting material, and then this was converted to a nitrate in a nitric acid acidic bath. Selenium oxide (CeO 2 ) obtained by filtering, washing and drying the precipitated nitrate was used for 4 hours at 800 ° C. under air flow. Ce of negative electrode active material
A predetermined amount of a mixture obtained by mixing 10 parts by weight of polyvinylidene fluoride as a binder with 90 parts by weight of O 2 was molded on the current collector 3 and dried under reduced pressure at 150 ° C.,
A battery was assembled using this as a negative electrode. The electrolytic solution was prepared by dissolving lithium perchlorate at a concentration of 1 mol / liter as a solute in an equal volume mixed solvent of ethylene carbonate and 1,3-dimethoxyethane. Lithium ions are electrochemically inserted into the negative electrode active material (CeO 2 ) by assembling the battery and then charging the battery, so that the general formula Li x CeO 2 (0 ≦ x ≦ 1.
0).

【0010】上記の評価用電池は本発明による負極の充
放電性能を評価するために構成したものであるため、金
属リチウム4が放電する方向に電流を通じると、リチウ
ムの溶解とともに本発明の負極5にはリチウムイオンが
吸蔵されて充電される。また、本発明の負極5が放電す
る方向に電流を通じた場合にはリチウムイオンが放出さ
れて金属リチウム4の表面にリチウムが電析する。この
電池は電気容量的に金属リチウム4が大過剰の状態で構
成されており、実質的には評価用電池の特性は本発明の
負極5の特性を示すものとして評価できる。これらの評
価用電池について常温(20℃)で、1.0mA/cm
2として、電圧2.0Vから0Vの範囲で充放電試験を
行い、放電容量とサイクル特性について検討した。図2
に本発明の負極を用いた評価用電池と、比較例として黒
鉛材料(2900℃で熱処理した炭素材)を負極活物質
とし、本発明の負極と同様の配合比と製法で作成した負
極を用いた評価用電池、との充放電サイクル回数に対す
る放電容量、即ち負極放電容量の変化を示す。図2から
わかるように、従来の黒鉛材料を負極活物質として用い
た場合の放電容量を100とすると、本発明の複合酸化
物を用いた場合には10%程度高い放電容量が得られ、
その後のサイクルテストにおいても従来品と同程度の劣
化率であり、従来品よりも高容量な特性を維持している
ことがわかる。
Since the above-mentioned battery for evaluation is constructed to evaluate the charge / discharge performance of the negative electrode according to the present invention, when a current is passed in the discharging direction of the metallic lithium 4, the lithium is dissolved and the negative electrode of the present invention is dissolved. Lithium ions are stored in the battery 5 and charged. Further, when a current is passed in the discharging direction of the negative electrode 5 of the present invention, lithium ions are released and lithium is electrodeposited on the surface of the metallic lithium 4. This battery is constructed in a state of a large excess of metallic lithium 4 in terms of electric capacity, and the characteristics of the evaluation battery can be evaluated substantially as the characteristics of the negative electrode 5 of the present invention. 1.0 mA / cm at room temperature (20 ° C) for these evaluation batteries
2 , the charge and discharge test was performed in the voltage range of 2.0V to 0V, and the discharge capacity and the cycle characteristics were examined. FIG.
In addition, an evaluation battery using the negative electrode of the present invention and a negative electrode prepared by the same compounding ratio and manufacturing method as the negative electrode of the present invention using a graphite material (carbon material heat-treated at 2900 ° C.) as a negative electrode active material as a comparative example. The discharge capacity, that is, the change in the negative electrode discharge capacity, with respect to the number of charge / discharge cycles of the evaluation battery was shown. As can be seen from FIG. 2, assuming that the discharge capacity when the conventional graphite material is used as the negative electrode active material is 100, a discharge capacity about 10% higher is obtained when the composite oxide of the present invention is used,
In the subsequent cycle test as well, it was found that the deterioration rate was similar to that of the conventional product, and that the characteristics with higher capacity than the conventional product were maintained.

