JPH0461756A - Manufacture of ni-h storage battery - Google Patents

Manufacture of ni-h storage battery

Info

Publication number
JPH0461756A
JPH0461756A JP2171523A JP17152390A JPH0461756A JP H0461756 A JPH0461756 A JP H0461756A JP 2171523 A JP2171523 A JP 2171523A JP 17152390 A JP17152390 A JP 17152390A JP H0461756 A JPH0461756 A JP H0461756A
Authority
JP
Japan
Prior art keywords
electrode
discharge
pos
alloy
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2171523A
Other languages
Japanese (ja)
Other versions
JP2944152B2 (en
Inventor
Masahito Tomita
富田 正仁
Ikuo Kanekawa
金川 育生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2171523A priority Critical patent/JP2944152B2/en
Publication of JPH0461756A publication Critical patent/JPH0461756A/en
Application granted granted Critical
Publication of JP2944152B2 publication Critical patent/JP2944152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the discharge characteristics for low temp discharging, high rate discharging, etc., by sealing a battery concerned, keeping a pos. and a neg. electrode charged amount at or above 50% of the chargeable capacity of the pos. electrode, and performing discharge in the temp. atmosphere ranging 30-80 deg.C. CONSTITUTION:In a hydrogen storage alloy, the surface is oxidated in the manufacturing process incl. for ex. crushing, electrode fabrication, etc., to cause drop of the activeness of electrode, which in turn drops the charge/discharge efficiency and the consuming efficiency of the oxygen gas generated from the pos. electrode at the time of being fully charged. If discharge is made, however, in a temp. atmosphere ranging 30-80 deg.C under the condition where the pos. and neg. electrodes carry a charged amount of over 50% of the chargeable capacity of the pos. electrode, oxidated film on the surface of alloy can be destroyed partially. This causes exposure of active section inside of the alloy and also enlarges the reaction surface area to lead to enhanced activeness, and thereby the charging efficiency is enhanced, which enables low temp. discharging and high rate discharging.

Description

【発明の詳細な説明】 (イ)産業−にの利用分野 本発明は、工1極に水素Il&蔵合金合金いた密閉型ニ
ッケル−水素蓄電池の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of industrial application The present invention relates to a method for manufacturing a sealed nickel-hydrogen storage battery in which one electrode contains a hydrogen alloy and a hydrogen storage alloy.

(ロ)従来の技術 従来からよく用いられている蓄電池には、ニッケル−カ
ドミウム蓄電池、鉛蓄電池などがある。
(b) Prior Art Storage batteries that have been commonly used include nickel-cadmium storage batteries and lead-acid batteries.

近年、これらのtt池より軽Ill:Itつ高エネルギ
ー密度となる可能性のある電池として、水素吸蔵合金を
工1極材料として用いた水素吸蔵合金電極を備えたニッ
ケル−水素蓄電池が注目されている。
In recent years, nickel-hydrogen storage batteries equipped with hydrogen-absorbing alloy electrodes that use hydrogen-absorbing alloys as single electrode materials have attracted attention as batteries that have the potential to be lighter and have higher energy density than these TT batteries. There is.

この種のニッケル−水素電池の11極材料として用いる
水素吸蔵合金は、たとえば、特開昭62246 :45
9号公報や特開昭63−21750号・公報などに示さ
れるように、水素吸蔵合金の組成を改良することにより
、充放電時の合金の耐腐食性の向1−及び合金の微粉化
の抑制がはかられている。しかしながら、水素吸蔵合金
を用いた工1極は、初期の活性度が低いため、放電界!
、tが小さく、作動電圧が低いという問題があり、特に
、この傾向は高率放電や低温での放1tの際に苦しくな
る。充分な放電容晴と作動Sa圧を得るためには、電池
を構成した後、1・数サイクルの充放電を行なって活性
化する必要があるが、製造上rl!が複雑になるため、
筒中−な方法で活性度を高める必要がある。
The hydrogen storage alloy used as the 11-electrode material of this type of nickel-hydrogen battery is disclosed in, for example, Japanese Patent Application Laid-Open No. 62246:45.
As shown in Publication No. 9 and Japanese Patent Application Laid-open No. 63-21750, by improving the composition of hydrogen storage alloys, it is possible to improve the corrosion resistance of the alloy during charging and discharging and to reduce the pulverization of the alloy. Suppression is being taken. However, single poles using hydrogen storage alloys have low initial activity, so the discharge field!
, t are small and the operating voltage is low, and this tendency becomes particularly difficult during high rate discharge or discharge at low temperature. In order to obtain sufficient discharge capacity and operating Sa pressure, it is necessary to activate the battery by performing one or several charging and discharging cycles after constructing the battery. becomes complicated,
It is necessary to increase the activity using a specific method.

