JPH04112515A - Semiconductor ceramic capacitor of grain-boundary insulation type - Google Patents

Semiconductor ceramic capacitor of grain-boundary insulation type

Info

Publication number
JPH04112515A
JPH04112515A JP2231732A JP23173290A JPH04112515A JP H04112515 A JPH04112515 A JP H04112515A JP 2231732 A JP2231732 A JP 2231732A JP 23173290 A JP23173290 A JP 23173290A JP H04112515 A JPH04112515 A JP H04112515A
Authority
JP
Japan
Prior art keywords
grain boundary
sintering
ceramic capacitor
grain
layer forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231732A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
篤志 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2231732A priority Critical patent/JPH04112515A/en
Publication of JPH04112515A publication Critical patent/JPH04112515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain this capacitor by a method wherein a sintering-promoting additive, a semiconductor-promoting additive and a grain-boundary depletion- layer forming agent, in respectively prescribed quantities, are added to a perovskite-type oxide composed mainly of SrTiO3, this mixture is sintered and a diffusion treatment is executed in an oxidizing atmosphere. CONSTITUTION:The following are added to and mixed with a perovskite-type oxide composed mainly of strontium titanate (SrTiO3): 0.1 to 5.0wt.% of a sintering-promoting additive; 0.05 to 2.0wt.% of a semiconductor-promoting additive Nb2O5 and 0.1 to 5.0wt.% of a grain-boundary depletion-layer forming agent composed of Sr1-x-yBaxCay(Co1/2Mo1/2)O3 (where x<=0.3, y<=0.3 and 0<=x+y<=0.6). This mixture is pressurized and molded. Then, the mixture is baked at 1250 to 1500 deg.C in a reducing atmosphere which contains hydrogen. The surface od its baked substance is coated with a grain-boundary diffusion substance which contains bismuth oxide (Bi2O3). A heat treatment is executed at 850 to 1200 deg.C in an oxidizing atmosphere. Electrodes are formed. Thereby, a large element whose characteristic is good can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒界絶縁型半導体セラミックコンテンサ、特に
積層化された粒界絶縁型半導体セラミックコンデンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to grain boundary insulated semiconductor ceramic capacitors, and more particularly to laminated grain boundary insulated semiconductor ceramic capacitors.

従来の技術 従来、この種のセラミック酸化物半導体の結晶粒界を絶
縁化することによって、これまでのセラミック誘電体と
比較して、実効誘電率の非常に大きなコンデンサ素体が
得られることが知られている。例えば、SrTiO3を
主成分とし、これにNb2O5およびTiO2Al2O
35i02系混合物を添加して成形し、焼結してなる多
結晶磁器半導体の粒界に、酸化銅(Cu O)および酸
化ビスマス(Bi203)を拡散させ、前記結晶粒界に
空乏層を形成し、粒界を絶縁化し電極を形成して得た粒
界絶縁型半導体コンデンサにおいて、昇圧破壊電圧12
00 V/IWl、 絶R抵抗約lX10’MΩ/cT
11の絶縁特性を保持しながら、実効誘電率20.00
0〜100.000のごとく大きな値が得られている。
Conventional technology It has been known that by insulating the grain boundaries of this type of ceramic oxide semiconductor, it is possible to obtain a capacitor body with a much larger effective dielectric constant than conventional ceramic dielectrics. It is being For example, SrTiO3 is the main component, and Nb2O5 and TiO2Al2O
Copper oxide (CuO) and bismuth oxide (Bi203) are diffused into the grain boundaries of a polycrystalline ceramic semiconductor obtained by adding a 35i02-based mixture, molding, and sintering to form a depletion layer at the grain boundaries. In a grain boundary insulated semiconductor capacitor obtained by insulating the grain boundaries and forming electrodes, the boost breakdown voltage is 12
00 V/IWl, Absolute R resistance approximately 1 x 10'MΩ/cT
Effective dielectric constant of 20.00 while maintaining insulation properties of 11.
Large values such as 0 to 100.000 are obtained.

なお、ここで、拡散物質であるCub、Bi2O3の役
割について記すと、CuOは焼結体の結晶粒界にあって
電子トラップセンタを形成し、n型半導体結晶の結晶粒
中にあって、粒界に近い部分に存在する電子をトラップ
し、粒界近傍に電子の存在しない空乏層を形成する働き
をする。粒界絶縁型半導体セラミックコンデンサはこの
ようにして形成された空乏層の両側に電荷を蓄えてコン
デンサを構成するのである。一方、Bi2O3はZrO
2等とともに酸素の良導体として知られており、粒界に
存在して外部より焼結体内部まで酸素を拡散で運搬し、
粒界空乏層形成に必要な酸素を供給する働きをする。
Here, to describe the role of the diffusion substances Cub and Bi2O3, CuO forms an electron trap center at the grain boundaries of the sintered body, and CuO forms an electron trap center within the crystal grains of the n-type semiconductor crystal. It functions to trap electrons existing near the grain boundaries and form a depletion layer without electrons near the grain boundaries. A grain boundary insulated semiconductor ceramic capacitor forms a capacitor by storing charge on both sides of the depletion layer thus formed. On the other hand, Bi2O3 is ZrO
It is known as a good conductor of oxygen along with 2nd grade, exists in the grain boundaries and transports oxygen from the outside to the inside of the sintered body by diffusion.
It functions to supply oxygen necessary for grain boundary depletion layer formation.

