JPH042105A - Grain-boundary insulation type semiconductor ceramic capacitor - Google Patents

Grain-boundary insulation type semiconductor ceramic capacitor

Info

Publication number
JPH042105A
JPH042105A JP2103472A JP10347290A JPH042105A JP H042105 A JPH042105 A JP H042105A JP 2103472 A JP2103472 A JP 2103472A JP 10347290 A JP10347290 A JP 10347290A JP H042105 A JPH042105 A JP H042105A
Authority
JP
Japan
Prior art keywords
grain boundary
xca
yba
grain
layer forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2103472A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
篤志 伊賀
Masahiro Ito
昌宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2103472A priority Critical patent/JPH042105A/en
Publication of JPH042105A publication Critical patent/JPH042105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a ceramic capacitor having a large effective dielectric constant by adding a grain-boundary depletion-layer forming agent to a perovskite type oxide mainly comprising strontium titanate, mixing and pressure-molding the whole, baking the molded form in a reducing atmosphere containing hydrogen, coating the surface of the baked substance with a grain-boundary diffusate containing bismuth oxide and forming an electrode through heat treatment in an oxidizing atmosphere. CONSTITUTION:A sintering accelerating additive (0.1-50wt.%), a semiconductor-change accelerating additive (0.05-2.0wt.%) and a grain-boundary depletion-layer forming agent (0.1-6.0wt.%) composed of Sr1-x-yBaxCay (Mn1/2Nb1/2)O3 are added to a perovskite type oxide mainly comprising strontium titanate, mixing-pressure molded, and baked at 1250-1500 deg.C in a reducing atmosphere containing hydrogen. The surface of the baked substance is coated with a grain-boundary diffusate containing bismuth oxide, and an electrode is formed through heat treatment at 850-1200 deg.C in an oxidizing atmosphere. Grain-boundary insulation type semiconductor ceramics 11 and a lead 13 are mounted on the electrode 12, thus acquiring a semiconductor ceramic capacitor having large grain-boundary insulating properties.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒界絶縁型半導体セラミックコンデンサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to grain boundary insulated semiconductor ceramic capacitors.

従来の技術 近年、この種のセラミック酸化物半導体の結晶粒界を絶
縁化することによって、これまでのセラミ、り誘電体と
比較して、実効誘電率の非常に大きなコンデンサ素体が
得られることが知られている。例えば5rTiO=を主
成分とし、これにNb2O5およびTrO□−Alz(
h−5tow系混合物を添加して成形し、焼結してなる
多結晶磁器半導体の粒界に、酸化銅(Cub)および酸
化ビスマス(Bias3)を拡散せしめ、前記結晶粒界
°に空乏層を形成し、粒界を絶縁化し電極を形成して得
た粒界絶縁型半導体コンデンサにおいては、昇圧破壊電
圧1200V/閣、絶縁抵抗的lX10’MΩ/CIの
絶縁特性を保持しながら、実効誘電率20 、000〜
100.000のごとく大きな値かえられている。なお
、ここで、拡散物質であるCub。
Conventional technology In recent years, by insulating the grain boundaries of this type of ceramic oxide semiconductor, it has become possible to obtain capacitor elements with a much larger effective permittivity than conventional ceramics and dielectrics. It has been known. For example, 5rTiO= is the main component, and Nb2O5 and TrO□-Alz(
Copper oxide (Cub) and bismuth oxide (Bias3) are diffused into the grain boundaries of a polycrystalline ceramic semiconductor obtained by adding an h-5tow mixture, molding, and sintering to form a depletion layer at the grain boundaries. The grain boundary insulated semiconductor capacitor obtained by forming electrodes by insulating the grain boundaries has a boost breakdown voltage of 1200 V/K, an insulation resistance of 1 x 10'MΩ/CI, and an effective dielectric constant of 20,000~
A large value like 100.000 has been changed. Note that here, Cub is a diffusion substance.

Biassの役割について記すとCuOは焼結体の結晶
粒界にあって電子トラップセンタを形成し、n型半導体
結晶の結晶粒中にあって、粒界に近い部分に存在する電
子をトラップし、粒界近傍に電子の存在しない空乏層を
形成する働きをする。粒界絶縁型半導体セラミックコン
デンサはかようにして形成された空乏層の両側に電荷を
蓄えてコンデンサを構成するのである。一方、Biz(
hはZrO□等とともに酸素の良導体として知られてお
り、粒界に存在して外部より焼結体内部まで酸素を拡散
で運搬し、粒界空乏層形成に必要な酸素を供給する働き
をするものである。
Regarding the role of Biass, CuO forms an electron trap center in the grain boundaries of the sintered body, and traps electrons in the crystal grains of the n-type semiconductor crystal near the grain boundaries. It functions to form a depletion layer without electrons near the grain boundaries. A grain boundary insulated semiconductor ceramic capacitor forms a capacitor by storing charge on both sides of the depletion layer thus formed. On the other hand, Biz(
h is known as a good conductor of oxygen along with ZrO□, etc., and it exists at the grain boundaries and functions to transport oxygen from the outside to the inside of the sintered body by diffusion and supply the oxygen necessary for the formation of grain boundary depletion layers. It is something.

発明が解決しようとする課題 しかしながら、このような従来の製造方法でえた粒界絶
縁型半導体セラミックコンデンサは、大きな静電容量を
得るため、焼結体中の結晶粒をできるだけ大きなものに
し、ペースト状にした酸化銅含有の酸化ビスマスなどを
、高温で焼成してえた焼結体の周囲に塗布し、しかる後
に熱処理を施すことによって旧zOs 、CuO等を焼
結体内部にまで拡散させるという方法で行なっているが
、積層型のセラミックスコンデンサの場合は電極間隔が
狭くなるため焼結体の結晶粒の粒径は抑制されねばなら
ず、また従来のこのような方法で作製した素子は、Cu
Oなとは拡散しに(くそのため特性にバラツキができや
すく、さらに厚みのあるものは内部迄七分(1こCuO
等を拡散させることが困難であるので、素子の大きさに
制限がある等の課題を有するものであった。
Problems to be Solved by the Invention However, in order to obtain a large capacitance, grain boundary insulated semiconductor ceramic capacitors produced using such conventional manufacturing methods are made by making the crystal grains in the sintered body as large as possible and forming them into a paste-like structure. This method involves applying bismuth oxide containing copper oxide, etc., around the sintered body obtained by firing at a high temperature, and then applying heat treatment to diffuse old zOs, CuO, etc. into the inside of the sintered body. However, in the case of multilayer ceramic capacitors, the electrode spacing becomes narrow, so the grain size of the sintered body must be suppressed, and elements fabricated by conventional methods are
CuO tends to diffuse (damaged), so it tends to cause variations in properties, and thicker ones have a thickness of about 7 minutes (1 piece CuO).
Since it is difficult to diffuse the elements, there are problems such as restrictions on the size of the element.