この活性度を高める方法として、特公昭60−4066
8号公報では、水素吸蔵合金材料を水素雰囲気下で水素
の吸蔵・放出させる方法が提案され、特開平1−102
861号公報では、電池作製時の電解液注液、封[1−
T′、程の前に、水素雰囲気ドで負極に水素の吸蔵・放
出を行なう方法が提案されている。しかし、これらの方
法では、水素を吸蔵・放出させるために、高圧の水素雰
囲気を作らなければならず、このための大がかりな装置
が必要であり、製造工程も複雑になる。
As a method to increase this activity,
No. 8 proposes a method for storing and releasing hydrogen in a hydrogen storage alloy material in a hydrogen atmosphere, and Japanese Patent Application Laid-Open No. 1-102
Publication No. 861 describes electrolyte injection and sealing [1-
Before T', a method was proposed in which hydrogen was absorbed and released from the negative electrode in a hydrogen atmosphere. However, in these methods, a high-pressure hydrogen atmosphere must be created in order to absorb and release hydrogen, which requires large-scale equipment and complicates the manufacturing process.

また、特開昭61 7575号公報では、水素吸蔵合金
11棒をアルカリ水溶液中で充放電した後、正極及びセ
パレータと共に電池に組み込む方法が提案されているが
、アルカリ水溶液中での充放電や水洗、乾燥などの繁雑
な工程が必要となる。
Furthermore, JP-A-61-7575 proposes a method of charging and discharging 11 hydrogen storage alloy rods in an alkaline aqueous solution and then incorporating them into a battery together with a positive electrode and a separator. , requires complicated processes such as drying.

そして、活性度を高める上記の何れの方法においても、
活性化された工1極が大1(に触れた場合には、負極材
料の水素吸蔵合金が酸化され、活性度が低ドするため、
電池を封[lするまでの工程をアルゴンなどの不活性ガ
ス雰囲気ドで行ない、合金の酸化を抑える必要がある。
In any of the above methods of increasing the activity,
If the activated electrode comes into contact with the large one, the hydrogen storage alloy of the negative electrode material will be oxidized and its activity will be lowered.
It is necessary to perform the process up to sealing the battery in an inert gas atmosphere such as argon to suppress oxidation of the alloy.

(ハ)発明が解決しようとする。1!題本発明は1−記
問題を解決するため、低温放電や高率放電などの放電特
性の向1−シた密閉型ニッケル−水素蓄電池の製造方法
を提供しようとするものである。
(c) The invention attempts to solve the problem. 1! SUMMARY OF THE INVENTION In order to solve the problem described in item 1, the present invention provides a method for manufacturing a sealed nickel-metal hydride storage battery that has improved discharge characteristics such as low temperature discharge and high rate discharge.

(ニ)課題を解決するための手段 本発明のニッケル−水素蓄電池の製造方法は、1、記課
題を解決するために、電池を封[1した後、IF極の充
1を可能な容I^の50%以−Lの充電量を正、tt極
に保持させ、30〜80℃の温度雰囲気ドで放電するこ
とを特徴とする。
(d) Means for Solving the Problems In order to solve the problems described in 1., the method for manufacturing a nickel-metal hydride storage battery of the present invention has the following features: It is characterized by maintaining a charge amount of 50% or more of -L in the positive and tt electrodes, and discharging in a temperature atmosphere of 30 to 80°C.

