JPH03241673A - Formation method for nickel-hydrogen storage battery - Google Patents

Formation method for nickel-hydrogen storage battery

Info

Publication number
JPH03241673A
JPH03241673A JP2037614A JP3761490A JPH03241673A JP H03241673 A JPH03241673 A JP H03241673A JP 2037614 A JP2037614 A JP 2037614A JP 3761490 A JP3761490 A JP 3761490A JP H03241673 A JPH03241673 A JP H03241673A
Authority
JP
Japan
Prior art keywords
hydrogen storage
nickel
storage alloy
negative electrode
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2037614A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Hajime Seri
世利 肇
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2037614A priority Critical patent/JPH03241673A/en
Publication of JPH03241673A publication Critical patent/JPH03241673A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To simplify formation and improve characteristics by inserting a nickel positive electrode, a hydrogen storage alloy negative electrode, and a separator separating the nickel positive electrode and the hydrogen storage alloy negative electrode into a battery jar, injecting an electrolyte, and performing formation only by a charge. CONSTITUTION:A nickel positive electrode, a hydrogen storage alloy negative electrode, and a separator separating the nickel positive electrode and the hydrogen storage alloy negative electrode are inserted into a battery jar, an electrolyte is injected, and formation is performed only by a charge. This alloy has the capability to store hydrogen and the catalyst capability to convert hydrogen and oxygen into water from the initial stage during large-charge formation at once with no discharge in formation, thus no gas leak occurs due to the rise of the battery internal pressure, formation can be simplified, and excellent characteristics are obtained from the initial stage of a charge and a discharge and can be maintained for a long period.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケル−水素蓄電池の化成法に関すも。[Detailed description of the invention] Industrial applications The present invention also relates to a method for forming a nickel-hydrogen storage battery.

従来の技術 各種の電源として広く使われている蓄電池として鉛電池
とアルカリ電池があも このうちアルカリ蓄電池は高信
頼性が期待でき、小形軽量化も可能などの理由で小型電
池は各種ポータプル機器用へ 大型は産業用として使わ
れてき九 このアルカリ蓄電池において、正極として8よほとんど
の場合ニッケル極である。ポケット式から焼結式に代わ
って特性が向上し さらに密閉化が可能になるとともに
用途も広がっ九 一方負極としては現在のところカドミウム極が主体であ
るが一層の高エネルギー密度を達成するために金属水素
化物つまり水素吸蔵合金極を使ったニッケル−水素蓄電
池が注目され製法などに多くの提案がされている。
Conventional technology Lead-acid batteries and alkaline batteries are widely used as storage batteries for various power sources.Among these, alkaline storage batteries are expected to have high reliability, and small batteries are used for various portable devices because they can be made smaller and lighter. In large alkaline storage batteries, which are used for industrial purposes, the positive electrode is almost always a nickel electrode. The pocket type was replaced by the sintered type, which improved its properties, made it possible to seal it, and expanded its uses.On the other hand, the negative electrode is currently mainly made of cadmium, but in order to achieve even higher energy density. Nickel-hydrogen storage batteries that use metal hydrides, that is, hydrogen-absorbing alloy electrodes, have attracted attention and many proposals have been made for manufacturing methods.

発明が解決しようとする課題 水素吸蔵合金極の製法としては合金粉末を焼結する方式
と発泡状 繊維塊 パンチングメタルなどの多孔体に充
填や塗着する方式のペースト式がある。水素吸蔵合金は
カドミウム極などと同様に電子伝導性の点で比較的硬れ
ているので非焼結成極の可能性は大きい。すなわち結着
剤とともにペスト状としこれを3次元あるいは2次元構
造の多孔性導電板に充填あるいは塗着している。しかし
 いずれにしてもとくに充放電サイクルの初期での放電
特性の上で改良の余地がある。とくに水素吸蔵合金とし
てZr−NiをベースとするAB2Laves相を含む
合金では最終的には高容量になるが初期の活性化が問題
である。
Problems to be Solved by the Invention Methods for producing hydrogen storage alloy electrodes include a method of sintering alloy powder and a paste method of filling or coating a porous body such as a foamed fiber mass or punched metal. Hydrogen storage alloys, like cadmium electrodes, are relatively hard in terms of electronic conductivity, so there is a strong possibility that they will be non-sintered electrodes. That is, it is made into a paste together with a binder and is filled or applied to a porous conductive plate having a three-dimensional or two-dimensional structure. However, in any case, there is room for improvement, especially in terms of discharge characteristics at the beginning of the charge/discharge cycle. In particular, an alloy containing an AB2Laves phase based on Zr-Ni as a hydrogen storage alloy ultimately has a high capacity, but initial activation is a problem.