課題を解決するための手段 この課題を解決するために本発明は、5rTi03を主
成分としたペロブスカイト型酸化物に、焼結促進添加剤
(0,1〜5.01%)、半導体化促進添加剤(0,0
5〜2. 0wt%)およびSr1−X−? Bax 
Ca。
Means for Solving the Problem In order to solve this problem, the present invention adds a sintering accelerating additive (0.1 to 5.01%) and a semiconducting accelerating additive to a perovskite-type oxide mainly composed of 5rTi03. agent (0,0
5-2. 0 wt%) and Sr1-X-? Bax
Ca.

(Mr++zz Nb+/z)O*、(0,1〜6.0
wt%)、またはSr1−x−F Ba、 Ca、  
(Cot/3 Nbz/5)Os、(O61〜5.0w
t%)、または5r1−x−y BaXCay  CC
u+ys Nbz73)01、 (0,1〜10.0w
t%)、 (ただし、いずれも0≦x+y≦1)よりな
る粒界空乏層形成剤を添加し、混合、印刷・成形したの
ち高温で焼結し、半導体化した後、酸化雰囲気中850
〜1200’Cで酸化ビスマス等の拡散処理をほどこし
て粒界絶縁型半導体セラミックコンデンサを得るもので
ある。
(Mr++zz Nb+/z)O*, (0,1~6.0
wt%), or Sr1-x-F Ba, Ca,
(Cot/3 Nbz/5)Os, (O61~5.0w
t%), or 5r1-x-y BaXCay CC
u+ys Nbz73)01, (0,1~10.0w
After adding a grain boundary depletion layer forming agent consisting of (0≦x+y≦1), mixing, printing and molding, sintering at high temperature to make a semiconductor, 850% in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor is obtained by performing a diffusion treatment of bismuth oxide or the like at ~1200'C.

作用 上記のように高温で、5rTi03を主成分としたペロ
ブスカイト型酸化物と粒界空乏層形成剤とじてSr+−
x−y Bax Cay (Mn+zz Nb+zz)
O:iまたは5rI−x−yBa、 Cay(CoIz
s Nbzzt)またはSr+−x−y Bah Ca
y(CIJ1/3 Nbz/3)のいずれかと半導体化
促進添加剤とを反応・固溶させておき、焼成時の冷却過
程で銅を含む酸化物を粒界に析出させ、また、粒界に拡
散した酸化ビスマス内を拡散して到達した酸素によって
更に銅等の粒界物質を酸化させることによって粒界に電
子のトラップセンタを形成し、還元によって形成された
低抵抗の半導体結晶内に粒界に沿って空乏層を形成する
。このようにして得た空乏層は絶縁性もよく、空乏層の
両側に電荷を蓄えて良質のコンデンサが得られるもので
ある。
Effect As mentioned above, at high temperatures, the perovskite-type oxide mainly composed of 5rTi03 and Sr+-
x-y Bax Cay (Mn+zz Nb+zz)
O:i or 5rI-x-yBa, Cay(CoIz
s Nbzzt) or Sr+-x-y Bah Ca
y (CIJ1/3 Nbz/3) and a semiconductor-promoting additive are reacted and dissolved in solid solution, and during the cooling process during firing, oxides containing copper are precipitated at the grain boundaries. The oxygen that has diffused through the diffused bismuth oxide further oxidizes grain boundary substances such as copper, forming electron trap centers at the grain boundaries, and forming grain boundaries within the low-resistance semiconductor crystal formed by reduction. A depletion layer is formed along the . The depletion layer thus obtained has good insulating properties, and charges are stored on both sides of the depletion layer, resulting in a high-quality capacitor.

すなわち、焼結体部の結晶粒の粒径は小さくしかもよく
揃い、粒界空乏層形成剤である酸化銅等の塗布・拡散を
必要とせず、単に、酸化ビスマス等の粒界拡散物質だけ
を塗布し空気中で熱処理を施して拡散するだけで特性の
よい、大きな粒界絶縁型半導体セラミックコンデンサを
得られるものである。
In other words, the grain size of the crystal grains in the sintered body is small and uniform, and there is no need to apply or diffuse a grain boundary depletion layer forming agent such as copper oxide. A large, grain-boundary insulated semiconductor ceramic capacitor with good characteristics can be obtained simply by applying it, heat-treating it in air, and diffusing it.

実施例 本発明の一実施例の粒界絶縁型半導体セラミックコンデ
ンサについて、以下の各実施例に基づいて説明する。な
お、第1図は粒界絶縁型半導体コンデンサの斜視図であ
り、1■は粒界絶縁型半導体セラミンクス、12は電極
、13はリード線である。
Embodiment A grain boundary insulated semiconductor ceramic capacitor according to an embodiment of the present invention will be described based on the following embodiments. Note that FIG. 1 is a perspective view of a grain boundary insulated semiconductor capacitor, in which 1 is a grain boundary insulated semiconductor ceramic, 12 is an electrode, and 13 is a lead wire.

(実施例1) 蓚酸チタニルストロンチウム (SrTiO(CzOa
)・4H,0)を熱分解してえたチタン酸ストロンチウ
ム(SrTiO3)に焼結促進剤Ti0z−AhOs−
5i(h(20:35:45−を比)を0.05〜6.
0wt%、半導体化促進剤Nbzosを0.02〜3.
 0wt%、粒界空乏層形成剤Sr (Mn + yz
Nb+7z)Oゴを0.05〜B、0wt%添加し、よ
く混合したのち、900”Cにて仮焼した。湿式粉砕の
後、乾燥、造粒、成型して、大気中1400℃にて焼結
し、再び湿式粉砕の後、樹脂及び有機溶剤をもちいてペ
ースト化し、電極用白金ペーストと交互に印刷し、13
00℃にて水素還元し、酸化ビスマスを塗布したあと大
気中950℃にて熱処理し、電極を調整して電気特性を
測定した。測定結果を第1表に示す。
(Example 1) Titanylstrontium oxalate (SrTiO(CzOa)
)・4H,0) is added to strontium titanate (SrTiO3) obtained by thermal decomposition, and the sintering accelerator Ti0z-AhOs-
5i (h (ratio of 20:35:45)) from 0.05 to 6.
0 wt%, and 0.02 to 3.0 wt% of the semiconductor accelerator Nbzos.
0 wt%, grain boundary depletion layer forming agent Sr (Mn + yz
After adding 0.05 to 0 wt% of Nb+7z)O and mixing well, it was calcined at 900"C. After wet pulverization, it was dried, granulated, molded, and heated at 1400°C in the air. After sintering and wet pulverizing again, it was made into a paste using a resin and an organic solvent, and printed alternately with platinum paste for electrodes.
After hydrogen reduction at 00° C. and application of bismuth oxide, heat treatment was performed at 950° C. in the air, electrodes were adjusted, and electrical characteristics were measured. The measurement results are shown in Table 1.