(ホ)作用 水素吸蔵合金は、粉砕や電極作製などの製造過程におい
て表面が酸化され、電極の活性度が低下して、充放電効
率や、満充電時に正極から発生する酸素ガスの消費効率
が低下することが知られている。
(e) Effect Hydrogen storage alloys undergo oxidation on their surfaces during manufacturing processes such as pulverization and electrode fabrication, reducing the activity of the electrodes and reducing the charge/discharge efficiency and the consumption efficiency of oxygen gas generated from the positive electrode during full charge. known to decrease.

ところが、正極の充電可能な容II(の50%以1―の
充電litを正、負極に保持させた状態で、30〜80
℃の温度雰囲気下で放電すると、合金表面の酸化被膜を
部分的に破壊でき、これによって、合金内部の活性な断
面が表面に露出すると共に、反応表面積も大きくなり、
活性度が向!−する。そして、この活性度の向−1−に
よって、充電効率が向−1ニし、低温放電や高率放電が
11丁能となる。
However, with the positive and negative electrodes holding more than 50% of the chargeable capacity II of the positive electrode, the charge capacity of 30 to 80
When discharged in a temperature atmosphere of ℃, the oxide film on the alloy surface can be partially destroyed, thereby exposing the active cross section inside the alloy to the surface and increasing the reaction surface area.
The activity level is good! - to do. As the activation level increases by -1, the charging efficiency increases by -1, and low-temperature discharge and high-rate discharge become possible.

(へ)実施例 工1極に用いる水素吸蔵合金の原材料金属として、市販
のミツシュメタル(Mm、希−L類元素の混合物)と、
ニッケルと、コバルトと、アルミニウムと、マンガンを
用い、これらを元素比で1゜0:3.2:]  O:0
 2:0 6に秤猜したのち、高周波誘導炉内で溶解鋳
造し、M m N iL tc OA I o、 IM
 n o、 aの組成を有する合金を得る。この合金を
機械的に粉砕して、IV均約80μmの粉末した後、合
金型1Mに対して1.0重酸%のポリエチレンオキサイ
ドと、分散媒としての水を加えて混合し、スラリー状に
した。このスラリーをニッケル鍍金を施したパンチング
メタルからなる集電体に塗4J後、所定の厚みに加圧し
、AAサイズの1法に切断して水素吸蔵合金工1極を得
た。この負極を、容晴が負極より小さな公知のニッケル
正極と組み合わせ、正極容17)規制で公称容%j10
00mAIIのAAサイズの密閉型ニッケル−水素蓄電
池を作製した。
(f) Commercially available Mitshu metal (Mm, a mixture of rare-L elements) was used as the raw material metal of the hydrogen storage alloy used in the working example 1 electrode,
Using nickel, cobalt, aluminum, and manganese, the elemental ratio of these is 1゜0:3.2:] O:0
After weighing at 2:06 p.m., it was melted and cast in a high-frequency induction furnace, and M m N i L tc OA I o, IM
An alloy having a composition of no, a is obtained. This alloy was mechanically pulverized to a powder with an IV average size of approximately 80 μm, and then mixed with polyethylene oxide (1.0% heavy acid per 1M alloy type) and water as a dispersion medium to form a slurry. did. This slurry was coated on a current collector made of nickel-plated punched metal for 4J, then pressurized to a predetermined thickness and cut into AA size pieces to obtain one hydrogen storage alloy electrode. This negative electrode is combined with a known nickel positive electrode whose volume is smaller than that of the negative electrode, and the positive electrode volume is 17) according to the nominal volume %j10.
A sealed nickel-metal hydride storage battery of 00mAII AA size was manufactured.

1、記−に池を、第1表に示すように、充電11tを正
極の充電iI(能な容fatに対して種々変化させて、
室温において100mAの電流で充電した後、各神雰囲
気温度において200mAの電流で放電して活性化処理
を行なった。
1. As shown in Table 1, the charging 11t was charged to the positive electrode iI (by varying the possible capacity fat,
After charging with a current of 100 mA at room temperature, activation treatment was performed by discharging with a current of 200 mA at each ambient temperature.

