JPH0465067A - Formation method of nickel-hydrogen battery - Google Patents

Formation method of nickel-hydrogen battery

Info

Publication number
JPH0465067A
JPH0465067A JP2174737A JP17473790A JPH0465067A JP H0465067 A JPH0465067 A JP H0465067A JP 2174737 A JP2174737 A JP 2174737A JP 17473790 A JP17473790 A JP 17473790A JP H0465067 A JPH0465067 A JP H0465067A
Authority
JP
Japan
Prior art keywords
hydrogen storage
nickel
battery
charging
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2174737A
Other languages
Japanese (ja)
Other versions
JP2548431B2 (en
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Hajime Seri
世利 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2174737A priority Critical patent/JP2548431B2/en
Publication of JPH0465067A publication Critical patent/JPH0465067A/en
Application granted granted Critical
Publication of JP2548431B2 publication Critical patent/JP2548431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To get good characteristics from the beginning by constituting a cell of a nickel positive pole, a hydrogen storage material negative pole and a separator, and then, making formation through charging at a low temperature and discharging at a high temperature. CONSTITUTION:A cell is made up of a nickel positive pole, a hydrogen storage alloy material negative pole and a separator and inserted into a battery jar, and formation is performed such that after a electrolytic solution is put in the jar, the cell is charged at a low temperature as it is or after it is closed, and discharged at a high temperature. In this case, it is preferable that charging is made at a low temperature of 0-10 deg.C and discharging, at a high temperature of 40-60 deg.C; moreover, in this case, an alloy containing AB2 Laves phase whose base is Zr-Ni is used as a hydrogen storage material to be used for the negative pole. It is thereby possible to get good characteristics from the beginning of charging and discharging and keep for a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζよ ニッケル−水素蓄電池用など、水素吸蔵合
金を負極に用いた蓄電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention relates to a storage battery using a hydrogen storage alloy as a negative electrode, such as a nickel-hydrogen storage battery.