しかしながら、これらのバルクタイプのものに対し、粒
界絶縁型半導体セラミックコンデンサにおいても積層化
の要求は強い。
However, in contrast to these bulk type capacitors, there is a strong demand for lamination even in grain boundary insulated semiconductor ceramic capacitors.

発明が解決しようとする課題 しかしながら、このような従来の製造方法で得た粒界絶
縁型半導体セラミックコンデンサは、大きな静電容量を
得るため、焼結体中の結晶粒をできるだけ大きなものに
し、ペースト状にした酸化銅含有の酸化ビスマスなどを
、高温で焼成して得た焼結体の周囲に塗布し、しかる後
に熱処理を施すことによってBi=03.CuO等を焼
結体内部にまで拡散させるという工程を経ているが、積
層型のセラミックスの電極間隔が狭くなるため焼結体の
結晶粒の粒径は抑制されなければならず、また、従来の
このような方法で作製した素子は、工程中Bi2O3等
に比較してCuQなどは拡散しに<<、そのため特性に
バラツキができやすく、さらに厚みのあるものは内部ま
で十分に酸化銅等を拡散させることが困難であるので、
素子の大きさに制限がある等の課題があった。
Problems to be Solved by the Invention However, in order to obtain a large capacitance, grain boundary insulated semiconductor ceramic capacitors obtained by such conventional manufacturing methods are made by making the crystal grains in the sintered body as large as possible and using paste. Bi=03. The process involves diffusing CuO, etc. into the interior of the sintered body, but since the electrode spacing of laminated ceramics becomes narrower, the grain size of the sintered body must be suppressed, and the conventional Elements fabricated using this method are less likely to diffuse CuQ etc. than Bi2O3 etc. during the process, so characteristics tend to vary, and if the device is thick, copper oxide etc. must be sufficiently diffused into the interior. Because it is difficult to
There were problems such as restrictions on the size of the element.

本発明はこのような課題を解決するもので、すなわち、
焼結体部の結晶粒の粒径は小さくしかもよく揃い、粒界
空乏層形成剤である酸化銅等の塗布・拡散を必要とせず
、単に、酸化ビスマス等の粒界拡散物質だけを塗布し空
気中で熱処理を施して拡散するだけで特性のよい、大き
な素子を得ることを目的とするものである。
The present invention solves these problems, namely:
The grain size of the crystal grains in the sintered body is small and uniform, and there is no need to apply or diffuse a grain boundary depletion layer forming agent such as copper oxide, but simply apply a grain boundary diffusion substance such as bismuth oxide. The objective is to obtain large elements with good characteristics simply by performing heat treatment and diffusion in air.

課題を解決するための手段 上3己課題を解決するために本発明は、SrT10つを
主成分としたペロブスカイト型酸化物に、焼結促進添加
剤を0.1〜5.3wt%、半導体化促進添加剤Nb2
O5を0.05〜2、Ovt%、およびS r +−x
−yB axCa y (CO+、2M O+/2) 
03 (ただし、X≦0.3.y≦0.3,0≦)(+
y≦0.6)よりなる粒界空乏層形成剤を0.1〜5.
0wt%添加し、混合、印刷・成形したのち高温で焼結
し、半導体化した後、酸化雰囲気中850〜1200℃
で酸化ビスマス等の拡散処理を施して粒界絶縁型半導体
セラミックコンデンサを得るものである。
Means for Solving the Problems 1.3 In order to solve the problems, the present invention provides a perovskite type oxide mainly composed of SrT with 0.1 to 5.3 wt% of a sintering accelerating additive to make it a semiconductor. Accelerator additive Nb2
O5 from 0.05 to 2, Ovt%, and S r +−x
-yB axCa y (CO+, 2M O+/2)
03 (However, X≦0.3.y≦0.3,0≦)(+
y≦0.6) in a range of 0.1 to 5.
After adding 0 wt%, mixing, printing and molding, sintering at high temperature to make a semiconductor, 850 to 1200 °C in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor is obtained by performing a diffusion treatment of bismuth oxide or the like.