また、−1−記電池A〜0の活性度を調べるため、これ
らの電池を、20℃で100mAの電流で16時間充電
を行なった後、0℃で約1時間放置後、同じく0℃でI
 O00mAの電流で放電を行なった。
In addition, in order to examine the activity of batteries A to 0 listed in -1-, these batteries were charged at 20°C with a current of 100mA for 16 hours, left at 0°C for about 1 hour, and then charged at 0°C in the same manner. I
Discharge was performed with a current of 000 mA.

この時の放電曲線を第1図に示す。また、第2図には、
横軸に活性化処理時の充電1,1、縦軸に放電界1ij
をとり、これらと活性化処理時の放電温度の関係を、J
クシた。
The discharge curve at this time is shown in FIG. Also, in Figure 2,
The horizontal axis shows the charge 1,1 during the activation process, and the vertical axis shows the discharge field 1ij.
and the relationship between these and the discharge temperature during activation treatment, J
Kushita.

第1表 第1図の放電曲線から明らかなように、0℃におけるI
C(1000mA)放電という低温高率放ttでは、活
性化処理時の充電量が0〜30%のである電池A−Eは
、放電開始直後に放電電圧が急激に低下した。また、活
性化処理時の放電温度が20℃である電池F及びKは、
活性化処理時の充電量が50%以−1−であるにもかか
わらず、比較的111−い時j[JJに充電電圧が低ド
し、1・分な放電界1.(は得られなかった。
As is clear from the discharge curve in Table 1 and Figure 1, I
In the low-temperature, high-rate discharge tt of C (1000 mA) discharge, the discharge voltage of the batteries A-E, which had a charge amount of 0 to 30% during the activation treatment, decreased rapidly immediately after the start of discharge. In addition, for batteries F and K whose discharge temperature during activation treatment is 20°C,
Even though the amount of charge during the activation process is 50% or more, the charging voltage is relatively low at 111-J[JJ, and a discharge field of 1.min. (I couldn't get it.

これに対して、活性化処理時に50%以−1−の充電量
を充電した状態で、30℃以−Fの雰囲気温度で放電し
た電池G−J及びL−0は、放電容量が大きくなってお
り、この活性化処理の条件で良好な結果が得られること
は、第2図からも明らがである。
On the other hand, batteries G-J and L-0, which were discharged at an ambient temperature of 30°C or higher with a charge of 50% or more -1- during the activation process, had a larger discharge capacity. It is clear from FIG. 2 that good results can be obtained under these activation treatment conditions.

また、第3図は、活性化処理時に、正極の充電可能な容
量の50%充電した後、20℃の温度雰囲気で放電した
電池Fと、60℃の温度雰囲気で放電型した電池■に用
いた艮極の水素吸蔵合金の粒度分布を示す図面であり、
第4図は、上記電池F及びlの電池外装缶の缶底に孔を
開け、圧力センサーを取り付け、Ic(1000mA)
の電流で高率充電した際の電池内部圧力を測定した結果
を示す図面である。
Figure 3 also shows battery F, which was discharged in a 20°C temperature atmosphere after charging 50% of the positive electrode's chargeable capacity during activation treatment, and battery ■, which was discharged in a 60°C temperature atmosphere. It is a drawing showing the particle size distribution of the hydrogen storage alloy of the electrode.
Figure 4 shows a hole made in the bottom of the battery outer can of batteries F and I, a pressure sensor attached, and Ic (1000 mA).
3 is a diagram showing the results of measuring the internal pressure of a battery when high-rate charging is performed with a current of .