従来の技術 各種の電源として広く使われている蓄電池として鉛蓄電
池とアルカリ蓄電池があム このうちアルカリ蓄電池は
高信頼性が期待でき、小形軽量化も可能などの理由で小
形は各種ポータプル機器用に 大形は産業用として使わ
れてきた このアルカリ蓄電池において正極としてζよ はとんど
の場合ニッケル極であム ポケット式から焼結式に代わ
って特性が向上L さらに密閉化が可能になるとともに
用途も広がっ九 一方負極としては現在のところカドミウム極が主体であ
るが一層の高エネルギー密度を達成するために金属水素
化物つまり水素吸蔵合金極を使ったニッケル−水素蓄電
池が注目され製法などに多くの提案がされていも 発明が解決しようとする課題 水素吸蔵合金極の製法としては合金粉末を焼結する方式
と発泡状 繊維状、パンチングメタルなどの多孔体に充
填や塗着する方式のペースト式があも 水素吸蔵合金は
カドミウム極などと同様に電子伝導性の点で比較的硬れ
ているので非焼結成極の可能性は太きL%  すなわち
水素吸蔵合金粉末を結着剤とともにペースト状としこれ
を3次元あるいは2次元構造の多孔性導電板に充填ある
いは塗着していも しかし いずれにしてもとくに充放
電サイクルの初期での放電特性の上で改良の余地があム
 とくに水素吸蔵合金としてZr−Niをベースとする
AB2Laves相を含む合金では最終的には高容量に
なるが初期の活性化が問題であ4 本発明はこのような
問題を解決するもので、初期から優れた特性を示すニッ
ケル−水素蓄電池の化成法を提供することを目的とすム 課題を解決するための手段 この課題を解決するため本発明のニッケル−水素蓄電池
の化成法(i ニッケル正極と水素吸蔵合金負極とセパ
レータを用いて電池を構成し電槽に挿入 電解液を注入
後にそのまままたは密閉形として低温度で充電し 高温
度で放電する化成を行なう。この場合充電が0〜10℃
の低温で、放電が40〜60℃の高温であることが好ま
しl、■  この場合負極に使用する水素吸蔵合金とし
てZrNiをベースとするAB2Laves相を含む合
金を用いるものである。
Conventional technology Lead-acid batteries and alkaline batteries are widely used as storage batteries for various power sources. Of these, alkaline storage batteries are expected to have high reliability and can be made smaller and lighter, so the smaller ones are used for various portable devices. In this alkaline storage battery, the large size has been used for industrial purposes, the positive electrode is usually a nickel electrode.Characteristics have been improved by replacing the pocket type with a sintered type. Currently, cadmium electrodes are the main negative electrodes, but nickel-hydrogen storage batteries that use metal hydrides, that is, hydrogen storage alloy electrodes, are attracting attention in order to achieve even higher energy densities, and their manufacturing methods are increasing. However, there are two methods for producing hydrogen storage alloy electrodes: one is a method of sintering alloy powder, and the other is a paste method, which is a method of filling or coating a porous body such as foam, fiber, or punched metal. Aamo: Like cadmium electrodes, hydrogen storage alloys are relatively hard in terms of electronic conductivity, so the possibility of non-sintered electrodes is large. Even if this is filled or painted into a porous conductive plate with a three-dimensional or two-dimensional structure, there is still room for improvement in terms of discharge characteristics, especially at the beginning of the charge/discharge cycle.Especially hydrogen storage alloys The alloy containing the AB2Laves phase based on Zr-Ni ultimately has a high capacity, but the initial activation is a problem.4 The present invention solves this problem, and provides excellent characteristics from the beginning. An object of the present invention is to provide a method for chemically forming a nickel-hydrogen storage battery that exhibits Construct a battery using a separator and insert it into a battery case. After injecting the electrolyte, charge at a low temperature as it is or in a sealed form, and perform chemical formation by discharging at a high temperature. In this case, charging is performed at 0 to 10℃.
It is preferable that the discharge be at a low temperature of 40 to 60 DEG C. (1) In this case, the hydrogen storage alloy used for the negative electrode is an alloy containing an AB2Laves phase based on ZrNi.

作用 この構成により本発明のニッケル−水素蓄電池の化成法
(友 水素吸蔵合金粉末とくにZr−Niをベースとす
るAB2Laves相を含む合金は最終的には高容量に
なるが初期の容量が少な(−そこで化成が他の電池系具
Fに重要である。ところが一般の電池同様化成と17で
単に緩充放電を繰り返すのみでは容量の増加の度合は比
較的小さく、本来の容量に達する迄には多くの充放電サ
イクルを必要とし九 それが本願の低温度で充電し 高温度で放電する化成を
行なし入 しかも好ましくは負極容量の3倍以上のよう
な大容量を充電することで改良が図られたことか収 ま
ず合金が電極として機能するためには充電での電極から
水素が発生する状態を長く保つほど効果的であることが
わかっtミ  しかも0〜10℃の低温はど水素吸蔵合
金の充電効率は良好である。
Effect This configuration allows the chemical formation method of nickel-hydrogen storage batteries of the present invention (friendliness).Hydrogen storage alloy powder, especially Zr-Ni based alloy containing AB2Laves phase, has a high capacity in the end but has a small initial capacity (- Therefore, chemical formation is important for other battery devices F.However, as with general batteries, if the chemical formation and 17 are simply repeated slow charging and discharging, the degree of increase in capacity will be relatively small, and it will take a long time to reach the original capacity. This can be improved by charging at a low temperature and discharging at a high temperature, as described in the present application, and by charging a large capacity, preferably three times or more the negative electrode capacity. First of all, in order for the alloy to function as an electrode, it was found that the longer the state in which hydrogen is generated from the electrode during charging is maintained, the more effective it is. Charging efficiency is good.

