JPS6352747B2 - - Google Patents

Info

Publication number
JPS6352747B2
JPS6352747B2 JP55131194A JP13119480A JPS6352747B2 JP S6352747 B2 JPS6352747 B2 JP S6352747B2 JP 55131194 A JP55131194 A JP 55131194A JP 13119480 A JP13119480 A JP 13119480A JP S6352747 B2 JPS6352747 B2 JP S6352747B2
Authority
JP
Japan
Prior art keywords
positive electrode
manganese dioxide
battery
active material
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55131194A
Other languages
Japanese (ja)
Other versions
JPS5755065A (en
Inventor
Sanehiro Furukawa
Kazuo Moriwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP55131194A priority Critical patent/JPS5755065A/en
Publication of JPS5755065A publication Critical patent/JPS5755065A/en
Publication of JPS6352747B2 publication Critical patent/JPS6352747B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は二酸化マンガンを活物質とする正極を
備えた非水電解質電池に係り、特に正極の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery equipped with a positive electrode using manganese dioxide as an active material, and particularly to a method for manufacturing the positive electrode.

非水電解質電池の正極活物質としては種々提案
されているが資源的に豊富であつて、安価、安定
性の理由から二酸化マンガンが有望視され且実用
化に至つている。
Various materials have been proposed as positive electrode active materials for non-aqueous electrolyte batteries, but manganese dioxide is considered promising due to its abundant resources, low cost, and stability, and has been put into practical use.

一般に二酸化マンガンは化学二酸化マンガンと
電解二酸化マンガンとに大別されるが、特に電池
特性については電解二酸化マンガンが優れている
と云われている。
Manganese dioxide is generally classified into chemical manganese dioxide and electrolytic manganese dioxide, and electrolytic manganese dioxide is said to be particularly superior in terms of battery characteristics.

電解二酸化マンガンは硫酸マンガン溶液を電解
して得られるものであるが、本発明者等が種々実
験検討したところ硫酸マンガン溶液に鉛化合物を
添加、溶解した溶液を電解して得た二酸化マンガ
ンを正極活物質として用いれば電池性能が向上す
ることを見出した。
Electrolytic manganese dioxide is obtained by electrolyzing a manganese sulfate solution, and the inventors conducted various experiments and found that the manganese dioxide obtained by adding a lead compound to a manganese sulfate solution and electrolyzing the dissolved solution was used as a positive electrode. It was discovered that battery performance can be improved when used as an active material.

本発明は上記事実に基づいてなされたものであ
る。
The present invention has been made based on the above facts.

以下本発明の実施例を詳述する。 Examples of the present invention will be described in detail below.

実施例 1 0.1〜0.5モルの硫酸溶液に0.5〜2.0モルの硫酸
マンガンを溶解した硫酸酸性硫酸マンガン溶液に
0.001〜0.1モルの硫酸鉛を添加、溶解しこの溶液
中においてカソードに黒鉛棒、アノードに黒鉛、
チタン、鉛棒等を用い電流密度0.5〜1.5A/dm2
温度80℃以上で電解する。このようにして得た鉛
含有の二酸化マンガンを十分水洗し乾燥後粉砕す
る。その後含有される遊離のH2SO4の中和と脱
離のために弱アルカリ(NaHCO3、Na2CO3
dil・NaOH、NH4OH等)で中和処理し水洗乾
燥する。この粉末を250〜400℃で5時間熱処理し
た粉砕後200メツシユパスを行なつて正極活物質
とする。
Example 1 A sulfuric acid acidic manganese sulfate solution prepared by dissolving 0.5 to 2.0 mol of manganese sulfate in a 0.1 to 0.5 mol of sulfuric acid solution
Add and dissolve 0.001 to 0.1 mole of lead sulfate, and in this solution, create a graphite rod for the cathode, graphite for the anode,
Current density 0.5 to 1.5 A/dm 2 using titanium, lead rod, etc.
Electrolyze at a temperature of 80℃ or higher. The lead-containing manganese dioxide thus obtained is thoroughly washed with water, dried, and then pulverized. Thereafter, weak alkalis (NaHCO 3 , Na 2 CO 3 ,
Neutralize with dil・NaOH, NH 4 OH, etc.), wash with water and dry. This powder was heat-treated at 250 to 400°C for 5 hours, pulverized, and then subjected to 200 mesh passes to obtain a positive electrode active material.

正極の作成に際しては上記正極活物質90重量
部、導電剤としてのアセチレンブラツク6重量部
及び結着剤としてのフツ素樹脂粉末4重量部を混
合し、この混合粉末を成型圧3トン/cm2で直径
20φの集電リング上へ加圧成型した後真空下にお
いて約300℃で熱処理して正極とする。
To prepare the positive electrode, 90 parts by weight of the above positive electrode active material, 6 parts by weight of acetylene black as a conductive agent, and 4 parts by weight of fluororesin powder as a binder were mixed, and this mixed powder was molded under a molding pressure of 3 tons/cm 2 in diameter
After being pressure-molded onto a 20φ current collector ring, it is heat-treated at approximately 300°C under vacuum to form a positive electrode.