作用 この構成により、高温でSrTiOxを主成分としたペ
ロブスカイト型酸化物と粒界空乏層形成剤S r  −
X−yB aXCay (Co +2Pv1 o + 
2)Ojと半導体化促進添加剤Nb2O5とを反応・固
溶させておき、焼成時の冷却過程で銅を含む酸化物を粒
界に析出させ、また、粒界に拡散した酸化ビスマス内を
拡散して到達した酸素によってさらに銅等の粒界物質を
酸化させることによって粒界に電子のトラップセンタを
形成し、還元によって形成された低抵抗の半導体結晶内
に粒界に沿って空乏層を形成する。このようにして得た
空乏層は絶縁性がよく、空乏層の両側に電荷を蓄えて良
質のコンデンサが得られる。すなわち本発明によると、
従来行われていた半導体化後のCuO等の塗布・拡散の
工程を必要とせず、容易に優れた粒界絶縁型半導体セラ
ミックコンデンサを得ることができる。
Effect With this configuration, the perovskite-type oxide mainly composed of SrTiOx and the grain boundary depletion layer forming agent S r −
X-yB aXCay (Co +2Pv1 o +
2) Oj and the semiconductor-promoting additive Nb2O5 are reacted and dissolved in solid solution, and during the cooling process during firing, oxides containing copper are precipitated at the grain boundaries, and the bismuth oxide diffused at the grain boundaries is diffused. The oxygen that has reached this process further oxidizes grain boundary materials such as copper, forming electron trap centers at the grain boundaries, and forming depletion layers along the grain boundaries within the low-resistance semiconductor crystal formed by reduction. do. The depletion layer obtained in this way has good insulating properties, and charges are stored on both sides of the depletion layer, resulting in a high-quality capacitor. That is, according to the present invention,
An excellent grain boundary insulated semiconductor ceramic capacitor can be easily obtained without requiring the conventional process of applying and diffusing CuO or the like after semiconductor formation.

実施例 以下、本発明の一実施例の粒界絶縁型半導体セラミック
コンデンサについて、表と図面を参照しながら説明する
EXAMPLE Hereinafter, a grain boundary insulated semiconductor ceramic capacitor according to an example of the present invention will be described with reference to tables and drawings.

(実施例1) 蓚酸チタニルストロンチウム(SrTiO(C204)
2・4H20)を熱分解して得たチタン酸ストロンチウ
ム(S r Ties )に焼結促進剤T i 02−
A 1203−31o2(20: 35 : 45wt
%比)を0.05〜6.0wt%、半導体化促進剤Nb
2O5を0.02〜3. C)wt%、粒界空乏層形成
剤S r (COl/2M O+/2) 03を0.0
5〜6.0wt%添加し、よく混合したのち、900℃
にて仮焼した。湿式粉砕の後、乾燥、造粒、成型して、
大気中1400℃にて焼結し、再び湿式粉砕の後、樹脂
及び有機溶剤を用いてペースト化し、電極用白金ペース
トと交互に印刷し、1300℃にて水素還元し、酸化ビ
スマスを塗布したあと大気中950°Cにて熱処理し、
電極を調整して電気特性を測定した。測定結果を第1表
に示す。なお、焼結促進剤TiO2−A1203−8i
02(20:35:45wt%比)は、市販のT 10
2. A I 203.  S l 02の粉体を20
 : 35 : 45の重量比で秤量・混合し、120
0℃にて仮焼し、粉砕して得た。さらに粒界空乏層形成
剤Sr(co12MO+2)03は、市販のSrCO3
,COO,MOO3を混合し、900℃にて仮焼し、粉
砕して得た。
(Example 1) Titanyl strontium oxalate (SrTiO(C204)
Strontium titanate (S r Ties ) obtained by thermally decomposing sintering accelerator T i 02-
A 1203-31o2 (20: 35: 45wt
% ratio) from 0.05 to 6.0 wt%, semiconductor accelerator Nb
2O5 from 0.02 to 3. C) wt%, grain boundary depletion layer forming agent S r (COl/2M O+/2) 03 is 0.0
After adding 5 to 6.0 wt% and mixing well, heat at 900°C.
It was calcined at After wet grinding, drying, granulation, and molding,
Sintered at 1400℃ in the atmosphere, wet-pulverized again, made into a paste using resin and organic solvent, printed alternately with platinum paste for electrodes, hydrogen reduced at 1300℃, and coated with bismuth oxide. Heat treated at 950°C in air,
The electrodes were adjusted and their electrical properties were measured. The measurement results are shown in Table 1. In addition, the sintering accelerator TiO2-A1203-8i
02 (20:35:45wt% ratio) is commercially available T10
2. AI 203. 20 powder of S l 02
: Weighed and mixed at a weight ratio of 35 : 45, 120
It was obtained by calcining at 0°C and pulverizing. Furthermore, the grain boundary depletion layer forming agent Sr(co12MO+2)03 is commercially available SrCO3
, COO, and MOO3 were mixed, calcined at 900°C, and pulverized.

