JPS5968172A - Manufacture of catalyst for oxygen electrode - Google Patents

Manufacture of catalyst for oxygen electrode

Info

Publication number
JPS5968172A
JPS5968172A JP57177945A JP17794582A JPS5968172A JP S5968172 A JPS5968172 A JP S5968172A JP 57177945 A JP57177945 A JP 57177945A JP 17794582 A JP17794582 A JP 17794582A JP S5968172 A JPS5968172 A JP S5968172A
Authority
JP
Japan
Prior art keywords
catalyst
manganese dioxide
manganese
oxygen electrode
oxygen reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57177945A
Other languages
Japanese (ja)
Other versions
JPH0361987B2 (en
Inventor
Fumio Oo
大尾 文夫
Akira Oota
璋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57177945A priority Critical patent/JPS5968172A/en
Publication of JPS5968172A publication Critical patent/JPS5968172A/en
Publication of JPH0361987B2 publication Critical patent/JPH0361987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide oxygen reduction catalyst having high activity and good storage performance by heat-treating in a nonoxidizing atmosphere manganese dioxide obtained by electrolysis of a mixed solution of manganese sulfate and a metal chelete compound. CONSTITUTION:0.5-1.2mol/l manganese sulfate solution and 0.5-1.2mol/l sulfuric acid containing a specified amount of cobalt phthalocyanine sulfonate are mixed. This mixed solution is electrolyzed at an anode current density of 0.7- 1.2A/dm<2> at 88-98 deg.C to obtain manganese dioxide on which cobalt phthalocyanine is deposited. This manganese dioxide is fully washed to remove free sulfuric acid, and dried, then crushed and ground with a mortar and pestle to 200-300 mesh. The power obtained is heated in a nonoxidizing atmosphere at 400-550 deg.C to manufacture a catalyst. The catalyst is kneaded with activated carbon acting as oxygen carrier, acetylene black of electric conductive material, and fluorine resin for giving water repellent property, and this mixture is spreaded on a nickel net to obtain an oxygen reduction electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ボタン形空気電池の正極などに用いられる酸
素極用触媒の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an oxygen electrode catalyst used for the positive electrode of a button-type air cell.

従来例の構成とその問題点 従来より、ボタン形空気電池の正極の触媒材として種々
のものが検討されており、特に白金、パラジウムなどは
浸れた酸素還元触媒として多く使用されている。しかし
ながらこれらの貴金属触媒は極めて高価であり、特に補
聴器、電卓などの電源電池の正極として使用するには、
再生、再使用が困難なことを考慮すると高価につき実用
には供し難い。反面、二酸化マンガンなどのマンガン酸
化物、活性炭などは安価な酸素還元触媒として有効であ
るが、次のような欠点を有していた。
Conventional Structures and Problems Various materials have been studied as catalyst materials for the positive electrode of button-type air cells, and platinum, palladium, and the like are particularly often used as immersed oxygen reduction catalysts. However, these precious metal catalysts are extremely expensive, especially when used as positive electrodes in power batteries for hearing aids, calculators, etc.
Considering that it is difficult to reproduce and reuse, it is expensive and difficult to put into practical use. On the other hand, although manganese oxides such as manganese dioxide and activated carbon are effective as inexpensive oxygen reduction catalysts, they have the following drawbacks.

即ち、マンガン酸化物は極めて親水性に富むものであり
、長期保存中にアルカリ電解液によって濡れてしまい、
活性度の低い低級マンガン酸化物に還元されて酸素還元
能力の低下を惹起していた、発明の目的 本発明は前述の従来例の問題点を解決するものであり、
貯蔵性に優れた酸素極用触媒を得る製造法を提供するこ
とを目的としだものである。
In other words, manganese oxide is extremely hydrophilic and gets wet with alkaline electrolyte during long-term storage.
OBJECT OF THE INVENTION The present invention solves the problems of the above-mentioned conventional examples, which were reduced to lower-grade manganese oxides with low activity and caused a decrease in oxygen reduction ability.
The purpose of this invention is to provide a manufacturing method for obtaining an oxygen electrode catalyst with excellent storage stability.