課題を解決するための手段 本発明(よ ニッケル正極と水素吸蔵合金負極と前記ニ
ッケル正極と前記水素吸蔵合金負極を分離するセパレー
タとを電槽に挿入し 前記電槽に電解液を注入し 充電
のみからなる化成を行なうことを特徴とするニッケル−
水素蓄電池の化成法により上記課題を解決するものであ
る。
Means for Solving the Problems According to the present invention (1) A nickel positive electrode, a hydrogen storage alloy negative electrode, and a separator for separating the nickel positive electrode and the hydrogen storage alloy negative electrode are inserted into a battery case, and an electrolyte is poured into the battery case, and only charging is performed. Nickel characterized by undergoing a chemical conversion consisting of
The above problem is solved by a chemical formation method for hydrogen storage batteries.

また 0〜10℃程度の低温で充電することを特徴とす
る。
It is also characterized by charging at a low temperature of about 0 to 10 degrees Celsius.

さら1 負極に使用する水素吸蔵合金をZrNiをベー
スとするAB2Laves相を含む合金とすることを特
徴とする。
Furthermore, the present invention is characterized in that the hydrogen storage alloy used for the negative electrode is an alloy containing an AB2Laves phase based on ZrNi.

作用 緩充電によることなく、−時に大充電化成して杖 上記
構成の合金は化成において、放電させなくとも水素を吸
蔵する能力と水素と酸素とを水に戻す触媒能は初期から
持っているので、充電により電池内圧が上昇してガス漏
れなどが生ずることはなl、% な叙 この化成としての充電はO〜10℃程度の低温で
あるほうが水素吸蔵合金の充電効率は良好である。
The alloy with the above structure has the ability to absorb hydrogen without discharging and the catalytic ability to return hydrogen and oxygen to water from the beginning during chemical formation, without the need for slow charging. Charging does not increase the internal pressure of the battery and cause gas leakage, etc., and the charging efficiency of the hydrogen storage alloy is better when this chemical charging is performed at a low temperature of about 0 to 10°C.

実施例 水素吸蔵合金粉末をとくにZr−NiをベースとするA
BaLaves相を含む合金は最終的には高容量になる
が初期の容量が少なt、%  そこで化成が他の電池系
以上に重要である。
Examples Hydrogen storage alloy powders, especially Zr-Ni based A
Alloys containing the BaLaves phase ultimately have a high capacity, but the initial capacity is low (t,%).Therefore, chemical formation is more important than in other battery systems.

ところが一般の電池同様化成として緩充放電を繰り返す
と容量の増加の度合に比較的多くの充放電サイクルを必
要とした それが本発明の放電を省略して充電のみにししかも好ま
しくは低温で負極容量の5倍以上のような大容量充電す
ることで改良が図られる。
However, when slow charging and discharging are repeated as in general batteries, a relatively large number of charging and discharging cycles are required to increase the capacity.However, in the present invention, discharging is omitted and only charging is performed, and the negative electrode capacity is preferably increased at low temperatures. Improvements can be made by charging at a large capacity, such as 5 times or more.

な叙 かかる場合、合金が電極として機能するためには
充電での電極から水素が発生する状態を長く保つほど効
果的である。さらに他の電池同様に正極律則の電池構成
にしていて耘 負極の容量が不十分な化成時に放電を入
れると負極律則になるので責の電位になり、合金にとっ
て好ましくない酸化などを受けやすくなる。
In such a case, in order for the alloy to function as an electrode, the longer the state in which hydrogen is generated from the electrode during charging is maintained, the more effective it is. Furthermore, like other batteries, the battery configuration is based on the positive electrode principle.If a discharge is applied during formation when the capacity of the negative electrode is insufficient, the negative electrode becomes a negative electrode principle, resulting in a negative potential, making it susceptible to oxidation, etc., which is unfavorable for the alloy. Become.

以上の理由で他の電池で(よ むしろ重要な化成時での
放電を本願発明のニッケル−水素系電池では入れない方
が化成が簡易化できてその上酸化も受けないので長寿命
になるという知見を得たな叙 他の蓄電池の場合密閉に
して負極から水素を発生させると触媒でも用いていなけ
れば水素は吸収されないので電池内圧は上昇してしまう
For the above reasons, in other batteries (rather than in the nickel-metal hydride battery of the present invention), it is better to avoid discharging during the important chemical formation process, as the chemical formation can be simplified, and it will not undergo oxidation, resulting in a longer life. In the case of other storage batteries, if the battery is sealed and hydrogen is generated from the negative electrode, the internal pressure of the battery will rise because the hydrogen will not be absorbed unless a catalyst is used.