なお、焼結促進剤Ti02−AlzO)−3iO□(2
0: 35 : 45w を比)は、市販のTiCl2
、A1□O:+ 、SiO□の粉体を20:35 : 
45の重量比で坪量・混合し、1200℃にて仮焼し、
粉砕して得た。更に粒界空乏層形成剤Sr(Mn+/z
 Nb1yJO3は、市販の5rCO* 、MnO、N
btOsを混合し、900℃にて仮焼し、粉砕して得た
In addition, the sintering accelerator Ti02-AlzO)-3iO□(2
0:35:45w) is a commercially available TiCl2
, A1□O:+, SiO□ powder at 20:35:
The basis weight was mixed at a weight ratio of 45, and calcined at 1200°C.
Obtained by crushing. Furthermore, a grain boundary depletion layer forming agent Sr (Mn+/z
Nb1yJO3 is commercially available 5rCO*, MnO, N
btOs was mixed, calcined at 900°C, and pulverized.

(以下余白) 第1表 第1表より明らかなごと(,5rTiO+に焼結促進剤
Ti0z−AIz03−5iO2が0.1〜5.0wt
%、半導体化促進剤NbzOsが0.05〜2.0wt
%、粒界空乏層形成剤Sr(Mn+zz Nb+y□)
Osが0.1〜6.0wt%添加され焼成されて得た本
材料は極めて優れたjan δ値が小さい誘電体特性を
示し、コンデンサとして使用できる。即ち顕微鏡観察の
結果、焼結体の微粒子は粒径がよくそろっていて2.0
〜4,0μ−で、誘電体損失は1.0%以下、見かけ誘
電率は2,000以上であった。その他静電容量の温度
係数、絶縁抵抗、昇圧破壊電圧、等個直列抵抗などの測
定を行ったが満足出来る値をえた。なお、焼結促進剤が
5%を越えると焼結体が互いに変形し、付着して実用的
でない。
(Left below) Table 1 As is clear from Table 1, 0.1 to 5.0 wt of the sintering accelerator Ti0z-AIz03-5iO2 is added to 5rTiO+.
%, semiconductor accelerator NbzOs is 0.05-2.0wt
%, grain boundary depletion layer forming agent Sr (Mn+zz Nb+y□)
This material, which is obtained by adding 0.1 to 6.0 wt% of Os and firing, exhibits extremely excellent dielectric properties with a small Jan δ value, and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well uniformed, and the diameter was 2.0.
~4.0 μ-, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 2,000 or more. We also measured the temperature coefficient of capacitance, insulation resistance, boost breakdown voltage, and equal series resistance, and found satisfactory values. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例2) 市販の工業用チタン酸ストロンチウム(SrTiOi)
に5r04azOs系(例えば40:6ht比) 、T
iOz−MgO−3tCh系(例えば30:30:40
iit比) 、TiOz−MnO−SiO2系(例えば
10:50:40sit比) 、CaO−Mg0−Al
2O2−5iOt系(例えば30:10:15:45w
t比) 、TiO□−^hoz−3iO□系(例えば2
0:35:45wt%比) 、Zn0−NbzOs−S
iO2系(例えば50:45: 5 wt%比) 、Z
rJ−MnO−3iO2系(例えば10:55:35w
t%比)から選ばれた焼結促進剤を2.0wt%、半導
体化促進剤Ytosを0.4wt%、粒界空乏層形成剤
Sr(Mn+zz Nb+zz)Osを0.05〜8.
0iit%添加し、よく混合したのち、900″Cにて
仮焼した。湿式粉砕の後、乾燥、造粒、成型して、窒素
95%−水素5%よりなる還元雰囲気中1380”Cに
て焼成し、酸化ビスマスを塗布したあと大気中950℃
にて熱処理し、電極を形成して電気特性を測定した。測
定結果を第2表に示す、なお、焼結促進剤は、例えばT
iO,−MgO−3iOz(30:30:40wt比)
は、市販(D T i Ot、MgO,5iOz(7)
粉体を30:30:40の重量比で坪量・混合し、12
00℃にて仮焼し、粉砕して得た。更に粒界空乏層形成
剤は、市販のSrCO3゜MnO、Nb105を混合し
、900℃にて仮焼し、粉砕して得た。
(Example 2) Commercially available industrial strontium titanate (SrTiOi)
5r04azOs system (e.g. 40:6ht ratio), T
iOz-MgO-3tCh system (e.g. 30:30:40
iit ratio), TiOz-MnO-SiO2 system (e.g. 10:50:40sit ratio), CaO-Mg0-Al
2O2-5iOt system (e.g. 30:10:15:45w
t ratio), TiO□-^hoz-3iO□ system (e.g. 2
0:35:45wt% ratio), Zn0-NbzOs-S
iO2 system (e.g. 50:45:5 wt% ratio), Z
rJ-MnO-3iO2 system (e.g. 10:55:35w
2.0 wt % of the sintering accelerator selected from t% ratio), 0.4 wt % of the semiconductor accelerator Ytos, and 0.05 to 8 wt % of the grain boundary depletion layer forming agent Sr(Mn+zz Nb+zz)Os.
After adding 0iit% and mixing well, it was calcined at 900"C. After wet grinding, it was dried, granulated and molded, and then heated at 1380"C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen. After baking and coating with bismuth oxide, heat to 950°C in the atmosphere.
After heat treatment, electrodes were formed and electrical properties were measured. The measurement results are shown in Table 2. The sintering accelerator is, for example, T
iO, -MgO-3iOz (30:30:40wt ratio)
is commercially available (D Ti Ot, MgO, 5iOz (7)
Mix the powders at a weight ratio of 30:30:40,
The product was calcined at 00°C and pulverized. Further, a grain boundary depletion layer forming agent was obtained by mixing commercially available SrCO3°MnO and Nb105, calcining the mixture at 900°C, and pulverizing the mixture.