【0011】また、負極中のリチウムの含有量を検討し
たところ、0V(金属リチウム極の電位と等しくなる電
位)まで充電した状態においてLixCeO2のX値はお
よそ1.0までリチウムは含有されるが、2V(金属リ
チウム極の電位に対して)まで放電してもX値は0にま
で戻らずおよそ0.2程度のリチウムが負極活物質内に
残存する。この初期の充放電サイクルにおけるリチウム
の負極内への残存は黒鉛を用いた場合にも同様に起こ
る。このため、次サイクルから若干の容量劣化は見られ
るものの、X値がおよそ0.2ないし0.3から1.0
まで変化するのに相当する放電容量が得られ、従来の黒
鉛材料よりも大きな放電容量が得られる。したがって、
本発明の複合酸化物を負極として用いた場合の吸蔵・放
出により可動するリチウム量をX値で表現すると0≦x
≦1.0で規定される。また、この複合酸化物を用いた
電池の充電後の負極電極表面からは針状のリチウムが観
測されなかった。
Further, when the content of lithium in the negative electrode was examined, it was found that the Li x CeO 2 had an X value of about 1.0 when charged to 0 V (a potential equal to the potential of the metal lithium electrode). However, even when discharged to 2 V (with respect to the potential of the metal lithium electrode), the X value does not return to 0, and about 0.2 lithium remains in the negative electrode active material. Remaining of lithium in the negative electrode during this initial charge / discharge cycle also occurs when graphite is used. Therefore, although the capacity is slightly deteriorated from the next cycle, the X value is about 0.2 to 0.3 to 1.0.
It is possible to obtain a discharge capacity equivalent to that of the conventional graphite material, which is larger than that of a conventional graphite material. Therefore,
When the amount of lithium that moves by occlusion / release when the composite oxide of the present invention is used as a negative electrode is expressed by an X value, 0 ≦ x
It is specified by ≦ 1.0. In addition, acicular lithium was not observed on the surface of the negative electrode after charging the battery using this composite oxide.

【0012】本発明のLixCeO2(0≦x≦1.0)
を活物質とする負極は0.2mA/cm2で充放電した
場合に、金属リチウムの電位に対して、充電電位の平坦
部は約0.5V、放電電位の平坦部は約0.7Vの値を
示す。従って、例えば、この負極とLiCoO2(1.
O≧x≧0)を活物質とする正極を組み合わせた場合に
は、平均的な放電電圧が約3.5Vの非水電解液二次電
池を構成できる。
Li x CeO 2 of the present invention (0≤x≤1.0)
When the negative electrode using the active material as the active material is charged and discharged at 0.2 mA / cm 2 , the flat portion of the charging potential is about 0.5 V and the flat portion of the discharging potential is about 0.7 V with respect to the potential of metallic lithium. Indicates a value. Therefore, for example, this negative electrode and LiCoO 2 (1.
When a positive electrode having O ≧ x ≧ 0) as an active material is combined, a non-aqueous electrolyte secondary battery having an average discharge voltage of about 3.5 V can be formed.

【0013】なお、本発明における負極活物質は、Li
xCoO2の他に、LixNiO2、LixMnO2、Lix
Mn24などのリチウムを吸蔵・放出可能な正極活物質
を用いた、いわゆるロッキングチェアタイプの非水電解
液二次電池などに広く適用でき、これらの電池の高性能
化に極めて効果的である。
The negative electrode active material in the present invention is Li
In addition to x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x
It can be widely applied to so-called rocking chair type non-aqueous electrolyte secondary batteries that use a positive electrode active material capable of inserting and extracting lithium such as Mn 2 O 4 , and is extremely effective in improving the performance of these batteries. is there.