ところが水素吸蔵合金とくにZr−Niをベースとする
AB2Laves相を含む合金は水素を吸蔵する能力と
水素と酸素とを水に戻す触媒能は初期から持っているの
で電池内圧が上昇してガス漏れなどが生ずることはなt
℃ この化成としての充電は0〜10℃程度の低温であ
るほうが水素吸蔵合金の充電効率は良好であ4 次に具体的実施例について述べる。水素吸蔵合金として
AB2LaveS相合金の一つであるZrM n a、
ec r @、2N i 1.tを粉砕した後カルボキ
シメチルセルロース溶液を加えて作ったペーストを多孔
度95%厚さ1. 0mmの発泡状ニッケル板に充填し
加圧して電極を得た 減圧で乾燥後5%のフッ素樹脂デ
ィスバージョンを添加し補強したこの電極を幅33mm
、  長さ210mmに裁断しリード板をスポット溶接
により取り付けた相手径として公知の発泡状ニッケル板
 それに親木処理ポリプロピレン不織布セパレータを用
いて密閉形ニッケル−水素蓄電池を構成し九 正極に対
する負極の容量を4Ah(140%)とじ九その後比重
1.25の苛性カリ水溶液に25g/lの水酸化リチウ
ムを溶解した電解液を注入した電池は5ubC形とした
 公称容量は2.8Ahである。
However, hydrogen storage alloys, especially alloys containing AB2Laves phase based on Zr-Ni, have the ability to store hydrogen and the catalytic ability to return hydrogen and oxygen to water from the beginning, so the internal pressure of the battery increases and gas leaks occur. will not occur.
C. The charging efficiency of the hydrogen storage alloy is better when the charging temperature is as low as about 0 to 10.degree. C.4.Next, specific examples will be described. ZrM na, which is one of the AB2Lave S phase alloys as a hydrogen storage alloy,
ec r @, 2N i 1. A paste made by adding a carboxymethylcellulose solution after crushing T.T. has a porosity of 95% and a thickness of 1. An electrode was obtained by filling a 0 mm foamed nickel plate and applying pressure. After drying under reduced pressure, this electrode was reinforced by adding 5% fluororesin dispersion to a width of 33 mm.
A sealed nickel-metal hydride storage battery was constructed using a well-known foamed nickel plate cut to a length of 210 mm and a lead plate attached to it by spot welding, and a parent-treated polypropylene nonwoven fabric separator. A 4Ah (140%) battery was injected with an electrolyte in which 25g/l of lithium hydroxide was dissolved in a caustic potassium aqueous solution with a specific gravity of 1.25.The battery had a nominal capacity of 2.8Ah.

この電池10セルを用いて雰囲気温度10℃のもとで化
成として400mAの電流で80時間充電を行った こ
の電池をAとする。
This battery, in which 10 cells of this battery were used and charged for 80 hours with a current of 400 mA at an ambient temperature of 10° C., is designated as A.

つぎに比較のために従来の化成法の一例として室温20
℃のもと200mAで21時間(公称容量の150%)
充電−200mAで端子電圧0゜8vまでの放電の繰り
返しを行った電池を加えBとした 化成後の放電電圧と容量を調べたところAは平均電圧は
1.20Vであり、放電容量は20.8〜2.9Ahで
あっ九 ところがBで(よ この特性を示すまでに7〜
10サイクルを必要としたつぎに両型池それぞれ10セ
ル用い400mAで130%充電−IAで0.8vまで
の放電の充放電条件で寿命特性を比較した その結果放
電容量はAでは100−0サイクルでも初期の80〜8
5%を示しているのに対してBでは70〜75%であり
Aの性能が長期にわたって安定してい九なお実施例では
密閉形について述べた力丈 開放形でも同じ効果がある
Next, for comparison, as an example of a conventional chemical conversion method,
21 hours at 200 mA at °C (150% of nominal capacity)
A battery that had been repeatedly discharged at -200mA until the terminal voltage reached 0°8V was added to form B, and the discharge voltage and capacity after formation were investigated.A had an average voltage of 1.20V and a discharge capacity of 20. However, it took 7 to 2.9 Ah for B to show this characteristic.
Next, using 10 cells of both types of batteries, we compared the life characteristics under the charge/discharge conditions of 130% charging at 400 mA and discharging to 0.8 V with IA.As a result, the discharge capacity was 100-0 cycles for A. But the early 80-8
5%, whereas in B it is 70 to 75%, indicating that the performance of A is stable over a long period of time.In addition, in the embodiment, the force length described for the closed type has the same effect with the open type.