(以下余白ン 第2表より明らかなごとく、5rTi03にTiOz2
−MgO−5inなどの焼結促進剤が2.0wt%、半
導体化促進剤Y2O3が0.4wt%、粒界空乏層形成
剤が0.1〜6.0wt%添加され焼成されて得た本材
料は極めて優れた誘電体特性を示し、コンデンサとして
使用できる。即ち顕微鏡観察の結果、焼結体の微粒子は
それぞれの組成で粒径がよくそろっていて2.0〜4.
0μmで、誘電体損失は1.0%以下、見かけ誘電率は
2.000以上であった。その他静電容量の温度係数、
絶縁抵抗、昇圧破壊電圧、等価直列抵抗などの測定を行
ったが満足出来る値をえた。なお、焼結促進剤が5%以
上になると焼結体が互い第3表 に変形し、付着して実用的でない。
(As is clear from Table 2 in the margin below, TiOz2 is added to 5rTi03.
- A book obtained by adding 2.0 wt% of a sintering accelerator such as MgO-5in, 0.4 wt% of a semiconductor accelerator Y2O3, and 0.1 to 6.0 wt% of a grain boundary depletion layer forming agent and firing. The material exhibits excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well matched depending on the composition, ranging from 2.0 to 4.
At 0 μm, the dielectric loss was 1.0% or less and the apparent dielectric constant was 2.000 or more. Other capacitance temperature coefficients,
We measured insulation resistance, boosted breakdown voltage, equivalent series resistance, etc., and found satisfactory values. It should be noted that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例3) 市販の工業用チタン酸ストロンチウム(SrTiO3)
にTi(h−MgO−5iOz系(例えば30:30:
4(:ht比)の焼結促進剤を4.0wt%、半導体促
進剤間、 、Nb、O,、Ta2’s 、La2O2、
Y2O3を1.Qwt%、粒界空乏層形成剤Sr6. 
* Baa、 + Cao、 + (Mn+zz Nb
+yz)Oz、Sro、 aBa6.x Cao、s(
Mn+/z Nb+zz)Osを2.0wt%添加し、
よく混合したのち、900℃にて仮焼した。湿式粉砕の
後、乾燥、造粒、成型して、窒素95%−水素5%より
なる還元雰囲気中1380℃にて焼成し、酸化ビスマス
を塗布したあと大気中950℃にて熱処理し、電極を形
成して電気特性を測定した。測定結果を第3表に示す。
(Example 3) Commercially available industrial strontium titanate (SrTiO3)
Ti (h-MgO-5iOz system (e.g. 30:30:
4 (:ht ratio) of sintering accelerator of 4.0 wt%, between semiconductor accelerators, Nb, O,, Ta2's, La2O2,
Y2O3 to 1. Qwt%, grain boundary depletion layer forming agent Sr6.
* Baa, + Cao, + (Mn+zz Nb
+yz) Oz, Sro, aBa6. x Cao,s(
Adding 2.0 wt% of Mn+/z Nb+zz)Os,
After mixing well, the mixture was calcined at 900°C. After wet pulverization, it is dried, granulated, molded, and fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen. After coating with bismuth oxide, it is heat-treated at 950°C in the air to form an electrode. The electrical properties were measured. The measurement results are shown in Table 3.

なお、焼結促進剤は、例えばTiOz−MgO−5iC
h系(30:30 : 40w を比)は、市販のTi
O2,MgO,5iO1の粉体を30:30:40の重
量比で坪量・混合し、1200℃にて仮焼し、粉砕して
得た。
Note that the sintering accelerator is, for example, TiOz-MgO-5iC.
h series (30:30:40w ratio) is commercially available Ti
The powders of O2, MgO, and 5iO1 were mixed in basis weight at a weight ratio of 30:30:40, calcined at 1200°C, and pulverized.

更に粒界空乏層形成剤は、市販のSrCO2、BaC0
,、MnO、NbJsを混合し、900℃にて仮焼し、
粉砕して得た。
Further, grain boundary depletion layer forming agents include commercially available SrCO2, BaC0
,, MnO, and NbJs were mixed and calcined at 900°C.
Obtained by crushing.

第3表より明らかなご(!: < 、SrTiO3ニT
iO,−MgO5iO2などの焼結促進剤が4.0wt
%、半導体化促進剤Y20.が1.0wt%、粒界空乏
層形成剤が2.0wt%添加され焼成されて得た本材料
は優れた誘電体特性を示し、コンデンサとして使用でき
る。即ち顕微鏡観察の結果、焼結体の微粒子はそれぞれ
の組成で粒径がよくそろっていて2〜3μ−で、誘電体
損失は1.0%以下、見かけ誘電率は2,000以上で
あった。その他静電容量の温度係数、絶縁抵抗、昇圧破
壊電圧、等価直列抵抗などの測定を行ったが満足出来る
値をえた。なお、焼結促進剤が5%以上になると焼結体
が互いに変形し、付着して実用的でない。
It is clear from Table 3 (!: < , SrTiO3 NiT
4.0wt of sintering accelerator such as iO, -MgO5iO2
%, semiconducting accelerator Y20. The present material obtained by adding 1.0 wt % of aluminum and 2.0 wt % of a grain boundary depletion layer forming agent and firing it exhibits excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well matched for each composition and was 2 to 3 μ-, the dielectric loss was less than 1.0%, and the apparent dielectric constant was more than 2,000. . We also measured the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage, and equivalent series resistance, and found satisfactory values. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例4) 蓚酸チタニルストロンチウム(SrTiO(CaO4)
・4H,O)を熱分解してえたチタン酸ストロンチウム
(Sr丁jOz) Lこ焼結促進剤子jog−AhOs
−3iOz(20:35:45−を比)を0.05〜6
.0wt%、半導体化促進剤Nb、o。
(Example 4) Titanyl strontium oxalate (SrTiO(CaO4)
Strontium titanate (Sr-AhOs) obtained by thermal decomposition of 4H, O)
-3iOz (ratio 20:35:45-) from 0.05 to 6
.. 0 wt%, semiconductor accelerator Nb, o.

を0.02〜3.0 iet%、粒界空乏層形成剤5r
(Culz3Nb*z3)Oxを0.05〜6. 0w
t%t%し、よく混合したのち、900℃にて仮焼した
。湿式粉砕の後、乾燥、造粒、成型して、大気中140
0”Cにて焼結し、再び湿式粉砕の後、樹脂及び有機溶
剤をもちいてベースト化し、電極用白金ペーストと交互
に印刷し、1300℃にて水素還元し、酸化ビスマスを
塗布したあと大気中950″Cにて熱処理し、電極を調
整して電気特性を測定した。測定結果を第4表に示す。
0.02 to 3.0 iet%, grain boundary depletion layer forming agent 5r
(Culz3Nb*z3)Ox from 0.05 to 6. 0w
After mixing thoroughly, the mixture was calcined at 900°C. After wet pulverization, drying, granulation, molding, and
Sintered at 0"C, wet-pulverized again, made into a base using resin and organic solvent, printed alternately with platinum paste for electrodes, hydrogenated at 1300°C, coated with bismuth oxide, and exposed to air. Heat treatment was performed at 950''C, and the electrodes were adjusted and electrical properties were measured. The measurement results are shown in Table 4.