さらに他の電池同様に正極律則の電池構成にしていてL
 負極の容量が不十分な化成時に常温の放電を入れると
負極律則になるのゑ これをできるだけ避けるために放
電では負極に有利な高温で行う。その結果負極律則にな
らず、従って化成時に合金にとって好ましくない酸化な
どを受けにくくなり長寿命になム なお他の蓄電池の場合密閉形にj7て負極から水素を発
生させると触媒でも用いていないかぎり水素は吸収され
ないので電池内圧は上昇してしまう。
Furthermore, like other batteries, the battery configuration is based on the positive polarity law.
If a normal temperature discharge is used during formation when the capacity of the negative electrode is insufficient, the negative electrode rule will occur.To avoid this as much as possible, the discharge is performed at a high temperature that is advantageous for the negative electrode. As a result, the negative electrode rule does not apply, and therefore the alloy is less susceptible to unfavorable oxidation during chemical formation, resulting in a long life.In the case of other storage batteries, if the hydrogen is generated from the negative electrode in a sealed type, it is not used as a catalyst. As long as hydrogen is not absorbed, the internal pressure of the battery increases.

ところが水素吸蔵合金とくにZr−Niをベースとする
ABpLaves相を含む合金は水素を吸蔵する能力と
水素と酸素とを水に戻す触媒能を初期から持っているの
で電池内圧が上昇してガス漏れなどが生ずることはなt
、% 実施例 以下本発明の一実施例のニッケル−水素蓄電池の化成法
について説明ずも 水素吸蔵合金としてABpLave
s相合金の一つであるZrMn5.sCr @、2N 
i 1.2を粉砕した後カルボキシメチルセルロース溶
液を加えて作ったべ〜ストを多孔度95%厚さ1、 O
mmの発泡状ニッケル板に充填し加圧して水素吸蔵合金
電極を得な 減圧で乾燥後5%のフッ素樹脂ディスバー
ジョンを添加し補強した この水素吸蔵合金電極を幅3
3mm、  長さ210mmに裁断し、 リード板をス
ポット溶接により取り付けた 相手極として公知の発泡状ニッケル板 それに親水処理
ポリプロピレン不織布セパlソータを用いて密閉形ニッ
ケル−水素蓄電池を構成し加 正極に対する負極の容量
を4Ah(140%)としたその後比重1.25の苛性
カリ水溶液に25g/lの水酸化リチウムを溶解した電
解液を注入1. ?、:。
However, hydrogen storage alloys, especially Zr-Ni-based alloys containing the ABpLaves phase, have the ability to store hydrogen and the catalytic ability to return hydrogen and oxygen to water from the beginning, so the internal pressure of the battery increases and gas leaks occur. will not occur.
, % Example Hereinafter, there will be no explanation about the chemical formation method of a nickel-hydrogen storage battery according to an example of the present invention. ABpLave as a hydrogen storage alloy
ZrMn5. is one of the s-phase alloys. sCr @, 2N
After crushing i 1.2, a carboxymethyl cellulose solution was added to make a base with a porosity of 95% and a thickness of 1 O.
A hydrogen storage alloy electrode was obtained by filling a foamed nickel plate with a width of 3 mm and pressurizing it. After drying under reduced pressure, 5% fluororesin dispersion was added to reinforce this hydrogen storage alloy electrode.
A well-known foamed nickel plate was cut into pieces of 3 mm and 210 mm in length, and a lead plate was attached by spot welding.A sealed nickel-metal hydride storage battery was constructed using a well-known foamed nickel plate as a mating electrode and a hydrophilic treated polypropylene nonwoven fabric separator. After setting the capacity to 4Ah (140%), an electrolytic solution containing 25 g/l of lithium hydroxide dissolved in a caustic potassium aqueous solution with a specific gravity of 1.25 was injected.1. ? , :.