(以  下  余  白) 第1表 第1表より明らかなごとく、S r T l O:+に
焼結促進剤T i 02−A I2O38i O= カ
o、1〜5.0wt%、半導体化促進剤Nb2O5が0
.05〜2.0wt%、粒界空乏層形成剤Sr(Co、
、。
(Left below) Table 1 As is clear from Table 1, sintering accelerator T i 02-A I2O38i O= Kao, 1 to 5.0 wt%, promotes semiconducting to S r T l O: + Agent Nb2O5 is 0
.. 05 to 2.0 wt%, grain boundary depletion layer forming agent Sr(Co,
,.

M Ol/2) 03が0.1〜5. Owt%添加サ
添加サネ焼成得た本材料は極めて優れた誘電体特性を示
し、コンデンサとして使用できる。即ち、顕微鏡観察の
結果、焼結体の微粒子は粒径かよくそろっていて2.0
〜4.0μmで、誘電体損失は1.0%以下、見かけ誘
電率は2.000以上であった。その他静電容量の温度
係数、絶縁抵抗、昇圧破壊電圧1等価直列抵抗などの測
定を行ったが満足できる値を得た。なお、焼結促進剤が
5%以上になると焼結体が互いに変形し、付着して実用
的でない。
M Ol/2) 03 is 0.1 to 5. This material obtained by firing with Owt% added saponide exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well aligned.
~4.0 μm, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 2.000 or more. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage 1 equivalent series resistance, etc., and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

第1図は本発明の第1の実施例における粒界絶縁型半導
体セラミックコンデンサを示すものである。第1図にお
いて、11は粒界絶縁型半導体セラミックス、12は電
極を、モして13はリード線を示す。
FIG. 1 shows a grain boundary insulated semiconductor ceramic capacitor according to a first embodiment of the present invention. In FIG. 1, 11 is a grain boundary insulated semiconductor ceramic, 12 is an electrode, and 13 is a lead wire.

(実施例2) 市販の工業用チタン酸ストロンチウム (SrTi03)にT i 02−MgO−3i 02
系(例えば30:30:40wt%比)、TiO2Mn
0−5i02系(例えば10:50:40wt%比) 
、CaO−Mg0−A I2O3−S iO:系(例え
ば30 : 10・15・45wt%比)、T i 0
2−A +203−3 i 02系(例えば2035:
45wt%比)、Zn0−Nb:0s−8iO:系(例
えば50:45:5wt%比) 、Z r 02Mn0
−3in2系(例えば10:55:35wt%比)から
選ばれた焼結促進剤を0.05〜5.0wt%、半導体
化促進剤N b 20 sを0.4wt%、粒界空乏層
形成剤S r (COl/2M Ol/2) 03を2
.0wt%添加し、よく混合したのち、900℃にて仮
焼した。湿式粉砕の後、乾燥、造粒、成型して、窒素9
5%−水素5%よりなる還元雰囲気中1380℃にて焼
成し、酸化ビスマスを塗布したあと大気中950℃にて
熱処理し、電極を形成して電気特性を測定した。測定結
果を第2表に示す。
(Example 2) T i 02-MgO-3i 02 was added to commercially available industrial strontium titanate (SrTi03).
system (e.g. 30:30:40wt% ratio), TiO2Mn
0-5i02 series (e.g. 10:50:40wt% ratio)
, CaO-Mg0-A I2O3-S iO: system (e.g. 30:10.15.45 wt% ratio), T i 0
2-A +203-3 i 02 series (e.g. 2035:
45wt% ratio), Zn0-Nb:0s-8iO: system (e.g. 50:45:5wt% ratio), Zr02Mn0
- 0.05 to 5.0 wt% of a sintering accelerator selected from the 3in2 system (for example, 10:55:35 wt% ratio), 0.4 wt% of the semiconductor accelerator N b 20 s, grain boundary depletion layer formation Agent S r (COl/2M Ol/2) 03 to 2
.. After adding 0 wt% and mixing well, it was calcined at 900°C. After wet grinding, drying, granulation, molding, and nitrogen 9
It was fired at 1380° C. in a reducing atmosphere consisting of 5% hydrogen and 5% hydrogen, coated with bismuth oxide, and then heat treated at 950° C. in the air to form electrodes and measure electrical properties. The measurement results are shown in Table 2.