発明の構成 即ち、本発明は前記目的を達成する酸素極用触媒の製造
法であって、硫酸マンガンと金属キレート化合物を含む
水溶液を電解する工程と、電解によって得られた二酸化
マンガンを非酸化性雰囲気中で熱処理する工程とからな
ることを特徴としだものである。この本発明の製造法に
よれば、高活性で貯蔵性に優れた酸素還元触媒を得るこ
とができる。
Components of the Invention That is, the present invention is a method for producing an oxygen electrode catalyst that achieves the above-mentioned object, which includes a step of electrolyzing an aqueous solution containing manganese sulfate and a metal chelate compound, and converting the manganese dioxide obtained by the electrolysis into a non-oxidizing material. This method is characterized by a step of heat treatment in an atmosphere. According to the production method of the present invention, it is possible to obtain an oxygen reduction catalyst with high activity and excellent storage stability.

実施例の説明 本発明の実施例について以下図とともに説明する。第1
図は本発明による酸素還元触媒を用いたボタン形空気電
池を示し、図中1は正極容器で、その内部には触媒相2
を集電体であるニッケルネット3に塗着一体化した酸素
1!元電極4.撥水膜6、セパレータ6が挿入されてい
る。負極活物質である亜鉛7は負極容器8内に充填され
でいる。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a button-type air battery using the oxygen reduction catalyst according to the present invention.
Oxygen 1 coated and integrated with nickel net 3 which is a current collector! Original electrode 4. A water-repellent film 6 and a separator 6 are inserted. Zinc 7, which is a negative electrode active material, is filled into a negative electrode container 8.

9はガスケツ)、10は万一の漏液防止のだめの支持紙
である。11は通常はシール紙(図示せず)で2おわれ
ていて酸素の供給を遮断し、自己放電を防止している空
気供給の為の孔である。
9 is a gasket), and 10 is a support paper to prevent liquid leakage. Reference numeral 11 denotes an air supply hole which is normally covered with a seal paper (not shown) to cut off the supply of oxygen and prevent self-discharge.

次に触媒材2の製造法について述べる。硫酸マンガン0
.5〜1 、2−E/V(2(7)水j容器と、o、6
モL、7e 〜1、O”Vl +7) ’bR酸IK−
コバルトフタロシアニンスルフォン酸塩を所定量加えた
ものとを混合し、電解温度88〜98°C1陽極電流密
度0.7〜1’、 2 A//d、♂f?lt気分解を
桁分解コバルトフタロンアニンのイ」着(電着)した二
酸化マンガンを得る。このものを良く洗浄し遊離の硫酸
を除去し、乾燥後、乳鉢で200〜300メツ/ユにな
る様粉砕する。次にこのものを非酸化性雰囲気中にて4
00〜550°Cで熱処理を行ない触媒とする。このも
のと主に酸素の相体の役目をする活性炭と、導電助剤で
あるアセチレンブラックと、撥水性を付与すべくフッ素
樹脂とを混練し、これを集電体であるニッケルネットに
塗着し、酸素還元電極4を得る。また触媒材を400〜
550°Cに加熱するのは、この温度範囲で熱処理した
ものは、生成するマンガン酸化物が酸素還元能に優れ、
電解液に対する親和力の小さな表面状態を呈したγ型の
Mn2O3を含んでいるためであり、まだこのマンガン
酸化物表面に電着した微粒子状の金属キレート化合物が
モノマーの状態から、非酸化性の雰囲気中で加熱処理を
行なうことにより、金属キレート化合物の中心部の金属
イオンが脱離することなく、金属イオンのπ電子が拡張
して共役二重結合が形成されてポリマー化する。このた
め吸着した酸素分子の電子移動、つ捷りイオン1ヒが良
好となり酸素還元能力が増大する。また、これ等のもの
は電Jf!f液に対する接触角が大きく、濡れ性が極め
て小さい。このような金属キレート化合物は、電析によ
って二酸化マンガン表面に極めて均一に共析するだめ、
その触媒活性度は極めて大きなものである。
Next, a method for manufacturing catalyst material 2 will be described. Manganese sulfate 0
.. 5-1, 2-E/V (2 (7) water j container, o, 6
MoL, 7e ~ 1, O”Vl +7) 'bR acid IK-
A predetermined amount of cobalt phthalocyanine sulfonate was added thereto, and the electrolytic temperature was 88 to 98°C, anode current density was 0.7 to 1', 2 A//d, ♂f? Manganese dioxide is obtained by electrodeposition of cobalt phthalonanine by an order of magnitude of gas decomposition. This product is thoroughly washed to remove free sulfuric acid, dried, and then ground in a mortar to a concentration of 200 to 300 Metu/U. Next, this material was placed in a non-oxidizing atmosphere for 4
Heat treatment is performed at 00 to 550°C to obtain a catalyst. This material is mixed with activated carbon, which mainly acts as a partner for oxygen, acetylene black, which is a conductive agent, and fluororesin to impart water repellency, and then applied to a nickel net, which is a current collector. Then, an oxygen reduction electrode 4 is obtained. In addition, the catalyst material is 400~
The reason for heating to 550°C is that the manganese oxide produced has excellent oxygen reduction ability when heat treated in this temperature range.
This is because it contains γ-type Mn2O3, which has a surface state with low affinity for the electrolyte, and the fine particulate metal chelate compound electrodeposited on the surface of this manganese oxide is still in a monomer state, so it is difficult to maintain a non-oxidizing atmosphere. By performing the heat treatment inside, the metal ion at the center of the metal chelate compound is not detached, and the π electrons of the metal ion are expanded to form a conjugated double bond, resulting in polymerization. Therefore, the electron transfer and ion separation of the adsorbed oxygen molecules become favorable, and the oxygen reduction ability increases. Also, these things are Den Jf! The contact angle with f liquid is large and the wettability is extremely low. Such metal chelate compounds must be eutectoided extremely uniformly on the surface of manganese dioxide by electrodeposition.
Its catalytic activity is extremely high.