負極はリチウム圧延板を直径20φに打抜いたも
のを用い、又電解液はプロピレンカーボネイトと
1,2ジメトキシエタンとの等体積混合溶媒に1
モル濃度の過塩素酸リチウムを溶解したものであ
り、セパレータはポリプロピレン不織布を用いて
外径25φ、高さ2.8mmの扁平型電池Aを作成した。
尚、電池の組立はアルゴン雰囲気下で行なつた。
The negative electrode used was a lithium rolled plate punched out to a diameter of 20φ, and the electrolyte was a mixed solvent of equal volumes of propylene carbonate and 1,2 dimethoxyethane.
A flat battery A having an outer diameter of 25φ and a height of 2.8 mm was prepared using polypropylene nonwoven fabric as a separator.
Note that the battery was assembled under an argon atmosphere.

図は本発明電池に5.6KΩ定負荷放電特性を示
し、図中Bは比較のため金属化合物を添加しない
硫酸酸性硫酸マンガン溶液を電解して得た二酸化
マンガンを活物質とする正極を備えた従来電池の
放電特性である。
The figure shows the 5.6KΩ constant load discharge characteristics of the battery of the present invention, and for comparison, B in the figure shows a conventional battery with a positive electrode containing manganese dioxide as an active material obtained by electrolyzing a sulfuric acid acidic manganese sulfate solution to which no metal compound is added. This is the discharge characteristics of the battery.

この特性図より本発明による正極を用いた電池
に依れば従来電池に比して放電容量が改善される
ことがわかる。
From this characteristic diagram, it can be seen that the battery using the positive electrode according to the present invention has improved discharge capacity compared to the conventional battery.

本発明による効果を考察すると、硫酸マンガン
溶液中に添加、溶解した鉛化合物の鉛イオンが電
解二酸化マンガンの結晶内に混入して二酸化マン
ガンの結晶構造をゆがめることにより、負極活物
質、例えばリチウムイオンの正極中での拡散が円
滑に進行する結果、正極の利用率が高められ放電
容量が増大するものであると考えられる。
Considering the effects of the present invention, lead ions from the lead compound added and dissolved in the manganese sulfate solution mix into the crystals of electrolytic manganese dioxide and distort the crystal structure of the manganese dioxide, thereby causing the negative electrode active material, for example, lithium ions. It is thought that as a result of the smooth diffusion of ions in the positive electrode, the utilization rate of the positive electrode is increased and the discharge capacity is increased.

更に詳述すると、実施例においては電解した場
合次式の反応が生じている。
More specifically, in the examples, when electrolyzed, the following reaction occurs.

PbSO4+2H2O→PbO2+SO24+4H++2e …(1) MnSO4+2H2O→MnO2+SO24+4H++2e
…(2) 上記(1),(2)式から明らかなように鉛もマンガン
も2価から4価への反応であつて、Mn4+の一部
がPb4+に置換した二酸化マンガンが電析すると
考えられる。この場合、Mn4+のイオン半径が
0.60Åであるのに対しPb4+のイオン半径は0.84Å
でありPb4+が混入した部分の結晶が大きくなつ
てそのまわりの二酸化マンガンの結晶がゆがめら
れると考えられる。
PbSO 4 +2H 2 O→PbO 2 +SO 24 +4H + +2e …(1) MnSO 4 +2H 2 O→MnO 2 +SO 24 +4H + +2e
…(2) As is clear from equations (1) and (2) above, both lead and manganese undergo a reaction from divalent to tetravalent, and manganese dioxide in which part of Mn 4+ is replaced by Pb 4+ is It is thought to be electrolytically deposited. In this case, the ionic radius of Mn 4+ is
The ionic radius of Pb 4+ is 0.84 Å while it is 0.60 Å.
Therefore, it is thought that the crystals in the area where Pb 4+ is mixed become larger and the surrounding manganese dioxide crystals are distorted.

又電析時に一部生成する二酸化鉛はその比伝導
度が10180υ/cmであり、二酸化マンガン0,
16υ/cmに比して105倍と良好なため正極の伝導度
の向上に寄与するという効果が期待しうる。
In addition, the specific conductivity of lead dioxide, which is partially generated during electrodeposition, is 10180υ/cm, and manganese dioxide is 0.
Since it is 10 5 times better than 16υ/cm, it can be expected to contribute to improving the conductivity of the positive electrode.

又、本発明は実施例で示したような有機電解液
を用いる場合に限定されず、負極活物質イオン伝
導性の無機の固体電解質を用いる固体電池におい
ても適用しうる。
Further, the present invention is not limited to the case where an organic electrolyte as shown in the examples is used, but can also be applied to a solid battery using an ion-conductive inorganic solid electrolyte as the negative electrode active material.