発明の効果 ニッケル正極と水素吸蔵合金負極とセパレータを用いて
電池を構成し電解液を注入後に充電のみからなる化成を
行なり\ 正極容量律則にしてから用いることにより化
成の簡易化が可能となって充放電の初期から優れた特性
を示し これを長期にわたって維持できる。
Effects of the Invention By constructing a battery using a nickel positive electrode, a hydrogen storage alloy negative electrode, and a separator, and performing chemical formation consisting only of charging after injecting an electrolyte, the chemical formation can be simplified by using the positive electrode capacity rule. It exhibits excellent characteristics from the beginning of charging and discharging, and can maintain this for a long period of time.

Claims (5)

【特許請求の範囲】[Claims] (1)ニッケル正極と水素吸蔵合金負極と前記ニッケル
正極と前記水素吸蔵合金負極を分離するセパレータとを
電槽に挿入し、前記電槽に電解液を注入し、充電のみか
らなる化成を行なうことを特徴とするニッケル−水素蓄
電池の化成法。
(1) Inserting a nickel positive electrode, a hydrogen storage alloy negative electrode, and a separator that separates the nickel positive electrode and hydrogen storage alloy negative electrode into a battery case, pouring an electrolyte into the battery case, and performing chemical formation consisting only of charging. A chemical formation method for nickel-hydrogen storage batteries characterized by:
(2)電解液を注入後に密閉形とし、その後充電のみか
らなる化成を行なうことを特徴とする請求項1記載のニ
ッケル−水素蓄電池の化成法。
(2) The method for forming a nickel-hydrogen storage battery according to claim 1, characterized in that after injecting the electrolytic solution, the cell is made into a sealed type, and then the forming process consists only of charging.
(3)充電が0℃付近の低温で行なうことを特徴とする
請求項1または2に記載のニッケル−水素蓄電池の化成
法。
(3) The method for forming a nickel-hydrogen storage battery according to claim 1 or 2, wherein charging is performed at a low temperature around 0°C.
(4)化成時の充電電気量が水素吸蔵合金負極の実際に
取り出せる容量の5倍以上である請求項1記載のニッケ
ル−水素蓄電池の化成法。
(4) The method for forming a nickel-hydrogen storage battery according to claim 1, wherein the amount of electricity charged during forming is five times or more the capacity that can actually be extracted from the hydrogen storage alloy negative electrode.
(5)水素吸蔵合金がとくにZr−Niをベースとする
AB_2Laves相を含む請求項1記載のニッケル−
水素蓄電池の化成法。
(5) The nickel-based hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy contains an AB_2Laves phase based on Zr-Ni.
Chemical synthesis method for hydrogen storage batteries.
JP2037614A 1990-02-19 1990-02-19 Formation method for nickel-hydrogen storage battery Pending JPH03241673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2037614A JPH03241673A (en) 1990-02-19 1990-02-19 Formation method for nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2037614A JPH03241673A (en) 1990-02-19 1990-02-19 Formation method for nickel-hydrogen storage battery

Publications (1)

Publication Number Publication Date
JPH03241673A true JPH03241673A (en) 1991-10-28

Family

ID=12502496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2037614A Pending JPH03241673A (en) 1990-02-19 1990-02-19 Formation method for nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JPH03241673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0696825A1 (en) 1994-08-09 1996-02-14 Japan Storage Battery Company Limited Method for manufacturing nickel-metal-hydride battery

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
JPS62287568A (en) Manufacture of alkaline storage battery
JP2548431B2 (en) Nickel-metal hydride battery conversion method
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPS59181459A (en) Metal oxide hydrogen battery
JPH0447676A (en) Manufacture of sealed storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPH03241673A (en) Formation method for nickel-hydrogen storage battery
JPH05151990A (en) Chemical formation method for sealed type nickel-hydrogen storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH0582158A (en) Sealed rectangular alkaline storage battery
JPS63131472A (en) Metal-hydrogen alkaline storage battery
JPH05275082A (en) Forming method for sealed nickel-hydrogen storage battery
JP2584075B2 (en) Manufacturing method of nickel-hydrogen storage battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH04294069A (en) Sealed type ni-h storage battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JP2553902B2 (en) Alkaline secondary battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH0562706A (en) Metal oxide-hydrogen storage battery and manufacture thereof
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery