JPH0320966A - Manufacture of hydrogen storage alloy electrode - Google Patents

Manufacture of hydrogen storage alloy electrode

Info

Publication number
JPH0320966A
JPH0320966A JP1155084A JP15508489A JPH0320966A JP H0320966 A JPH0320966 A JP H0320966A JP 1155084 A JP1155084 A JP 1155084A JP 15508489 A JP15508489 A JP 15508489A JP H0320966 A JPH0320966 A JP H0320966A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
electrode
hydrogen
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1155084A
Other languages
Japanese (ja)
Inventor
Ikuo Kanekawa
金川 育生
Yoshikazu Ishikura
石倉 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1155084A priority Critical patent/JPH0320966A/en
Publication of JPH0320966A publication Critical patent/JPH0320966A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To simply, safely pulverize a hydrogen storage alloy and to prevent an electrode from oxidation by pulverizing the alloy in water and holding it in a conductive support. CONSTITUTION:A negative electrode of a metal hydrogen alkaline storage battery is formed by pulverizing a hydrogen storage alloy with its surface covered with water and holding it in a conductive support. By pulverizing in water, fine particles are simply and safely obtained without use of a ball mill in an inert atmosphere which is necessary for avoiding use of dangerous hydrogen. Since tine particles are held in the support before drying without exposing in the air, oxidation is prevented and good negative electrode is obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、アルカリ蓄電池の負極として用いられ、水素
をa丁逆的にロ及蔵及び放出することのできる水素吸a
電極の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is a hydrogen absorbing material which is used as a negative electrode of an alkaline storage battery and can store and release hydrogen in a reverse manner.
The present invention relates to a method for manufacturing an electrode.

(口)従米の技術 従米から良く用いられている蓄電池としては、ニッケル
ーカドミウム蓄電池、あるいは鉛蓄電池などがあるが、
近年、これらの電池より軽量且つ高容量で高エネルギー
密度となる可能性があるということで、水素吸蔵合金を
用いてなる水素吸蔵電極を負極に備えた金属一水素アル
カリ蓄電池が}主目されている。
(Expression) Jubei's technology Storage batteries commonly used since Jubei include nickel-cadmium storage batteries and lead-acid batteries.
In recent years, metal-hydrogen alkaline storage batteries, which have a hydrogen storage electrode made of a hydrogen storage alloy on the negative electrode, have been the focus of attention because they are lighter, have higher capacity, and have the potential to have higher energy density than these batteries. There is.

この種電池の負極に用いられる水素吸蔵合金としては、
LaNi.やその改良であるLaNitCo.LaN 
i,Cu,LaN i+ aFeo tなどの合金が知
られており、一般には以下のような方法で作製されてい
る。すなわち、水素吸蔵合金に用いられている原科とし
ての金属を一定のMi或比に秤量、混合し、アーク溶解
炉に入れて減圧のアルゴン雰囲気下でアーク放電し、加
熱熔解させて得た水素吸蔵合金のインゴットを粗粉砕後
、ボールミル等で微粉末にするものである。そして、こ
うして作製した水素吸蔵合金は、結着剤等を用いてスラ
リー化して導電性支持体に塗普、充填するなどして電極
に構戊される。
Hydrogen storage alloys used in the negative electrode of this type of battery include:
LaNi. and its improvement LaNitCo. LaN
Alloys such as i, Cu, and LaN i+ aFeot are known, and are generally produced by the following method. In other words, hydrogen is obtained by weighing and mixing metals as raw materials used in hydrogen storage alloys to a certain Mi ratio, placing them in an arc melting furnace, subjecting them to arc discharge in a reduced pressure argon atmosphere, and heating and melting them. After coarsely pulverizing an ingot of storage alloy, it is made into fine powder using a ball mill or the like. Then, the hydrogen storage alloy thus produced is formed into an electrode by forming it into a slurry using a binder or the like, and spreading or filling the slurry onto a conductive support.