また先の実施例では金属キレート化合物中心部の金属と
してコバルトを示したが、他に鉄、ニッケルナマンガン
を用いた場合でも同様の効果を有する。ギレート化合物
としてはフタロシアニンの他に、ポルフィリン系金属キ
レート化合物、例えばテトラ−パラ−メトキンフェニル
ポルフィリンコバルトなども同様の効果がある。またマ
ンガン酸化物表面への金属キレ−1・化合物の添加量は
、マンガン酸化物に対し3〜8重量係の範囲のものが、
最も触媒活性に優れるものであった。この範中のものは
双方の相乗効果が最大になるものである。次に具体的な
効果について、IEC規格、R44サイズのボタン形空
気亜鉛電池を構成し、100Ω定抵抗放電を実施1〜だ
時の放電特性を第2図に、また第3図にば45°C6力
月保存後の放電特性をそれぞれ示す。さらに第4図は触
媒電極の分極特性を比較したもので、ニッケルを対極と
して陰分極を行なった。なお、触媒面積ば1Ca。
Further, although cobalt was shown as the metal at the center of the metal chelate compound in the previous example, the same effect can be obtained even when iron or nickel manganese is used. In addition to phthalocyanine, porphyrin-based metal chelate compounds, such as tetra-para-methquine phenylporphyrin cobalt, have similar effects as gyrate compounds. In addition, the amount of metal filler-1 compound added to the surface of the manganese oxide is in the range of 3 to 8 weight ratios to the manganese oxide.
It had the highest catalytic activity. Those within this range are those that maximize the synergistic effect of both. Next, regarding specific effects, Figure 2 shows the discharge characteristics when a button-type zinc-air battery of R44 size according to the IEC standard was constructed and a 100Ω constant resistance discharge was performed. The discharge characteristics after C6 storage are shown. Further, FIG. 4 shows a comparison of the polarization characteristics of the catalyst electrodes, and cathodic polarization was performed using nickel as a counter electrode. In addition, the catalyst area is 1Ca.