なお、焼結促進剤TiO□−AIz03−5iO□(2
0:35:45wt比)は、市販のTi0z、Alt(
h 、5iOzの粉体を20:35:45の重量比で坪
量・混合し、1200℃にて仮焼し、粉砕して得た。更
に粒界空乏層形成剤5r(Cu+7s Nt+zz*)
0+ は、市販の5rCO,、CuO、Nb2O5を混
合し、900’Cにて仮焼し、粉砕して得た。
In addition, the sintering accelerator TiO□-AIz03-5iO□(2
0:35:45wt ratio) is commercially available TiOz, Alt (
Powders of 5 iOz were mixed in basis weight at a weight ratio of 20:35:45, calcined at 1200°C, and pulverized. Furthermore, grain boundary depletion layer forming agent 5r (Cu+7s Nt+zz*)
0+ was obtained by mixing commercially available 5rCO, CuO, and Nb2O5, calcining at 900'C, and pulverizing.

第4表より明らかなごとく、5rTi(hに焼結促進剤
Ti0z−Alz03−5i(hが0.1〜5.0wt
%、半導体化促進剤NbzOsが0.05〜2.Qwt
%、粒界空乏層形成剤5rCCu+/s Nbzy3)
Oxが0.1〜5.0wt%添加され焼成されて得た本
材料は掻めて優れた誘電体特性を示し、コンデンサとし
て使用できる。即ち顕微鏡観察の結果、焼結体の微粒子
は粒径がよくそろっていて2.0〜4.0μ■で、誘電
体損失は1.0%以下、見かけ誘電率は2,500以上
であった。その低静電容量の温度係数、絶縁抵抗、昇圧
破壊電圧、等個直列抵抗などの測定を行ったが満足出来
る値をえた。なお、焼結促進剤が5%以上になると焼結
体が互いに変形し、付着して実用的でない。
As is clear from Table 4, the sintering accelerator Ti0z-Alz03-5i (h is 0.1 to 5.0wt) is added to 5rTi (h).
%, and the semiconducting accelerator NbzOs is 0.05 to 2. Qwt
%, grain boundary depletion layer forming agent 5rCCu+/s Nbzy3)
This material obtained by adding 0.1 to 5.0 wt% of Ox and firing it exhibits excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well aligned, ranging from 2.0 to 4.0μ■, the dielectric loss was less than 1.0%, and the apparent dielectric constant was more than 2,500. . We measured the temperature coefficient of its low capacitance, insulation resistance, boosted breakdown voltage, and equal series resistance, and found satisfactory values. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例5) 市販の工業用チタン酸ストロンチウム(SrTi(h)
にTiO,−MgO−5iOz系(例えば30 : 3
0 : 40w を比)、TiO□−MnO−5iOz
系(例えば10:50:40wt比) 、CaO−Mg
0A1z03−5iO1系(例えば30:10:15:
45wt比) 、Ti0l−AIzol−5iO1系(
例えば20:35:45st%比) 、Zn0−Nb*
03−5iOz系(例えば50:45: 5 wt%比
)、ZrOzMnO−5iO2系(例えば10 :55
 : 35w t%比)から選ばれた焼結促進剤を2.
0wt%、半導体化促進剤Y2O3を04−t%、粒界
空乏層形成剤5r(Cu+z:+ Nbzz3)03を
0.05〜6.0wt%添加し、よく混合したのち、9
00℃にて仮焼した。湿式粉砕の後、乾燥、造粒、成型
して、窒素95%−水素5%よりなる還元雰囲気中13
80℃にて焼成し、酸化ビスマスを塗布したあと大気中
950’Cにて熱処理し、電極を形成して電気特性を測
定した。測定結果を第5表に示す。
(Example 5) Commercially available industrial strontium titanate (SrTi(h)
TiO, -MgO-5iOz system (e.g. 30:3
0:40w), TiO□-MnO-5iOz
system (e.g. 10:50:40wt ratio), CaO-Mg
0A1z03-5iO1 system (e.g. 30:10:15:
45wt ratio), Ti0l-AIzol-5iO1 system (
For example, 20:35:45st% ratio), Zn0-Nb*
03-5iOz system (e.g. 50:45:5 wt% ratio), ZrOzMnO-5iO2 system (e.g. 10:55
: 35wt% ratio).
After adding 0 wt%, 04-t% of semiconductor accelerator Y2O3, and 0.05 to 6.0 wt% of grain boundary depletion layer forming agent 5r(Cu+z:+Nbzz3)03 and mixing well, 9
It was calcined at 00°C. After wet pulverization, drying, granulation, and molding are carried out in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen.
It was fired at 80° C., coated with bismuth oxide, and then heat treated at 950° C. in the air to form electrodes and measure electrical properties. The measurement results are shown in Table 5.

なお、焼結促進剤は、例えばTiO□−Mgo−sio
、系(30:30:40wt比)は、市販のTie、、
MgO、5i02の粉体を30:30:40の重量比で
坪量・混合し、1200’Cにて仮焼し、粉砕して得た
。更に粒界空乏層形成剤は、市販の5rCOz 、Cu
O、NbzOsを混合し、900℃にて仮焼し、粉砕し
て得た。
Note that the sintering accelerator is, for example, TiO□-Mgo-sio
, system (30:30:40wt ratio) was commercially available Tie,
The powders of MgO and 5i02 were mixed in basis weight at a weight ratio of 30:30:40, calcined at 1200'C, and pulverized. Furthermore, grain boundary depletion layer forming agents include commercially available 5rCOz and Cu.
It was obtained by mixing O and NbzOs, calcining at 900°C, and pulverizing.

似下余白) 第5表 第5表より明らかなごと(,5rTiOsにTiO□−
MgO3iO□などの焼結促進剤が2.0wt%、半導
体化促進A’l] y z O3が0.4wt%、粒界
空乏層形成剤が0.1〜5、Qwt%添加され焼成され
て得た本材料は極めて優れた誘電体特性を示し、コンデ
ンサとして使用できる。即ち顕微鏡観察の結果、焼結体
の微粒子はそれぞれの組成で粒径がよくそろっていて2
.0〜4.0μmで、誘電体損失は1.0%以下、見か
け誘電率は2,500以上であった。その他静電容量の
温度係数、絶縁抵抗、昇圧破壊電圧、等価直列抵抗など
の測定を行ったが満足出来る値をえた。なお、焼結促進
剤が5%以上になると焼結体が互いに変形し、付着して
実用的でない。
It is clear from Table 5 (, 5rTiOs has TiO□-
Sintering accelerator such as MgO3iO□ is added at 2.0 wt%, semiconductor formation accelerator A'l] yz O3 is added at 0.4 wt%, grain boundary depletion layer forming agent is added at 0.1 to 5, Qwt% and fired. The resulting material exhibits extremely excellent dielectric properties and can be used as a capacitor. In other words, as a result of microscopic observation, the fine particles of the sintered body have a uniform particle size depending on the composition.
.. In the range of 0 to 4.0 μm, the dielectric loss was 1.0% or less and the apparent dielectric constant was 2,500 or more. We also measured the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage, and equivalent series resistance, and found satisfactory values. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

3実施べ5) プ+−り 市販の工業用チタン酸ストロンチウム(SrTiOa)
にTi02−MgO−3iO□系(例えば30:30:
40wt比)の焼結促進剤を4.0wt%、半導体促進
剤−0ff、Nb2O5、Ta2es 、LazOz 
、YzO3を1.Qwt%、粒界空乏層形成剤Sro、
s Ba0. Cao、1(Cu+yz Nb+zz)
03、Sr6.。
3.5) Commercially available industrial strontium titanate (SrTiOa)
Ti02-MgO-3iO□ system (e.g. 30:30:
4.0 wt% sintering accelerator (40 wt ratio), semiconductor accelerator -0ff, Nb2O5, Ta2es, LazOz
, YzO3 to 1. Qwt%, grain boundary depletion layer forming agent Sro,
sBa0. Cao, 1 (Cu+yz Nb+zz)
03, Sr6. .

Bao、3Cao、3CCu+/z Nb+zz)Oz
を2.Qwt%添加し、よく混合したのち、900℃に
て仮焼した。湿式粉砕の後、乾燥、造粒、成型して、窒
素95%−水素5%よりなる還元雰囲気中1380℃に
て焼成し、酸化ビスマスを塗布したあと大気中950℃
にて熱処理し、電極を形成して電気特性を測定した。測
定結果を第6表に示す。なお、焼結促進剤は、例えばT
iOz−MgO−5i(h (30:30:40wt比
)は、市販のTi(h、MgO、SiO2の粉体を30
:30:40の重量比で坪量・混合し、1200℃にて
仮焼し、粉砕して得た。更に粒界空乏層形成剤は、市販
の5rCO,、BaCO3、CaCO3、CuO、Nb
、Osを混合し、900℃にて仮焼し、粉砕して得た。
Bao, 3Cao, 3CCu+/z Nb+zz)Oz
2. After adding Qwt% and mixing well, it was calcined at 900°C. After wet pulverization, it is dried, granulated, molded, and fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen. After coating with bismuth oxide, it is heated at 950°C in the air.
After heat treatment, electrodes were formed and electrical properties were measured. The measurement results are shown in Table 6. Note that the sintering accelerator is, for example, T
iOz-MgO-5i(h (30:30:40wt ratio)) is a mixture of commercially available Ti(h, MgO, SiO2 powder)
:30:40 weight ratio, calcined at 1200°C, and pulverized. Furthermore, grain boundary depletion layer forming agents include commercially available 5rCO, BaCO3, CaCO3, CuO, Nb
, Os were mixed, calcined at 900°C, and pulverized.

(以下余白ン 第6表 第6表より明らかなごとく、5rTi03にTi02−
MgO−5iO□などの焼結促進剤が4.Qwt%、半
導体化促進剤Y!03が1.0wt%、粒界空乏層形成
剤が2.Qwt%添加され焼成されて得た本材料は優れ
た誘電体特性を示し、コンデンサとして使用できる。即
ち顕微鏡観察の結果、焼結体の微粒子はそれぞれの組成
で粒径がよくそろっていて2〜3μ請で、誘電体損失は
1.0%以下、見かけ誘電率は2,000以上であった
。その他静電容量の温度係数、絶縁抵抗、昇圧破壊電圧
、等個直列抵抗などの測定を行ったが満足出来る値をえ
た。なお、焼結促進剤が5%以上になると焼結体が互い
に変形し、付着して実用的でない。
(As is clear from Table 6 below, 5rTi03 and Ti02-
4. Sintering accelerator such as MgO-5iO□. Qwt%, semiconductor accelerator Y! 03 was 1.0 wt%, and the grain boundary depletion layer forming agent was 2.0 wt%. The material obtained by adding Qwt% and firing shows excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the fine particles of the sintered body had a uniform particle size of 2 to 3 μm depending on the composition, the dielectric loss was less than 1.0%, and the apparent dielectric constant was more than 2,000. . We also measured the temperature coefficient of capacitance, insulation resistance, boost breakdown voltage, and equal series resistance, and found satisfactory values. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例7) 蓚酸チタニルストロンチウム (SrTiO(CzO4
)・4820)を熱分解してえたチタン酸ストロンチウ
ム(SrTiOi)に焼結促進剤Ti0z−Alz03
−SiOz(20:35:45−を比)を0.05〜6
.0wt%、半導体化促進剤Nb2O5を0.02〜3
. 0wt%、粒界空乏層形成剤5r(CoI2.JN
tlz7x)03を0.05〜12.0wt%添加し、
よく混合したのち、900℃にて仮焼した。湿式粉砕の
後、乾燥、造粒、成型して、大気中1400℃にて焼結
し、再び湿式粉砕の後、樹脂及び有機溶剤をもちいてペ
ースト化し、電極用白金ペーストと交互に印刷し、13
00℃にて水素還元し、酸化ビスマスを塗布したあと大
気中1150℃にて熱処理し、電極を調整して電気特性
を測定した。測定結果を第7表に示す。
(Example 7) Titanylstrontium oxalate (SrTiO(CzO4)
)・4820) and strontium titanate (SrTiOi) obtained by thermal decomposition, sintering accelerator Ti0z-Alz03
-SiOz (ratio 20:35:45) from 0.05 to 6
.. 0 wt%, semiconductor accelerator Nb2O5 0.02-3
.. 0wt%, grain boundary depletion layer forming agent 5r (CoI2.JN
Adding 0.05 to 12.0 wt% of tlz7x)03,
After mixing well, the mixture was calcined at 900°C. After wet pulverization, it is dried, granulated, molded, sintered at 1400°C in the air, wet pulverized again, made into a paste using a resin and an organic solvent, and printed alternately with platinum paste for electrodes. 13
After hydrogen reduction at 00° C. and application of bismuth oxide, heat treatment was performed at 1150° C. in the air, electrodes were adjusted, and electrical characteristics were measured. The measurement results are shown in Table 7.

なお、焼結促進剤Ti(h−AI 、(h−5iO□(
20: 35 : 45w を比)は、市販のTiO2
、A1.O,、SiO□の粉体を20=35:45の重
量比で坪量・混合し、1200℃にて仮焼し、粉砕して
得た。更に粒界空乏層形成剤5r(Co+zi Nbz
zi)Oxは、市販のSrCO3、Coo 、 Nbz
Osを混合し、900℃にて仮焼し、粉砕して得た。
In addition, the sintering accelerator Ti (h-AI, (h-5iO□(
20:35:45w) is a commercially available TiO2
, A1. The powders of O, SiO□ were mixed in basis weight at a weight ratio of 20=35:45, calcined at 1200°C, and pulverized. Furthermore, grain boundary depletion layer forming agent 5r (Co+zi Nbz
zi) Ox is commercially available SrCO3, Coo, Nbz
Os was mixed, calcined at 900°C, and pulverized.