なお、焼結促進剤は、例えばTie: −MgO3i 
02系(30・30・40wt%比)は、市販のT i
 O=、MgO,S i O2の粉体を30 + 30
40の重量比で秤量・混合し、1200℃にて仮焼し、
粉砕して得た。さらに粒界空乏層形成剤は、市販のS 
rcO3,Coo、MOO:iを混合し、900℃にて
仮焼し、粉砕して得た。
Note that the sintering accelerator is, for example, Tie: -MgO3i
02 series (30/30/40wt% ratio) is commercially available Ti
O=, MgO, Si O2 powder 30 + 30
Weighed and mixed at a weight ratio of 40, calcined at 1200°C,
Obtained by crushing. Furthermore, the grain boundary depletion layer forming agent is commercially available S
It was obtained by mixing rcO3, Coo, and MOO:i, calcining at 900°C, and pulverizing.

(以  下  余  白) 第2表より明らかなごとく、SrTl○3にT io=
 −MgO−3io:なとの焼結促進剤か0、1〜5.
0wt%、半導体化促進剤Nb=05か0.4wt%5
粒界空乏層形成剤か2,0wt%添加され焼成されて得
た本材料は極めて優れた誘電体特性を示し、コンデンサ
として使用できる。即ち顕微鏡観察の結果、焼結体の微
粒子はそれぞれの組成で粒径がよくそろっていて2.0
〜4,0μmで、誘電体損失は1.0%以下、見かけ誘
電率は2、000以上であった。その他静電容量の温度
係数、絶縁抵抗、昇圧破壊電圧7等価直列抵抗などの測
定を行ったか満足できる値を得た。なお、焼結促進剤が
5%以上になると焼結体が互いに変形し、付着して実用
的でない。
(Left below) As is clear from Table 2, Tio=
-MgO-3io: sintering accelerator of 0, 1 to 5.
0wt%, semiconductor accelerator Nb=05 or 0.4wt%5
The material obtained by adding 2.0 wt % of a grain boundary depletion layer forming agent and firing the material exhibits extremely excellent dielectric properties and can be used as a capacitor. In other words, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well matched depending on the composition.
~4.0 μm, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 2,000 or more. In addition, the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage, 7 equivalent series resistance, etc. were measured and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例3) 市販の工業用チタン酸ストロンチウム (SrTiO2)にT io2−MgO−3io2系(
例えば30:30:40wt%比)の焼結促進剤を3.
0wt%、半導体化促進剤N b : OsをQ、5w
t%、粒界空乏層形成剤S ro、s B ao、+ 
 Cao、+(C01。MO+  2)O:]、  S
 ro、+B ao、3Cao、3(Co + :M 
o +2) 03を0.05〜5.0wt%添加し、よ
く混合したのち、900℃にて仮焼した。湿式粉砕の後
、乾燥、造粒、成型して、窒素95%−水素5%よりな
る還元雰囲気中1380℃にて焼成し、酸化ビスマスを
塗布したあと大気中950°Cにて熱処理し、電極を形
成して電気特性を測定した。測定結果を第3表に示す。
(Example 3) Tio2-MgO-3io2 system (
For example, add a sintering accelerator (30:30:40wt% ratio) to 3.
0wt%, semiconductor accelerator Nb: Os is Q, 5w
t%, grain boundary depletion layer forming agent S ro, s B ao, +
Cao, +(C01.MO+ 2)O: ], S
ro, +B ao, 3Cao, 3(Co + :M
o +2) 0.05 to 5.0 wt% of 03 was added, mixed well, and then calcined at 900°C. After wet pulverization, it is dried, granulated, molded, fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen, coated with bismuth oxide, and then heat-treated at 950°C in the air to form an electrode. was formed and the electrical properties were measured. The measurement results are shown in Table 3.

なお、焼結促進剤は、例、t!fT i 02−M g
 O−S i 02系(30:30・40wt%比)は
、市販のTiO2MgO,SiO2の粉体を30・30
 : 40の重量比で秤量・混合し、1200℃にて仮
焼し、粉砕して得た。さらに粒界空乏層形成剤は、市販
のSrCO:i 、BaCO3,CaC0:+ 、Co
o。
Incidentally, the sintering accelerator is, for example, t! fT i 02-M g
O-S i 02 system (30:30/40wt% ratio) is a mixture of commercially available TiO2MgO, SiO2 powder at 30/30%
: They were weighed and mixed at a weight ratio of 40, calcined at 1200°C, and pulverized. Further, grain boundary depletion layer forming agents include commercially available SrCO:i, BaCO3, CaC0:+, Co
o.

M o O3を混合し、900℃にて仮焼し、粉砕して
得た。
It was obtained by mixing MoO3, calcining at 900°C, and pulverizing.