電解液としては濃度30重量係KOH水溶液を使用した
。図において (A)は本発明における触媒電極で、キレート化合物ト
シてコバルトフタロシアニンをマンガン酸化物に対し7
重量係添加した触媒相で、この主触媒と活性炭、アセチ
レンブラック、及びフッ素樹脂を混合してニッケルネッ
トに塗着したものであり、配合比d−1主触媒:活性炭
:アセチレンブラノク二フノ素樹j指を50:20二1
0:20としだ。
As the electrolyte, a KOH aqueous solution having a concentration of 30% by weight was used. In the figure, (A) is a catalyst electrode in the present invention, in which cobalt phthalocyanine is applied to manganese oxide by using a chelate compound.
The main catalyst is mixed with activated carbon, acetylene black, and a fluororesin and applied to a nickel net, and the mixture ratio is d-1: main catalyst: activated carbon: acetylene black, and a fluororesin. j finger 50:2021
It was 0:20.

(B)は本発明における他の触媒電極で、テトラ−パラ
−メトキシフェニルニッケルをマンガン酸化物に対し3
重量%添加したもので、その配合は(A)と同様とした
(B) is another catalytic electrode in the present invention, in which tetra-para-methoxyphenyl nickel is added to manganese oxide at 3%
% by weight, and the formulation was the same as in (A).

(G)は従来例で、マンガン酸化物として二酸化マンガ
ンを500℃で焼成したものを主触媒とし、(A)と同
様に電極を構成したものを示す。
(G) is a conventional example in which the main catalyst is manganese dioxide calcined at 500° C. as a manganese oxide, and the electrode is constructed in the same manner as in (A).

(D)は他の従来例で、活性炭に白金を2重量係担持さ
せたものを主触媒とし、配合比は主触媒:アセチレンブ
ラノク二フッ素樹脂を6o:20:20としだ。
(D) is another conventional example, in which the main catalyst is one in which two weight ratios of platinum are supported on activated carbon, and the blending ratio of main catalyst: acetylene brano difluororesin is 6:20:20.

発明の効果 以」二の結果から明らか々ように、本発明の製造法によ
る触媒は、安価で貯蔵性に優れ、しかも高活性な酸素還
元触媒である。
Effects of the Invention As is clear from the second results, the catalyst produced by the production method of the present invention is an inexpensive, highly storable, and highly active oxygen reduction catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における触媒相を用いて構成さ四重4j
)の放電特性を示す図、第3図は同電池の保存後におけ
る放電特性を示す図、第4図は酸素還元触媒電極の分極
特性を示す図である。 1・・・・・・正極容器、2・・・・触媒材、3・・・
・・集電体、4・・・・・酸素還元触媒電極、7・・・
・・負極捕鉛。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1 第2図 詩蘭吋肩 (hrs)
Figure 1 shows a quadruple 4j structure constructed using the catalyst phase in the present invention.
), FIG. 3 is a diagram showing the discharge characteristics of the same battery after storage, and FIG. 4 is a diagram showing the polarization characteristics of the oxygen reduction catalyst electrode. 1... Positive electrode container, 2... Catalyst material, 3...
...Current collector, 4...Oxygen reduction catalyst electrode, 7...
...Negative lead capture. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2 Poetry Ranking Shoulder (hrs)

Claims (4)