(以下余白) 第7表より明らかなごと(,5rTi(hに焼結促進剤
Ti01− AIzOs−5iO2が0.1〜5.0w
t%、半導体化促進剤Nb、O5が0.05〜2.Qw
t%、粒界空乏層形成剤5r(Co+z+ Nbzz+
)Oxが0.1−10.0wt%添加され焼成されて得
た本材料は極めて優れた誘電体特性ヲ示し、コンデンサ
として使用できる。即ち顕微鏡観察の結果、焼結体の微
粒子は粒径がよくそろっていて2.0〜4.0μmで、
誘電体損失は1.0%以下、見かけ誘電率は2.500
以上であった。その他静電容量の温度係数、絶縁抵抗、
昇圧破壊電圧、等価直列抵抗などの測定を行ったが満足
出来る値をえた。なお、焼結促進剤が5%以上になると
焼結体が互いに変形し、付着して実用的でない。
(Left below) As is clear from Table 7 (5rTi (h), the sintering accelerator Ti01-AIzOs-5iO2 is 0.1 to 5.0w
t%, semiconductor accelerator Nb, O5 is 0.05 to 2. Qw
t%, grain boundary depletion layer forming agent 5r (Co+z+ Nbzz+
) This material obtained by adding 0.1-10.0 wt % of Ox and firing shows extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the fine particles of the sintered body have a uniform particle size of 2.0 to 4.0 μm;
Dielectric loss is 1.0% or less, apparent permittivity is 2.500
That was it. Other temperature coefficient of capacitance, insulation resistance,
We measured the boost breakdown voltage, equivalent series resistance, etc., and found satisfactory values. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例8) 市販の工業用チタン酸ストロンチウム (SrTi03
)にSrO−BaO系(例えば75:25iit比) 
、TiO02−Mg03iO系(例えば30:30:4
0wt比) 、TiOz−MnO−5iOz系(例えば
10:50:40wt比) 、CaO−Mg0−Alz
O3−SiO2系(例えば30:10:15:45wt
比) 、TiO□−AIz03−5iO□系(例えば2
0:35:45wt%比) 、ZnO−Nb20s−5
iOz系(例えば50:45: 5 wt%比) 、Z
rO2−Mn0−5iO2系(例えば10:55:35
iyt%比)から選ばれた焼結促進剤を2.9wt%、
半導体化促進剤Y20.をQ、4wt%、粒界空乏層形
成剤5r(Co+7z Nbzz:+)03を0.05
〜12.0wt%添加し、よく混合したのち、900℃
にて仮焼した。湿式粉砕の後、乾燥、造粒、成型して、
窒素95%−水素5%よりなる還元雰囲気中1380℃
にて焼成し、酸化ビスマスを塗布したあと大気中115
0℃にて熱処理し、電極を形成して電気特性を測定した
。測定結果を第8表に示す。なお、焼結促進剤は、例え
ばTiO□−MgO−5iO□系(30:30 : 4
0w を比)は、市販のTie、、MgO、5in2の
粉体を30:30:40の重量比で坪量・混合し、12
00℃にて仮焼し、粉砕して得た。更に粒界空乏層形成
剤は、市販のSrCO3、Coo 、Nbz05を混合
し、900℃にて仮焼し、粉砕して得た。
(Example 8) Commercially available industrial strontium titanate (SrTi03
) to SrO-BaO system (e.g. 75:25iit ratio)
, TiO02-Mg03iO system (e.g. 30:30:4
0wt ratio), TiOz-MnO-5iOz system (e.g. 10:50:40wt ratio), CaO-Mg0-Alz
O3-SiO2 system (e.g. 30:10:15:45wt
ratio), TiO□-AIz03-5iO□ system (e.g. 2
0:35:45wt% ratio), ZnO-Nb20s-5
iOz series (e.g. 50:45:5 wt% ratio), Z
rO2-Mn0-5iO2 system (e.g. 10:55:35
2.9wt% of the sintering accelerator selected from
Semiconductorization accelerator Y20. Q, 4 wt%, grain boundary depletion layer forming agent 5r (Co+7z Nbzz:+)03, 0.05
After adding ~12.0wt% and mixing well, 900℃
It was calcined at After wet grinding, drying, granulation, and molding,
1380℃ in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen
115 in the air after baking and coating with bismuth oxide.
Heat treatment was performed at 0° C., electrodes were formed, and electrical properties were measured. The measurement results are shown in Table 8. The sintering accelerator is, for example, TiO□-MgO-5iO□ system (30:30:4
0w ratio) is obtained by mixing commercially available Tie, MgO, 5in2 powder at a weight ratio of 30:30:40,
The product was calcined at 00°C and pulverized. Further, a grain boundary depletion layer forming agent was obtained by mixing commercially available SrCO3, Coo, and Nbz05, calcining the mixture at 900°C, and pulverizing the mixture.

(以下余白) 第8表 第8表より明らかなごとく、5rTi03にTiO2−
MgO3iO□などの焼結促進剤が2.9wt%、半導
体化促進剤Y!03が0.4wt%、粒界空乏層形成剤
が0.1〜10.0iet%添加され焼成されて得た本
材料は極めて優れた誘電体特性を示し、コンデンサとし
て使用できる。即ち顕微鏡観察の結果、焼結体の微粒子
はそれぞれの組成で粒径がよくそろっていて2.0〜4
.0μ謡で、誘電体損失は1.0%以下、見かけ誘電率
は2.500以上であった。その他静電容量の温度係数
、絶縁抵抗、昇圧破壊電圧、等価直列抵抗などの測定を
行ったが満足出来る値をえた。なお、焼結促進剤が5%
以上になると焼結体が互いに変形し、付着して実用的で
ない。
(Left below) Table 8 As is clear from Table 8, 5rTi03 has TiO2-
Sintering accelerator such as MgO3iO□ is 2.9wt%, semiconductor accelerator Y! This material obtained by adding 0.4 wt % of 03 and 0.1 to 10.0 iet % of a grain boundary depletion layer forming agent and firing it exhibits extremely excellent dielectric properties and can be used as a capacitor. In other words, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well matched depending on the composition, with a diameter of 2.0 to 4.
.. At 0 μm, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 2.500 or more. We also measured the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage, and equivalent series resistance, and found satisfactory values. In addition, the sintering accelerator is 5%
If it exceeds this, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例9) 市販の工業用チタン酸ストロンチウム (SrTiOz
)にTiOz−MgO−5iO□系(例えば30 : 
30 : 40w を比)の焼結促進剤を4.011t
%、半導体促進剤−03、Nb2O3、Taz05 、
LazOz 、YzO+を1.3wt%、粒界空乏層形
成剤Sro、a Bao、+ Cao、+(CoIz3
Nbzy3)Os、Sra、 aBao、 3 Cao
、 z(CCxys Nbty3)Chを2.0wt%
添加し、よく混合したのち、900℃にて仮焼した。湿
式粉砕の後、乾燥、造粒、成型して、窒素95%−水素
5%よりなる還元雰囲気中1380℃にて焼成し、酸化
ビスマスを塗布したあと大気中1150’Cにて熱処理
し、電極を形成して電気特性を測定した。測定結果を第
9表に示す。なお、焼結促進剤は、例えばTi07−M
gO−5iO□系(30:30:40wt比)は、市販
のTiO□、MgO、SiO□の粉体を30:30:4
0の重量比で坪量・混合し、1200℃にて仮焼し、粉
砕して得た。
(Example 9) Commercially available industrial strontium titanate (SrTiOz
) to TiOz-MgO-5iO□ system (e.g. 30:
4.011t of sintering accelerator (ratio of 30:40w)
%, semiconductor accelerator-03, Nb2O3, Taz05,
LazOz, 1.3 wt% YzO+, grain boundary depletion layer forming agent Sro, a Bao, + Cao, + (CoIz3
Nbzy3) Os, Sra, aBao, 3 Cao
, 2.0 wt% z(CCxys Nbty3)Ch
After adding and mixing thoroughly, it was calcined at 900°C. After wet pulverization, it is dried, granulated, molded, fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen, coated with bismuth oxide, and then heat treated at 1150°C in the air to form an electrode. was formed and the electrical properties were measured. The measurement results are shown in Table 9. Note that the sintering accelerator is, for example, Ti07-M
The gO-5iO□ system (30:30:40wt ratio) uses commercially available powders of TiO□, MgO, and SiO□ in a 30:30:4 ratio.
The basis weight was mixed at a weight ratio of 0, calcined at 1200°C, and pulverized.