ところで、この種水素吸蔵ttfiは、充放電サイクル
を繰り返すことにより、水素吸蔵合金が微紛化し. t
ffLから脱落してサイクル寿命が短かくなるという現
象が起こる。そこで、充放電サイクルが進行してもそれ
以上微粉化が進行しないようにするため、また、水素吸
蔵合金の表面積を増大させて反応性を良くするために、
導電性支持体に保持させる前に、予め水素吸蔵合金を微
紛化させておくことが検討されている。
By the way, in this type of hydrogen storage TTFI, the hydrogen storage alloy becomes atomized by repeating charging and discharging cycles. t
A phenomenon occurs in which it falls off from ffL and the cycle life is shortened. Therefore, in order to prevent further pulverization as the charge/discharge cycle progresses, and to increase the surface area of the hydrogen storage alloy to improve reactivity,
Consideration has been given to pulverizing the hydrogen storage alloy in advance before holding it on a conductive support.

この水素吸蔵合會の微粉化する方法としては、特公昭6
0−40668号公報に示されるように、水素吸蔵合金
粉末を容器内で強制的に水素の吸蔵及び放出を行なわせ
て微紛化する方法や、特開昭62−154562号公報
に示されるように、空気中において水素吸蔵合金をポー
ルミルで粉砕して微粉化する方法がある。
As a method of pulverizing this hydrogen storage combination,
As shown in Japanese Patent Application No. 0-40668, there is a method of atomizing hydrogen-absorbing alloy powder by forcibly absorbing and releasing hydrogen in a container, and as shown in Japanese Patent Application Laid-Open No. 154562-1982. Another method involves pulverizing a hydrogen storage alloy in air using a pole mill.

しかしながら、前者の方法では一度に多くの合金を粉砕
するのは難しく、また、複雑で高価な製造設備を必要と
し、水素ガスを使用するため危険を伴うという問題があ
り好ましくない。後者の方法においても、空気中で微紛
化を行なうと、水素+1&蔵合金は活性であるため、酸
素と反応し易く、発火を起こしてしまうという問題があ
る。このため、ボールミルなどで機械的に粉砕する場合
には、不活性雰囲気下で行なうことにより,水素吸蔵合
金の酸化を防止するが、この場合、装置が大型化するな
ど、種々の制約を受けることになり、電極製造工程上好
ましいとは言えない。
However, the former method is not preferred because it is difficult to crush a large amount of alloy at once, requires complicated and expensive production equipment, and is dangerous because it uses hydrogen gas. Even in the latter method, there is a problem that if atomization is carried out in air, the hydrogen +1 & chloride alloy is active and therefore easily reacts with oxygen, causing ignition. For this reason, when mechanically grinding with a ball mill or the like, oxidation of the hydrogen storage alloy is prevented by doing it in an inert atmosphere, but in this case, there are various restrictions such as the need for larger equipment. Therefore, it cannot be said that it is preferable in terms of the electrode manufacturing process.

(ハ)発明が解決しようとする課題 本発明は、水素II&蔵合金の微紛化を安全で、しかも
簡易に行なえると共に、水素吸蔵合金表面の酸化を電極
製造工程に亘って抑制できる水素吸蔵電極の製造方法を
提供しようとするものである。
(c) Problems to be Solved by the Invention The present invention provides a hydrogen storage system that can safely and easily atomize a hydrogen storage alloy and suppress oxidation of the surface of the hydrogen storage alloy throughout the electrode manufacturing process. The present invention attempts to provide a method for manufacturing an electrode.

(二)課題を解決するための手段 本発明の水素吸Ht電極の製造方法は、水素吸蔵合金の
表面を水で覆った状態で該合金を粉砕し、乾燥させるこ
となしに導電性支持体に保持させることを特徴とするも
のである。
(2) Means for Solving the Problems The method for manufacturing a hydrogen-absorbing Ht electrode of the present invention involves crushing the hydrogen-absorbing alloy with its surface covered with water and applying it to a conductive support without drying it. It is characterized by being held.

(ホ)作 用 水X吸蔵合金を粉砕することにより、新たに表出する合
金表面は極めて活性であり、酸素により酸化され易い状
態にある。このため、微紛化のように多くの活性な合金
表面が表出するような粉砕を空気中で行なうと、発火が
生じることがある。
(E) Function By pulverizing the water X storage alloy, the newly exposed alloy surface is extremely active and easily oxidized by oxygen. For this reason, if pulverization is carried out in air, such as during pulverization, in which many active alloy surfaces are exposed, ignition may occur.