電池は5ubC形と(7へ 公称容量は2.8Ahであ
ム この電池10セルを用いて雰囲気温度10℃のもとで化
成として300mAの電流で15時間充電と50℃のも
とて300mAで端子電圧0.8Vまでの放電を2回繰
り返した この電池をAとすム つぎに比較のために従来の化成法の一例として室温20
℃のもと300mAで15時間充電−同じく室温300
mAで端子電圧0.8Vまでの放電を2回の繰り返した
電池を加えBとし九化成後の放電電圧と容量を調べたと
ころAは平均電圧は1.24Vであり、放電容量は2.
8〜2.9Ahでありな ところがBで+L  Aと同
じ特性を示すまでに8〜11サイクルを必要としたつぎ
に両電池それぞれ10セル用い400mAで130%充
電−IAで0.8Vまでの放電の充放電条件で寿命特性
を比較した その結果放電容量はAでは1000サイク
ルでも初期の82〜85%を示しているのに対してBで
は75〜78%でありAの性能が長期にわたって安定し
てい九なお実施例では密閉形について述べため交 開放
形でも同じ効果があム 発明の効果 以上の実施例の説明で明らかなように本発明のニッケル
−水素蓄電池の化成法によれは ニッケル正極と水素吸
蔵合金負極とセパレータを用いて電池を構成し電解液を
注入後に充電は低温度で放電は高温度で行う化成により
充放電の初期から優れた特性を示し これを長期にわた
って維持できるという効果を得ることができも
The battery is a 5ubC type (see 7).The nominal capacity is 2.8Ah.Using 10 cells of this battery, it was charged at a current of 300mA for 15 hours at an ambient temperature of 10℃, and then charged at a current of 300mA at 50℃. This battery, in which discharge was repeated twice to a terminal voltage of 0.8V, was designated as A.Next, for comparison, an example of a conventional chemical conversion method was
Charged at 300mA for 15 hours at ℃ - also at room temperature 300℃
A battery that had been repeatedly discharged twice to a terminal voltage of 0.8V at mA was added to B, and the discharge voltage and capacity after nineization were investigated, and A had an average voltage of 1.24V and a discharge capacity of 2.
However, it took 8 to 11 cycles for B to show the same characteristics as +L A.Next, using 10 cells of both batteries, I charged them to 130% at 400 mA and discharged them to 0.8 V at IA. As a result, the discharge capacity of A was 82-85% of the initial value even after 1000 cycles, while that of B was 75-78%, indicating that the performance of A was stable over a long period of time. Note that in the Examples, the closed type is described, so even the open type has the same effect.As is clear from the explanation of the Examples above, the formation method of the nickel-hydrogen storage battery of the present invention has the same effect as the nickel positive electrode. A battery is constructed using a hydrogen-absorbing alloy negative electrode and a separator, and after the electrolyte is injected, charging is performed at a low temperature and discharging at a high temperature. Through chemical formation, the battery exhibits excellent characteristics from the initial stages of charging and discharging, and is able to maintain these characteristics over a long period of time. even if you can get

Claims (4)

【特許請求の範囲】[Claims] (1)ニッケル正極と水素吸蔵合金負極とセパレータを
用いて電池を構成した後に低温度で充電し、高温度で放
電する化成を行なうニッケル−水素蓄電池の化成法。
(1) A chemical formation method for a nickel-hydrogen storage battery in which a battery is formed using a nickel positive electrode, a hydrogen storage alloy negative electrode, and a separator, and then charged at a low temperature and discharged at a high temperature.
(2)ニッケル正極と水素吸蔵合金負極とセパレータを
用いて電池を構成し、電解液を注入後に密閉形としその
後低温度で充電し、高温度で放電する化成を行なう請求
項1記載のニッケル−水素蓄電池の化成法。
(2) A battery is constructed using a nickel positive electrode, a hydrogen storage alloy negative electrode, and a separator, and after the electrolyte is injected, the battery is made into a sealed type, and then the nickel is formed by charging at a low temperature and discharging at a high temperature. Chemical synthesis method for hydrogen storage batteries.
(3)充電が0〜10℃の低温で放電が40〜60℃の
高温である請求項1または2記載のニッケル−水素蓄電
池の化成法。
(3) The method for forming a nickel-hydrogen storage battery according to claim 1 or 2, wherein charging is performed at a low temperature of 0 to 10°C and discharging is performed at a high temperature of 40 to 60°C.
(4)水素吸蔵合金がとくにZr−Niをベースとする
AB_2Laves相を含む請求項1記載の密閉形ニッ
ケル−水素蓄電池の化成法。
(4) A process for forming a sealed nickel-hydrogen storage battery according to claim 1, wherein the hydrogen storage alloy contains an AB_2Laves phase based on Zr-Ni.
JP2174737A 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method Expired - Lifetime JP2548431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174737A JP2548431B2 (en) 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174737A JP2548431B2 (en) 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method