【0014】[0014]

【発明の効果】以上のように、本発明は一般式Lix
eO2(0≦x≦1.0)で表される複合酸化物を負極
活物質として用いることにより、体積当たりの充放電容
量が大きく、さらに充放電反応に伴う負極表面上の針状
結晶の形成を抑え得る非水電解液二次電池用の負極を提
供し、この負極を用いることにより大容量を有し、充放
電特性が優れ、内部短絡の起こり難い高性能電池を提供
できるものである。
As described above, according to the present invention, the general formula Li x C
By using the composite oxide represented by eO 2 (0 ≦ x ≦ 1.0) as the negative electrode active material, the charge / discharge capacity per volume is large, and the acicular crystals on the surface of the negative electrode accompanying the charge / discharge reaction are formed. Provided is a negative electrode for a non-aqueous electrolyte secondary battery capable of suppressing formation, and by using this negative electrode, it is possible to provide a high-performance battery having a large capacity, excellent charge / discharge characteristics, and less likely to cause an internal short circuit. .

【図面の簡単な説明】[Brief description of drawings]

【図1】負極の評価用電池の縦断面図FIG. 1 is a vertical sectional view of a battery for evaluating a negative electrode.

【図2】負極の充放電サイクル特性を示す図FIG. 2 is a diagram showing charge-discharge cycle characteristics of a negative electrode.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 集電体 4 金属リチウム 5 負極 6 セパレーター 7 ガスケット 1 Battery Case 2 Sealing Plate 3 Current Collector 4 Metal Lithium 5 Negative Electrode 6 Separator 7 Gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】活物質として、一般式LixCeO2(0≦
x≦1.0)で表される複合酸化物を用いたことを特徴
とする非水電解液二次電池用負極。
1. An active material of the general formula Li x CeO 2 (0 ≦
A negative electrode for a non-aqueous electrolyte secondary battery, characterized by using a composite oxide represented by x ≦ 1.0).
【請求項2】リチウムを吸蔵・放出可能な活物質を用い
た正極と、活物質として一般式LixCeO2(0≦x≦
1.0)で表される複合酸化物を用いた負極と、有機溶
媒にリチウム塩を溶解させた非水電解液とを備えたこと
を特徴とする非水電解液二次電池。
2. A positive electrode using an active material capable of occluding and releasing lithium, and a general formula Li x CeO 2 (0 ≦ x ≦
A non-aqueous electrolyte secondary battery comprising a negative electrode using the composite oxide represented by 1.0) and a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent.
JP7147195A 1995-06-14 1995-06-14 Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode Pending JPH097596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7147195A JPH097596A (en) 1995-06-14 1995-06-14 Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7147195A JPH097596A (en) 1995-06-14 1995-06-14 Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode

Publications (1)

Publication Number Publication Date
JPH097596A true JPH097596A (en) 1997-01-10

Family

ID=15424713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7147195A Pending JPH097596A (en) 1995-06-14 1995-06-14 Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode

Country Status (1)

Country Link
JP (1) JPH097596A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412526B1 (en) * 2000-08-21 2003-12-31 삼성에스디아이 주식회사 Electrode for lithium secondary battery and lithium secondary battery
KR100659049B1 (en) * 2000-11-25 2006-12-18 삼성에스디아이 주식회사 Inorganic solid electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412526B1 (en) * 2000-08-21 2003-12-31 삼성에스디아이 주식회사 Electrode for lithium secondary battery and lithium secondary battery
KR100659049B1 (en) * 2000-11-25 2006-12-18 삼성에스디아이 주식회사 Inorganic solid electrolyte

Similar Documents

Publication Publication Date Title
JP3502118B2 (en) Method for producing lithium secondary battery and negative electrode thereof
CN1172401C (en) Lithium secondary cell
JPWO2003019713A1 (en) battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2007073487A (en) Nonaqueous electrolyte secondary battery
JPH0487156A (en) Nonaqueous electrolyte battery
JPH1140156A (en) Nonaqueous electrolyte secondary battery
JPWO2014049958A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4159640B2 (en) Anode active material for lithium ion battery and method for producing the same
JP2001273899A (en) Positive electrode material for lithium secondary battery
JP3380501B2 (en) Non-aqueous electrolyte secondary battery
JP2000012090A (en) Lithium secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JPH1126018A (en) Lithium secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH097596A (en) Negative electrode for nonaqueous electrolyte secondary battery and battery suing this negative electrode
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3887849B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
JP3049892B2 (en) Positive electrode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP2528183B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
JPH0945326A (en) Nonaqueous electrolyte secondary battery