(以  下  余  白) 第3表より明らかなごとく、SrTiO:+lこT i
o2−MgO−3i02などの焼結促進剤力\3、0w
t%、半導体化促進剤Nb:05か0.5wt%、粒界
空乏層形成剤が0.1〜5,0wt%添加され焼成され
て得た本材料は優れた誘電体特性を示し、コンデンサと
して使用できる。即ち顕微鏡観察の結果、焼結体の微粒
子はそれぞれの組成で粒径力(よくそろっていて2〜3
μmで、誘電体損失1よ1.0%以下、見かけ誘電率は
2.000以上であった。その他静電容量の温度係数、
絶縁抵抗昇圧破壊電圧1等価直列抵抗などの測定を行っ
たが満足できる値を得た。なお、焼結促進剤が5%以上
になると焼結体が互いに変形し、付着して実用的でない
(Margin below) As is clear from Table 3, SrTiO: +l
Sintering accelerator power such as o2-MgO-3i02\3,0w
t%, a semiconductor accelerator Nb: 0.5wt%, and a grain boundary depletion layer forming agent 0.1-5.0wt% were added and fired. This material exhibits excellent dielectric properties and is suitable for use in capacitors. Can be used as That is, as a result of microscopic observation, the fine particles of the sintered body have a particle size force (well aligned and 2 to 3
In μm, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 2.000 or more. Other capacitance temperature coefficients,
Insulation resistance boost breakdown voltage 1 equivalent series resistance, etc. were measured and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