【特許請求の範囲】[Claims] (1)硫酸マンガンと金属キレート化合物を含む水溶液
を電解する工程と、電解によって得られた二酸化マンガ
ンを非酸化性雰囲気中で熱処理する工程とからなる酸素
極用触媒の製造法。
(1) A method for producing an oxygen electrode catalyst comprising the steps of electrolyzing an aqueous solution containing manganese sulfate and a metal chelate compound, and heat-treating manganese dioxide obtained by electrolysis in a non-oxidizing atmosphere.
(2)  キv −1−化合物カ鉄、  コバルト、ニ
ッケル。 マンガンのうちいずれかの金属を中心とし、窒素原子4
個で囲まれたフタロシアニン環、あるいはポルフィリン
環を有する特許請求の範囲第1項記載の酸素極用触媒の
製造法。
(2) -1-compound iron, cobalt, nickel. Centered on one of the metals manganese, with 4 nitrogen atoms
A method for producing an oxygen electrode catalyst according to claim 1, which has a phthalocyanine ring or a porphyrin ring surrounded by .
(3)熱処理の加熱温度が、400〜650°Cである
特許請求の範囲第1項記載の酸素極用触媒の製造法。
(3) The method for producing an oxygen electrode catalyst according to claim 1, wherein the heating temperature of the heat treatment is 400 to 650°C.
(4)二酸化マンガンに対する金属キレート化合物の配
合量が、二酸化マンガンに対し3〜8重量係である特許
請求の範囲第1項から第3項のいずれかに記載の酸素極
用触媒の製造法。
(4) The method for producing an oxygen electrode catalyst according to any one of claims 1 to 3, wherein the amount of the metal chelate compound mixed with manganese dioxide is 3 to 8 weight ratios with respect to manganese dioxide.
JP57177945A 1982-10-08 1982-10-08 Manufacture of catalyst for oxygen electrode Granted JPS5968172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57177945A JPS5968172A (en) 1982-10-08 1982-10-08 Manufacture of catalyst for oxygen electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57177945A JPS5968172A (en) 1982-10-08 1982-10-08 Manufacture of catalyst for oxygen electrode

Publications (2)

Publication Number Publication Date
JPS5968172A true JPS5968172A (en) 1984-04-18
JPH0361987B2 JPH0361987B2 (en) 1991-09-24

Family

ID=16039818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57177945A Granted JPS5968172A (en) 1982-10-08 1982-10-08 Manufacture of catalyst for oxygen electrode

Country Status (1)

Country Link
JP (1) JPS5968172A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283411A (en) * 2008-05-26 2009-12-03 Toyota Motor Corp Air battery
JP2015520012A (en) * 2012-04-05 2015-07-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for preparing hydrogen generating catalyst, catalyst and method for using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283411A (en) * 2008-05-26 2009-12-03 Toyota Motor Corp Air battery
JP2015520012A (en) * 2012-04-05 2015-07-16 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for preparing hydrogen generating catalyst, catalyst and method for using the same

Also Published As

Publication number Publication date
JPH0361987B2 (en) 1991-09-24

Similar Documents

Publication Publication Date Title
JP3712259B2 (en) Cathode active material for alkaline manganese battery and battery
JP2004186127A (en) Positive plate active material for cell, manufacturing method of electrolytic manganese dioxide, and cell
CN110137430A (en) The Co of three-dimensional porous array structure3O4/ rGO/Ni foam combination electrode material and preparation method thereof
JP3590178B2 (en) Electrolytic manganese dioxide, method for producing the same, and manganese dry battery
JPH0750606B2 (en) Non-aqueous electrolyte battery and method for producing positive electrode active material thereof
JP3553541B2 (en) Method for producing positive electrode active material for battery and electrolytic manganese dioxide, and battery
JPS5968172A (en) Manufacture of catalyst for oxygen electrode
JPH05159798A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JP3286346B2 (en) Zinc alkaline battery
JP3353588B2 (en) Method for producing manganese oxide for battery and battery
JPS61264682A (en) Organic electrolyte battery
JPS6352747B2 (en)
JPH0317181B2 (en)
Chelali et al. Electrochemical behavior of α-and β-PbO2. Part I: proton diffusion from “all solid-state” protonic electrolyte
JPH1186860A (en) Nickel hydroxide active material for alkaline storage battery and paste-type nickel hydroxide positive electrode with it
JPH11345612A (en) Manufacture of positive electrode material for lithium battery
JPS6027146B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte batteries
JPH0261096B2 (en)
JPS5973051A (en) Manufacture of oxygen-reducing catalyst
JPH1197005A (en) Alkaline manganese dry battery
JPS63158750A (en) Zink electrode for alkaline storage battery
JPS63158761A (en) Solid hydrogen battery
CN115020680A (en) MXene-coated hard carbon negative electrode material of sodium ion battery
JPS5861570A (en) Air cell
JPS6091565A (en) Nonaqueous electrolyte battery