上述した如く、二酸化マンガンを正極活物質と
する非水電解質電池において、鉛化合物を添加、
溶解せる硫酸マンガン溶液を電解して得た二酸化
マンガンを正極活物質とする正極を用いることに
より、通常の電解二酸化マンガンを正極活物質と
するものに比して負極活物質イオンの正極中での
拡散が円滑に進み正極利用率が向上するので放電
容量が増大すると共に、本発明法による電解時に
一部生成する二酸化鉛はその比伝導度が極めて高
いので正極の伝導度の向上が計れ高率放電特性を
改善しうるものでありその工業的価値は極めて大
である。
As mentioned above, in nonaqueous electrolyte batteries that use manganese dioxide as the positive electrode active material, lead compounds are added,
By using a positive electrode that uses manganese dioxide obtained by electrolyzing a dissolved manganese sulfate solution as a positive electrode active material, the amount of negative electrode active material ions in the positive electrode is higher than that using ordinary electrolytic manganese dioxide as a positive electrode active material. As diffusion progresses smoothly and the utilization rate of the positive electrode improves, the discharge capacity increases, and the lead dioxide that is partially generated during electrolysis using the method of the present invention has an extremely high specific conductivity, which improves the conductivity of the positive electrode. Since it can improve discharge characteristics, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による正極を用いた非水電解質電
池の5.6KΩ定負荷放電特性図である。 A…本発明正極を用いた電池、B…従来電池。
The drawing is a 5.6KΩ constant load discharge characteristic diagram of a non-aqueous electrolyte battery using a positive electrode according to the present invention. A...Battery using the positive electrode of the present invention, B...Conventional battery.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛化合物を硫酸マンガン溶液に添加、溶解
し、ついで電解処理して得た鉛含有の二酸化マン
ガンを活物質とすることを特徴とする非水電解質
電池の正極の製造法。
1. A method for producing a positive electrode for a non-aqueous electrolyte battery, characterized in that the active material is manganese dioxide containing lead, which is obtained by adding and dissolving a lead compound in a manganese sulfate solution and then electrolytically treating it.
JP55131194A 1980-09-19 1980-09-19 Positive electrode of non-aqueous electrolyte cell Granted JPS5755065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55131194A JPS5755065A (en) 1980-09-19 1980-09-19 Positive electrode of non-aqueous electrolyte cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55131194A JPS5755065A (en) 1980-09-19 1980-09-19 Positive electrode of non-aqueous electrolyte cell

Publications (2)

Publication Number Publication Date
JPS5755065A JPS5755065A (en) 1982-04-01
JPS6352747B2 true JPS6352747B2 (en) 1988-10-20

Family

ID=15052216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55131194A Granted JPS5755065A (en) 1980-09-19 1980-09-19 Positive electrode of non-aqueous electrolyte cell

Country Status (1)

Country Link
JP (1) JPS5755065A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059658A (en) * 1983-08-08 1985-04-06 フオ−ド モ−タ− カンパニ− Manganese oxide electrode material rechargeable
FR2553568B1 (en) * 1983-10-14 1986-04-11 Gipelec ELECTROCHEMICAL GENERATOR WITH NONAQUEOUS ELECTROLYTE, WHOSE POSITIVE ELECTRODE IS BASED ON MANGANESE BIOXIDE
JPH061698B2 (en) * 1988-12-07 1994-01-05 三井金属鉱業株式会社 Lithium primary battery, anode active material thereof, and method for producing manganese dioxide used in the anode active material
CN1041368C (en) * 1993-07-24 1998-12-23 新疆大学 Process for preparing bismuth inclusion chargeable manganese dioxide

Also Published As

Publication number Publication date
JPS5755065A (en) 1982-04-01

Similar Documents

Publication Publication Date Title
KR101338142B1 (en) Lithium air battery
US4405699A (en) Manganese dioxide electrode for lithium batteries
JPH0746608B2 (en) Non-aqueous secondary battery
KR102506303B1 (en) Rechargeable sodium cell for use in high energy density batteries
US4076909A (en) Alkaline lead battery
CN1162196A (en) Method for production of lithium nickelate positive electrode and lithium cell using said electrode
US4687598A (en) Electrode-active material for electrochemical batteries and method of preparation
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
CN112265979B (en) Preparation method of hollow octahedral carbon cage used as potassium ion battery negative electrode material
JPH10134812A (en) Nonaqueous electrolyte lithium secondary cell and manufacture of its positive electrode material
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
JPS6352747B2 (en)
JPH1064592A (en) Lithium secondary battery
JPH0679485B2 (en) Non-aqueous secondary battery
JP2599975B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2707340B2 (en) Manufacturing method of electrolytic manganese dioxide
CA1055566A (en) Load leveling battery device
JP2692932B2 (en) Non-aqueous secondary battery
CN1346161A (en) High-iron electrode and alkaline high-energy battery thereof
JPS6155746B2 (en)
JP2698180B2 (en) Non-aqueous secondary battery
JP2006324258A (en) Lithium secondary battery and its manufacturing method
JP2553624B2 (en) Paste type cadmium negative electrode
JPH0770316B2 (en) Battery