これに対し、表面を水で覆った状態で水素吸蔵合金を粉
砕する場合には、発火が起こることはなく、空気中に於
ける場合に比べて、合金が酸素と触れ難い状態であり、
合金の酸化を抑制でき、活性な合金表面が不活性な酸化
被膜で覆われることを抑えることができる。また、単に
水中で粉砕するものであるから、複雑で大型の装置を用
いる必要がなく、簡易な装置にて容易に粉砕することが
できる。
On the other hand, when a hydrogen storage alloy is crushed with its surface covered with water, ignition does not occur and the alloy is less likely to come into contact with oxygen than when it is in the air.
Oxidation of the alloy can be suppressed, and active alloy surfaces can be prevented from being covered with an inert oxide film. Moreover, since the powder is simply ground in water, there is no need to use a complicated and large-sized device, and the powder can be easily ground with a simple device.

そして、水素11&蔵合金は粉砕後、乾燥させることな
しに、パンチングメタルや発泡ニッケル等の導電性支持
体に保持されるため、t極製造中は常に水で濡れた状態
となる。このため、水素吸蔵合金は上記の粉砕と同様に
酸素と接触し難い状態を維持し、合金の酸化を抑制する
ことができる。また、水素吸蔵合金の酸化は、水、酸素
、合金の三相の界面が存在するような場合に進行し易く
、これに温度の上昇が加われば、特に酸化し易い状態に
なるといえる。つまり、水で濡れた状態から合金を乾燥
する場合が最も酸化し易い状態である。
After pulverizing, the hydrogen 11 & storage alloy is held on a conductive support such as punched metal or foamed nickel without drying, so it is constantly wet with water during the production of the t-electrode. Therefore, the hydrogen storage alloy can maintain a state in which it is difficult to come into contact with oxygen, as in the case of the above-mentioned pulverization, and oxidation of the alloy can be suppressed. Further, oxidation of hydrogen storage alloys tends to proceed when there is an interface of three phases of water, oxygen, and alloy, and if a rise in temperature is added to this, it can be said that the state becomes particularly easy to oxidize. In other words, when the alloy is dried from a wet state, it is most likely to be oxidized.

本発明では水素吸蔵合金の粉砕後スラリー作製前に合金
の乾燥を行なわず、導電性支持体に保持させた後、一度
行なうだけでよいので、水素吸蔵合金の酸化による不活
性化を極力抑制することが可能である。
In the present invention, the hydrogen storage alloy is not dried before the slurry is prepared after pulverization, and it is only necessary to dry the alloy once after holding it on a conductive support, so that inactivation due to oxidation of the hydrogen storage alloy is suppressed as much as possible. Is possible.

(へ)実施例 以}゛に、本発明と比較例との対比に言及し、詳述する
(f) Examples In the following, a comparison between the present invention and comparative examples will be described in detail.

[実施例] n販されているミッシュメタル(Mm)、ニッケル、コ
バルト、アルミニウムの原料を一定の組成比に秤量し、
アルゴンアーク溶解炉を用いてMmN i ICO+,
5Aj!+3+合金を作製した。この合金試料及び合金
100gに対し40mRの水を、アルミナ製のポットと
ボールからなるボールミルに入れ5時間ボールミル粉砕
を行なった後、合金100gに対し水1 0mlになる
ように脱水する。この状態では合金表面は水によって覆
われた状態にある。次いで、合金100gに対しポリエ
チレンオキサイド1gになるように、ポリエチレンオキ
サイドの水溶液を加えて混合しスラリーを作製した。こ
のスラリーを保持した容唇内に、ニッケルノブキを施し
たパンチングメタルからなる導電性支持体を通過させ引
き上げることにより、支持体表面に前記スラリーを塗着
し、乾燥及び加圧を行ない本発明電極を得た。
[Example] Weighed commercially available misch metal (Mm), nickel, cobalt, and aluminum raw materials to a certain composition ratio,
MmN i ICO+ using an argon arc melting furnace,
5Aj! +3+ alloy was produced. This alloy sample and 40 mR of water per 100 g of the alloy were placed in a ball mill consisting of an alumina pot and balls and ball milled for 5 hours, and then dehydrated so that 100 g of the alloy contained 10 ml of water. In this state, the alloy surface is covered with water. Next, an aqueous solution of polyethylene oxide was added and mixed so that 1 g of polyethylene oxide was added to 100 g of the alloy to prepare a slurry. The slurry is applied to the surface of the support by passing through and pulling up the conductive support made of punched metal coated with nickel into the lip holding the slurry, and drying and pressurizing the slurry to form an electrode of the present invention. I got it.