第3図より明らかなように、20℃で放電を行なった電
池Fより、60℃で放電を行なった電池■の負極合金の
方が小さな粒径になっている。すなわち、反応面積が大
きくなっていることがわかる。また、第4図から、前記
電池■は電池Fより電池内部圧力の上昇が低く抑えられ
ていることがわかり、電池1は負極における酸素ガス吸
収性能が向1−シていると理解できる。
As is clear from FIG. 3, the particle size of the negative electrode alloy of battery (1), which was discharged at 60°C, was smaller than that of battery F, which was discharged at 20°C. In other words, it can be seen that the reaction area is increased. Furthermore, from FIG. 4, it can be seen that the increase in internal pressure of the battery 1 is suppressed to a lower level than that of the battery F, and it can be understood that the battery 1 has a better oxygen gas absorption performance at the negative electrode.

このように、正極の充電可能な容量の50%以り充電し
、30〜80℃の温度雰囲気下で放電して活性化処理し
た電池の特性が向−1−するのは、この条f′1で活性
化処理すると、工1極に用いた水素吸蔵合金の表面1〕
の酸化被膜が壊れ易いためであり、合金内部の活性な断
面が表面に露出し、これと共に反応表面積が大きくなっ
て、充電効率がが向上したためと考えられる。
As described above, the characteristics of a battery that is activated by charging to 50% or more of the chargeable capacity of the positive electrode and discharging in an atmosphere at a temperature of 30 to 80°C are improved due to this article f'. When activated in step 1, the surface of the hydrogen storage alloy used for the electrode 1]
This is thought to be because the oxide film of the alloy is easily broken, and the active cross section inside the alloy is exposed to the surface, which increases the reaction surface area and improves charging efficiency.

また、活性化処理時の放電雰囲気温度については、水素
吸蔵合金の脱水素反応(放電反応)が吸熱反応であるた
め、雰囲気温度が高くなるほど反応が進行し易くなる。
Regarding the discharge atmosphere temperature during the activation treatment, since the dehydrogenation reaction (discharge reaction) of the hydrogen storage alloy is an endothermic reaction, the reaction progresses more easily as the atmosphere temperature becomes higher.

これによって、放電深度が深くなることも、工1極を活
性化する原因であると考えられる。
This deepening of the depth of discharge is also thought to be a cause of activating the single pole.

ただし、電池の構成」二、極端な高温中での放電はセパ
レータや封[1バツキングなどの劣化の危険性があるた
め、活性化処理時の放電雰囲気温度は80℃以下が好ま
しい。
However, since battery configuration (2) discharging at extremely high temperatures risks deterioration of the separator, sealing, etc., the discharge atmosphere temperature during activation treatment is preferably 80° C. or lower.

(ト)発明の効果 本発明により、tt池を封11後に、正極の充電i+f
能な容1.」の50%以1−の充電11[を正、負極に
保持させ、30〜80℃の温度雰囲気ドで放電すること
により、初期活性瓜の高い放電性能の優れたニッケル−
水素晶電池を提供することが可能である。
(g) Effects of the invention According to the invention, after sealing the tt battery, the positive electrode is charged i+f.
Capacity 1. By holding 50% or more of the charge 11 on the positive and negative electrodes and discharging in an atmosphere at a temperature of 30 to 80°C, nickel-
It is possible to provide a hydrogen crystal battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放’IIE特性図、第2図は活性化処理時の充
電;11と0℃での放電容量との関係を示す図、第3図
は負極の水素吸蔵合金の粒度分布を示す図面、第4図は
活性化処理時の充電量と高率放電時における電池内部圧
力との関係を示す図である。
Figure 1 is a discharge characteristic diagram, Figure 2 is a diagram showing the relationship between charging during activation treatment and discharge capacity at 0°C, and Figure 3 is a diagram showing the particle size distribution of the hydrogen storage alloy of the negative electrode. The drawings and FIG. 4 are diagrams showing the relationship between the amount of charge during activation processing and the internal pressure of the battery during high rate discharge.