発明の効果 以上のように、本発明によれば、チタン酸ストロンチウ
ム(SrTiO3)を主成分とするペロブスカイト型酸
化物に、焼結促進添加剤を0.1〜5.0wt%、半導
体化促進添加剤Nb2O5を0.05〜2、0wt%、
およびSrl−x−y B a x Ca y(Co 
l:M O+ :) 03 (ただし、X≦03.y≦
0.3.0≦X+y≦0.6)よりなる粒界空乏層形成
剤を0.1〜5,3wt%添加し、混合・加圧成型した
のち、水素を含む還元雰囲気中1250〜1500℃に
て焼成し、その焼成物の表面に酸化ビスマス(Bi20
3)を含む粒界拡散物質を塗布し、酸化雰囲気中850
〜1200℃にて熱処理を施し電極を形成することによ
り、あるいは、実施例は示さなかったが、SrTiO:
+を主成分とするペロブスカイト型酸化物に、予めSr
l−1−アB axCa、(Col/:’Mo12:)
03  (ただし、X≦0.3.y≦0.3.0≦X+
y≦0.6)よりなる粒界空乏層形成剤を0.1〜5.
Owt%反応・固溶させておき、しかる後に焼結促進添
加剤を0.1〜5.0wt%、半導体化促進添加剤Nb
2O5を0.05〜2.0wt%添加し、混合・加圧成
型したのち、水素を含む還元雰囲気中1250〜150
0℃にて焼成し、その焼成物の表面にBi2O3を含む
粒界拡散物質を塗布し、酸化雰囲気中850〜1200
℃にて熱処理を施し電極を形成することにより、あるい
は、さらにSrTiO:+を主成分とするペロブスカイ
ト型酸化物に、焼結促進添加剤を0.1〜5.0wt%
、半導体化促進添加剤を0、05〜2. Out%、お
よびSr +−x−yB a xCa y(Co、2M
o、・2)03(ただし、X≦0.3゜y≦0.3.0
≦)(+y≦0.6)よりなる粒界空乏層形成剤を0.
1〜5.0wt%添加し、混合・加圧成型したのち、予
め大気中1250〜1500℃にて焼成し、次に水素を
含む還元雰囲気中850〜1400℃にて還元したあと
焼結体の表面にBi:O:+を含む粒界拡散物質を塗布
し、酸化雰囲気中850〜1200℃にて熱処理を施し
電極を形成することにより、良特性の粒界絶縁型半導体
セラミックコンデンサを得ることができるという効果が
得られる。
Effects of the Invention As described above, according to the present invention, 0.1 to 5.0 wt% of a sintering accelerating additive is added to a perovskite-type oxide whose main component is strontium titanate (SrTiO3). 0.05 to 2.0 wt% of agent Nb2O5,
and Srl-x-y B a x Ca y (Co
l:M O+ :) 03 (However, X≦03.y≦
After adding 0.1 to 5.3 wt% of a grain boundary depletion layer forming agent consisting of 0.3.0≦X+y≦0.6), mixing and pressure molding, the mixture was heated at 1250 to 1500°C in a reducing atmosphere containing hydrogen. Bismuth oxide (Bi20
3) is coated with a grain boundary diffusion substance containing 850%
By performing a heat treatment at ~1200°C to form an electrode, or, although no examples are shown, SrTiO:
The perovskite type oxide whose main component is + is pre-filled with Sr.
l-1-A B axCa, (Col/:'Mo12:)
03 (However, X≦0.3.y≦0.3.0≦X+
y≦0.6) in a range of 0.1 to 5.
Owt% reaction/solid solution, then 0.1 to 5.0wt% of the sintering accelerating additive, Nb, the semiconductor accelerating additive.
After adding 0.05 to 2.0 wt% of 2O5, mixing and pressure molding, 1250 to 150% of 2O5 was added in a reducing atmosphere containing hydrogen.
It is fired at 0°C, a grain boundary diffusion substance containing Bi2O3 is applied to the surface of the fired product, and the
By performing heat treatment at ℃ to form an electrode, or by adding 0.1 to 5.0 wt% of a sintering accelerating additive to a perovskite type oxide whose main component is SrTiO:+.
, 0.05 to 2.0% of the semiconductor conversion promoting additive. Out%, and Sr+−x−yB a xCay(Co, 2M
o,・2)03 (However, X≦0.3゜y≦0.3.0
≦)(+y≦0.6).
After adding 1 to 5.0 wt%, mixing and pressure molding, the sintered body was pre-fired at 1250 to 1500°C in the air, and then reduced at 850 to 1400°C in a reducing atmosphere containing hydrogen. A grain boundary insulated semiconductor ceramic capacitor with good characteristics can be obtained by applying a grain boundary diffusion substance containing Bi:O:+ to the surface and performing heat treatment at 850 to 1200°C in an oxidizing atmosphere to form an electrode. You can get the effect that you can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による粒界絶縁型半導体セラ
ミックコンデンサを示す概略図である。 11・・・・・・粒界絶縁型半導体セラミックス、12
・・・・・・電極、13・・・・・・リード線。 第 1 図
FIG. 1 is a schematic diagram showing a grain boundary insulated semiconductor ceramic capacitor according to an embodiment of the present invention. 11... Grain boundary insulation type semiconductor ceramics, 12
... Electrode, 13 ... Lead wire. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)チタン酸ストロンチウム(SrTiO_3)を主
成分とするペロブスカイト型酸化物に、焼結促進添加剤
を0.1〜5.0wt%、半導体化促進添加剤Nb_2
O_5を0.05〜2.0wt%、およびSr_1_−
_x_−_yBa_xCa_y(Co_1_/_2Mo
_1_/_2)O_3(ただし、x≦0.3、y≦0.
3、0≦x+y≦0.6)よりなる粒界空乏層形成剤を
0.1〜5.0wt%添加し、混合・加圧成型したのち
、水素を含む還元雰囲気中1250〜1500℃にて焼
成し、その焼成物の表面に酸化ビスマス(Bi_2O_
3)を含む粒界拡散物質を塗布し、酸化雰囲気中850
〜1200℃にて熱処理を施し電極を形成してなる粒界
絶縁型半導体セラミックコンデンサ。
(1) A perovskite type oxide whose main component is strontium titanate (SrTiO_3), 0.1 to 5.0 wt% of a sintering accelerating additive, and a semiconductor accelerating additive Nb_2
0.05 to 2.0 wt% O_5 and Sr_1_-
____−_yBa_xCa_y(Co_1_/_2Mo
_1_/_2)O_3 (However, x≦0.3, y≦0.
3. Add 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent consisting of 0≦x+y≦0.6), mix and pressure mold, and then at 1250 to 1500°C in a reducing atmosphere containing hydrogen. Bismuth oxide (Bi_2O_
3) is coated with a grain boundary diffusion substance containing 850%
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at ~1200°C.
(2)焼結促進添加剤がTiO_2−MgO−SiO_
2系、TiO_2−MnO−SiO_2系、CaO−M
gO−Al_2O_3−SiO_2系、TiO_2−A
l_2O_3−SiO_2系、ZnO−Nb_2O_5
−SiO_2系、ZrO_2−MnO−SiO_2系の
中から選択された混合物よりなる請求項1記載の粒界絶
縁型半導体セラミックコンデンサ。
(2) The sintering accelerator additive is TiO_2-MgO-SiO_
2 system, TiO_2-MnO-SiO_2 system, CaO-M
gO-Al_2O_3-SiO_2 system, TiO_2-A
l_2O_3-SiO_2 system, ZnO-Nb_2O_5
The grain boundary insulated semiconductor ceramic capacitor according to claim 1, comprising a mixture selected from -SiO_2 series and ZrO_2-MnO-SiO_2 series.
(3)SrTiO_3を主成分とするペロブスカイト型
酸化物に、予めSr_1_−_x_−_yBa_xCa
_y(Co_1_/_2Mo_1_/_2)O_3(た
だし、x≦0.3、y≦0.3、0≦x+y≦0.6)
よりなる粒界空乏層形成剤を0.1〜5.0wt%反応