Publications (2)

Publication Number Publication Date
JPH0465067A true JPH0465067A (en) 1992-03-02
JP2548431B2 JP2548431B2 (en) 1996-10-30

Family

ID=15983791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174737A Expired - Lifetime JP2548431B2 (en) 1990-07-02 1990-07-02 Nickel-metal hydride battery conversion method

Country Status (1)

Country Link
JP (1) JP2548431B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334226A (en) * 1992-07-17 1994-08-02 Furukawa Denchi Kabushiki Kaisha Method of manufacturing a sealed-type nickel-hydrogen cell
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery
WO1999023709A3 (en) * 1997-11-03 1999-07-08 Eveready Battery Inc Metal hydride cells for high rate/low temperature performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267872A (en) * 1989-04-07 1990-11-01 Sanyo Electric Co Ltd Manufacture of metal-hydrogen alkaline storage battery
JPH0461756A (en) * 1990-06-28 1992-02-27 Sanyo Electric Co Ltd Manufacture of ni-h storage battery
JPH0462763A (en) * 1990-06-29 1992-02-27 Sanyo Electric Co Ltd Manufacture of metal hydride storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267872A (en) * 1989-04-07 1990-11-01 Sanyo Electric Co Ltd Manufacture of metal-hydrogen alkaline storage battery
JPH0461756A (en) * 1990-06-28 1992-02-27 Sanyo Electric Co Ltd Manufacture of ni-h storage battery
JPH0462763A (en) * 1990-06-29 1992-02-27 Sanyo Electric Co Ltd Manufacture of metal hydride storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334226A (en) * 1992-07-17 1994-08-02 Furukawa Denchi Kabushiki Kaisha Method of manufacturing a sealed-type nickel-hydrogen cell
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery
US5814108A (en) * 1994-08-09 1998-09-29 Japan Storage Battery Co., Ltd. Method for manufacturing nickel-metal-hydride battery
WO1999023709A3 (en) * 1997-11-03 1999-07-08 Eveready Battery Inc Metal hydride cells for high rate/low temperature performance
US6287724B2 (en) 1997-11-03 2001-09-11 Eveready Battery Company, Inc. Nickel metal hydride cells designed for high rate/low temperature performance

Also Published As

Publication number Publication date
JP2548431B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
JPH0465067A (en) Formation method of nickel-hydrogen battery
JPS59181459A (en) Metal oxide hydrogen battery
JPH0447676A (en) Manufacture of sealed storage battery
JPH05151990A (en) Chemical formation method for sealed type nickel-hydrogen storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH03241673A (en) Formation method for nickel-hydrogen storage battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP2584075B2 (en) Manufacturing method of nickel-hydrogen storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JPS60175367A (en) Production of negative electrode for closed storage battery
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0766804B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPH04294069A (en) Sealed type ni-h storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH04126358A (en) Manufacture of hydrogen absorbing alloy electrode for alkaline battery
JPH03289046A (en) Manufacture of hydrogen storage alloy electrode for alkaline battery
JPH04126357A (en) Manufacture of hydrogen absorbing alloy negative electrode for gastight accumulator
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
JPH0888001A (en) Hydrogen storage alloy electrode and manufacture thereof