Claims (1)

【特許請求の範囲】[Claims] (1)水素を可逆的に吸蔵、放出する水素吸蔵合金を主
体として構成した負極と、水酸化ニッケルを活物質とす
る正極と、セパレータと、電解液とを備えた密閉型ニッ
ケル−水素蓄電池を封口した後、正極の充電可能な容量
の50%以上の充電量を正、負極に保持させ、30〜8
0℃の温度雰囲気下で放電することを特徴とするニッケ
ル−水素蓄電池の製造方法。
(1) A sealed nickel-hydrogen storage battery comprising a negative electrode mainly composed of a hydrogen storage alloy that reversibly stores and releases hydrogen, a positive electrode made of nickel hydroxide as an active material, a separator, and an electrolyte. After sealing, the positive and negative electrodes are allowed to hold a charge amount of 50% or more of the chargeable capacity of the positive electrode, and
A method for manufacturing a nickel-hydrogen storage battery, characterized by discharging in an atmosphere at a temperature of 0°C.
JP2171523A 1990-06-28 1990-06-28 Method for manufacturing nickel-hydrogen storage battery Expired - Lifetime JP2944152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2171523A JP2944152B2 (en) 1990-06-28 1990-06-28 Method for manufacturing nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2171523A JP2944152B2 (en) 1990-06-28 1990-06-28 Method for manufacturing nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH0461756A true JPH0461756A (en) 1992-02-27
JP2944152B2 JP2944152B2 (en) 1999-08-30

Family

ID=15924697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2171523A Expired - Lifetime JP2944152B2 (en) 1990-06-28 1990-06-28 Method for manufacturing nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP2944152B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465067A (en) * 1990-07-02 1992-03-02 Matsushita Electric Ind Co Ltd Formation method of nickel-hydrogen battery
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery
JP2006134880A (en) * 2004-11-03 2006-05-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Head light for vehicle
WO2014167971A1 (en) * 2013-04-12 2014-10-16 プライムアースEvエナジー株式会社 Method for restoring battery capacity, method for restoring battery assembly capacity, device for restoring battery capacity, and device for restoring battery assembly capacity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0465067A (en) * 1990-07-02 1992-03-02 Matsushita Electric Ind Co Ltd Formation method of nickel-hydrogen battery
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery
JP2006134880A (en) * 2004-11-03 2006-05-25 Patent Treuhand Ges Elektr Gluehlamp Mbh Head light for vehicle
WO2014167971A1 (en) * 2013-04-12 2014-10-16 プライムアースEvエナジー株式会社 Method for restoring battery capacity, method for restoring battery assembly capacity, device for restoring battery capacity, and device for restoring battery assembly capacity
JP2014207151A (en) * 2013-04-12 2014-10-30 プライムアースEvエナジー株式会社 Method for recovering battery capacity, method for recovering battery pack capacity, battery capacity recovery device, and battery pack capacity recovery device
US9692088B2 (en) 2013-04-12 2017-06-27 Primearth Ev Energy Co., Ltd Method for restoring battery capacity, method for restoring battery pack capacity, device for restoring battery capacity, and device for restoring battery pack capacity

Also Published As

Publication number Publication date
JP2944152B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JPH0461756A (en) Manufacture of ni-h storage battery
JP3432870B2 (en) Method for producing metal hydride electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP2994731B2 (en) Method for manufacturing metal hydride storage battery
JP2823301B2 (en) Hydrogen storage alloy electrode
JPH04126370A (en) Manufacture of metal hydride battery
JP3071003B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2975755B2 (en) Activation method of metal hydride storage battery
JPH02301971A (en) Manufacture of metal-hydrogen alkaline storage battery
JP2854109B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05144433A (en) Electrode with hydrogen storage alloy
JP3524633B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3322415B2 (en) Metal-hydrogen alkaline storage battery and method of manufacturing the same
JPS60119079A (en) Hydrogen absorption electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP2679441B2 (en) Nickel-metal hydride battery
JP3322449B2 (en) Method for producing metal hydride electrode
JP3268013B2 (en) Hydrogen storage alloy electrode
JPH0949039A (en) Production of hydrogen storage alloy particles
JPH0467576A (en) Charging method for nickel-hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 11