この電極を負極とし、正極としてニッケルーカドミウム
電池等に用いられる公知の焼結式ニッケル極を使用して
、正、負極の間に耐アルカリ性のセパレー夕を介して持
回することにより、渦巻電極体を得、この電極体を電池
缶に挿入した後、アルカリ電解液の;主人及び封口を行
なって公称容量1200+nAHの電池を組み立てた。
This electrode is used as the negative electrode, and a well-known sintered nickel electrode used in nickel-cadmium batteries is used as the positive electrode, and by rotating it with an alkali-resistant separator between the positive and negative electrodes, the spiral electrode After obtaining the electrode body and inserting the electrode body into a battery can, an alkaline electrolyte was applied and the cap was sealed to assemble a battery with a nominal capacity of 1200+nAH.

こうして作製した電池をAとする。The battery thus produced is designated as A.

[比較例l] 前記実施例において、合金を粉砕した後乾燥し、次いで
乾燥した合金を用いて同様のスラリーを作製し、その他
は全く同一の条件で電池を作製し、電池Bとする。
[Comparative Example 1] In the above example, the alloy was ground and dried, and then the dried alloy was used to prepare a similar slurry, and a battery was prepared under the same conditions except for the battery B, which was designated as Battery B.

[比較例2] 前記実施例において、合金の粉砕を窒素雰囲気中で水を
加えず乾燥した状態で行ない、次いでこの合金を用いて
同様のスラリーを作製し、その他は全く同一の条件で電
池を得、電池Cとする。
[Comparative Example 2] In the above example, the alloy was pulverized in a dry state without adding water in a nitrogen atmosphere, and then a similar slurry was prepared using this alloy, and a battery was then manufactured under exactly the same conditions. This is called battery C.

こうして作製した電池を夫々、360mAの電流で4時
間充電した後、360mAの電流で放電し、電池電圧が
i.ovになった時点で放電を停止するサイクル条件で
充放電を繰り返した際の放電容量の変化を第1図に示す
。図中、A−Cは使用した電池と符号が対応している。
Each of the batteries thus prepared was charged with a current of 360 mA for 4 hours, and then discharged with a current of 360 mA, so that the battery voltage was i. FIG. 1 shows the change in discharge capacity when charging and discharging were repeated under cycle conditions in which the discharge was stopped when the battery reached ov. In the figure, the symbols A to C correspond to the batteries used.

第1図から明らかなように、各電池は何れもサイクルが
進むにつれて放電容量が増大しているが、特に本発明の
水素吸蔵電極を用いた電池Aはサイクル初期の放電容量
の低下が小さく、また放電容量が最大値にまで到達する
サイクル数が短かいことがわかる。これは、電池B及び
Cに比べ電池Aは水素吸蔵電極中の合金の酸化が抑制さ
れているためであり、サイクル初期に酸化被膜で覆われ
ていた合金の活性部分が、サイクルの経過に従って、比
較的早く露出するようになるからと考えられる。
As is clear from FIG. 1, the discharge capacity of each battery increases as the cycle progresses, but in particular, battery A using the hydrogen storage electrode of the present invention shows a small decrease in discharge capacity at the beginning of the cycle. It can also be seen that the number of cycles required for the discharge capacity to reach its maximum value is short. This is because the oxidation of the alloy in the hydrogen storage electrode in battery A is suppressed compared to batteries B and C, and the active part of the alloy that was covered with an oxide film at the beginning of the cycle changes as the cycle progresses. This is thought to be due to the fact that it becomes exposed relatively quickly.