・固溶させておき、しかる後に焼結促進添加剤を0.1
〜5.0wt%、半導体化促進添加剤Nb_2O_5を
0.05〜2.0wt%添加し、混合・加圧成型したの
ち、水素を含む還元雰囲気中1250〜1500℃にて
焼成し、その焼成物の表面にBi_2O_3を含む粒界
拡散物質を塗布し、酸化雰囲気中850〜1200℃に
て熱処理を施し電極を形成してなる粒界絶縁型半導体セ
ラミックコンデンサ。
(3) Sr_1_-_x_-_yBa_xCa is added to the perovskite-type oxide mainly composed of SrTiO_3.
_y(Co_1_/_2Mo_1_/_2)O_3 (however, x≦0.3, y≦0.3, 0≦x+y≦0.6)
0.1 to 5.0 wt% of the grain boundary depletion layer forming agent is reacted and dissolved in solid solution, and then 0.1 wt% of the sintering accelerating additive is added.
~5.0 wt% and 0.05 to 2.0 wt% of the semiconducting accelerator Nb_2O_5 are added, mixed and pressure molded, and then fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen to obtain the fired product. A grain boundary insulated semiconductor ceramic capacitor is formed by applying a grain boundary diffusion substance containing Bi_2O_3 to the surface of the capacitor and heat-treating the surface at 850 to 1200°C in an oxidizing atmosphere to form electrodes.
(4)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Co_1_/_2Mo_1_/_2)O_3(ただ
し、x≦0.3、y≦0.3、0≦x+y≦0.6)よ
りなる粒界空乏層形成剤を0.1〜5.0wt%添加し
、混合・加圧成型したのち、予め大気中1250〜15
00℃にて焼成し、次に水素を含む還元雰囲気中850
〜1400℃にて還元したあと焼結体の表面にBi_2
O_3を含む粒界拡散物質を塗布し、酸化雰囲気中85
0〜1200℃にて熱処理を施し電極を形成してなる粒
界絶縁型半導体セラミックコンデンサ。
(4) Add 0.1 to 5.0 wt% of the sintering accelerator additive and 0.05 to 2.0 w of the semiconducting accelerator Nb_2O_5 to the perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
Adding 0.1 to 5.0 wt% of grain boundary depletion layer forming agent consisting of y(Co_1_/_2Mo_1_/_2)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) After mixing and pressure molding, it is heated to 1250 to 15
Calcined at 00°C and then heated at 850°C in a reducing atmosphere containing hydrogen.
After reduction at ~1400℃, Bi_2 is added to the surface of the sintered body.
A grain boundary diffusion substance containing O_3 is applied and 85% is applied in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at 0 to 1200°C.
(5)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Co_1_/_2Mo_1_/_2)O_3(ただ
し、x≦0.3、y≦0.3、0≦x+y≦0.6)よ
りなる粒界空乏層形成剤を0.1〜5.0wt%添加し
、混合・ペースト化し、電極用ペーストと交互に印刷・
成型したのち、予め大気中1250〜1500℃にて焼
成し、次に水素を含む還元雰囲気中850〜1400℃
にて還元したあと焼結体の表面にBi_2O_3を含む
粒界拡散物質を塗布し、酸化雰囲気中850〜1200
℃にて熱処理を施してなる粒界絶縁型半導体セラミック
コンデンサ。
(5) Add 0.1 to 5.0 wt % of a sintering accelerator additive and 0.05 to 2.0 w of a semiconductor accelerator additive Nb_2O_5 to a perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
Adding 0.1 to 5.0 wt% of grain boundary depletion layer forming agent consisting of y(Co_1_/_2Mo_1_/_2)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) mixed and made into a paste, and printed/printed alternately with the electrode paste.
After molding, it is fired in advance at 1250 to 1500°C in the air, and then at 850 to 1400°C in a reducing atmosphere containing hydrogen.
After reducing the sintered body in
A grain boundary insulated semiconductor ceramic capacitor heat-treated at ℃.
JP2231732A 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type Pending JPH04112515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231732A JPH04112515A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231732A JPH04112515A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Publications (1)

Publication Number Publication Date
JPH04112515A true JPH04112515A (en) 1992-04-14

Family

ID=16928168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231732A Pending JPH04112515A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Country Status (1)

Country Link
JP (1) JPH04112515A (en)

Similar Documents

Publication Publication Date Title
JPH0524646B2 (en)
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
EP0418394B1 (en) Process for producing ceramic capacitors having varistor characteristics
JPH04112515A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112516A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112517A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112513A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH042105A (en) Grain-boundary insulation type semiconductor ceramic capacitor
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH04112512A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112514A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112518A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
GB2080789A (en) Heterophasic semiconducting ceramic compositions
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH02213101A (en) Manufacture of grain-boundary barrier type high capacitance ceramic varistor
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH02222515A (en) Manufacture of ceramic capacitor possessing varistor characteristics
JPH02215103A (en) Manufacture of grain boundary barrier type high capacitance ceramic varistor
JPH03211703A (en) Manufacture of grain boundary barrier type high electrostatic capacitance ceramic varistor
JPH02263418A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH02303106A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH0332009A (en) Capacitor and manufacture thereof
JP2568411B2 (en) Semiconductor porcelain composition