次いで、上記電池A−Cを夫々360mAの電流で4時
間充電した後、1200mAで放電し、このときの放電
特性図を第2図に示す。また、上記電池A−Cに用いた
渦巻電極体を夫々使用し、これら電極体と水銀参照電極
を過剰量の電解液中に浸漬して放電を行ない、負極の水
素吸蔵電極と参照電極との間の電位差を測定し、負極の
放電特性を調べた。この結果を第3図に示す。第2図及
び第3図に示した結果より、本発明電極を用いた電池A
i!電池B及びCに比較して、電池電圧が高く、その負
極の性能に関しても放電容量及び電位において優れてい
ることがわかる。
Next, each of the batteries A to C was charged with a current of 360 mA for 4 hours, and then discharged with a current of 1200 mA, and a discharge characteristic diagram at this time is shown in FIG. In addition, each of the spiral electrode bodies used in Batteries A to C above was used, and these electrode bodies and the mercury reference electrode were immersed in an excessive amount of electrolyte to perform discharge, and the hydrogen storage electrode of the negative electrode and the reference electrode were The potential difference between them was measured and the discharge characteristics of the negative electrode were investigated. The results are shown in FIG. From the results shown in FIGS. 2 and 3, battery A using the electrode of the present invention
i! It can be seen that the battery voltage is higher than batteries B and C, and the negative electrode performance is also superior in terms of discharge capacity and potential.

(ト)発明の効果 4−.発明は、水素吸蔵合金を水中で微粉化するため、
微紛化の際に合金表面の酸化被膜生戊が抑制でき、しか
も発火するおそれがなく、安全で且つ簡易な装置にて容
易に粉砕することができる。またな、粉砕した合金は乾
燥することなしに導電性支持体に保持されるため、合金
は常に水で濡れた状態となり酸素と按触し難い状態が維
持でき、合金表面の酸化を抑制することができる。
(g) Effect of invention 4-. The invention involves pulverizing a hydrogen storage alloy in water,
During pulverization, the formation of an oxide film on the alloy surface can be suppressed, and there is no risk of ignition, and it can be easily pulverized using a safe and simple device. In addition, since the crushed alloy is held on a conductive support without drying, the alloy is always kept wet with water and difficult to come into contact with oxygen, which suppresses oxidation of the alloy surface. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサイクル特性図、第2図は電池の放電特性図、
第3図は負極の放電特性図である。 A・・・本発明電池、B,C・・・比較電池。
Figure 1 is a cycle characteristic diagram, Figure 2 is a battery discharge characteristic diagram,
FIG. 3 is a diagram showing the discharge characteristics of the negative electrode. A: Invention battery, B, C: Comparative battery.

Claims (1)

【特許請求の範囲】[Claims] (1)水素吸蔵合金の表面を水で覆った状態で該合金を
粉砕し、乾燥させることなしに導電性支持体に保持させ
ることを特徴とする水素吸蔵電極の製造方法。
(1) A method for producing a hydrogen storage electrode, which comprises pulverizing the hydrogen storage alloy while its surface is covered with water, and holding the alloy on a conductive support without drying it.
JP1155084A 1989-06-16 1989-06-16 Manufacture of hydrogen storage alloy electrode Pending JPH0320966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155084A JPH0320966A (en) 1989-06-16 1989-06-16 Manufacture of hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155084A JPH0320966A (en) 1989-06-16 1989-06-16 Manufacture of hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH0320966A true JPH0320966A (en) 1991-01-29

Family

ID=15598306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155084A Pending JPH0320966A (en) 1989-06-16 1989-06-16 Manufacture of hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH0320966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283163A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage alloy electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283163A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage alloy electrode

Similar Documents

Publication Publication Date Title
JPH05225975A (en) Hydrogen storage alloy electrode
JPH09213319A (en) Sealed alkaline battery
JPH0320966A (en) Manufacture of hydrogen storage alloy electrode
JP2975658B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2645889B2 (en) Method for producing hydrogen storage alloy electrode for alkaline storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPS6215769A (en) Nickel-hydrogen alkaline battery
JPH05179372A (en) Production of hydrogen occluding alloy powder
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP3198896B2 (en) Nickel-metal hydride battery
JPH0461756A (en) Manufacture of ni-h storage battery
JP2001303101A (en) Hydrogen storage alloy powder having high magnetization and excellent in initial charging and discharging characteristics
JPS60119079A (en) Hydrogen absorption electrode
JP3103622B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP3524633B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2001266860A (en) Nickel hydrogen storage battery
JP2919544B2 (en) Hydrogen storage electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH04319258A (en) Hydrogen storage alloy electrode
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH03295165A (en) Manufacture of hydrogen storage alloy electrode for alkaline storage battery
JPS61292855A (en) Metal oxide and hydrogen cell
JPH09306486A (en) Hydrogen absorbing material
JPS63193466A (en) Metal-hydrogen alkali battery