更に粒界空乏層形成剤は、市販の5rCOs 、 Ba
CO3、CaCO5、Coo 、 Nb2O2を混合し
、900’Cにて仮焼し、粉砕して得た。
Furthermore, grain boundary depletion layer forming agents include commercially available 5rCOs and Ba.
It was obtained by mixing CO3, CaCO5, Coo, and Nb2O2, calcining at 900'C, and pulverizing.

ったが満足出来る値をえた。なお、焼結促進剤が5%以
上になると焼結体が互いに変形し、付着し第9表より明
らかなごと(,5rTiOsにTiOz−MgO3iO
□などの焼結促進剤が4.0wt%、半導体化促進側Y
2O3が1.0i1t%、粒界空乏層形成剤が2.Qi
it%添加され焼成されて得た本材料は優れた誘電体特
性を示し、コンデンサとして使用できる。即ち顕微鏡観
察の結果、焼結体の微粒子はそれぞれの組成で粒径がよ
くそろっていて2〜3μ鄭で、誘電体損失は1.0%以
下、見かけ誘電率は2,500以上であった。その他静
電容量の温度係数、絶縁抵抗、昇圧破壊電圧、等個直列
抵抗などの測定を行ロンチウム(SrTi03)を主成
分とするペロブスカイト型酸化物に、焼結促進添加剤(
0,1〜5.3wt%)、半導体化促進添加剤(0,0
5〜2.0賀t%)、およびS’1−X−y Bay 
Ca、  (Mn1zz Nb+7z)Os、 (ただ
し、0≦χ+y≦1)よりなる粒界空乏層形成剤(0,
1〜6.0wt%)を添加し、混合・加圧成型したのち
、水素を含む還元雰囲気中1250〜1500℃にて焼
成し、その焼成物の表面に酸化ビスマス(BizOi)
を含む粒界拡散物質を塗布し、酸化雰囲気中850〜1
200℃にて熱処理を施し電極を形成することにより、
或は、実施例は示さなかったが、5rTiO:+を主成
分とするペロブスカイト型酸化物に、予めSr1−x−
F Bag Cay (Mn+zz Nb+zz)Oz
、 (ただし、0≦z+y≦1)よりなる粒界空乏層形
成剤(0,1〜6.0wt%)を反応・固溶させておき
、しかる後に焼結促進添加剤(0,1〜5.0wt%)
、半導体化促進添加剤(0,05〜2.Qwt%)を添
加じ、混合・加圧成型したのち、水素を含む還元雰囲気
中1250〜1500℃にて焼成し、その焼成物の表面
にBizO:+を含む粒界拡散物質を塗布し、酸化雰囲
気中850〜1200℃にて熱処理を施し電極を形成す
ることにより、或は、さらに5rTiO1を主成分とす
るペロブスカイト型酸化物に、焼結促進添加剤(0,1
〜5.0wt%)、半導体化促進添加剤(0,05〜2
.0wt%)、およびSr1−x−y Ba、 Ca、
 (Mn+zzNb+zz)Os、 (ただし、0≦x
+y≦1)よりなる粒界空乏層形成剤(0,1〜6.0
wt%)を添加し、混合・加圧成型したのち、予め大気
中1250〜1500℃にて焼成し、次に水素を含む還
元雰囲気中800〜1400℃にて還元したあと焼結体
の表面にB+zO1を含む粒界拡散物質を塗布し、酸化
雰囲気中850〜1200℃にて熱処理を施し電極を形
成することにより、長詩性の粒界絶縁型半導体セラミッ
クコンデンサを得ることができるという効果が得られる
However, I got a satisfactory value. In addition, when the sintering accelerator content exceeds 5%, the sintered bodies deform and adhere to each other.
Sintering accelerator such as □ is 4.0 wt%, semiconductor promotion side Y
2O3 is 1.0i1t%, grain boundary depletion layer forming agent is 2. Qi
The material obtained by adding .it% and firing exhibits excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well matched for each composition and was 2 to 3 μm, the dielectric loss was less than 1.0%, and the apparent permittivity was more than 2,500. . We also measured the temperature coefficient of capacitance, insulation resistance, boost breakdown voltage, and equal series resistance, etc. We added sintering accelerator additives (
0.1 to 5.3 wt%), semiconducting accelerating additive (0.0
5-2.0gt%), and S'1-X-y Bay
Grain boundary depletion layer forming agent (0,
1 to 6.0 wt%), mixed and pressure molded, and then fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen, and bismuth oxide (BizOi) is added to the surface of the fired product.
850-1 in an oxidizing atmosphere.
By applying heat treatment at 200°C to form electrodes,
Alternatively, although no examples were shown, Sr1-x-
F Bag Cay (Mn+zz Nb+zz)Oz
, (however, 0≦z+y≦1), a grain boundary depletion layer forming agent (0.1 to 6.0 wt%) is reacted and dissolved in solid solution, and then a sintering accelerator additive (0.1 to 5 wt%) is reacted and dissolved. .0wt%)
After adding a semiconducting accelerating additive (0.05 to 2.Qwt%), mixing and pressure molding, it is fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen, and BizO is added to the surface of the fired product. : By coating a grain boundary diffusion substance containing + and performing heat treatment at 850 to 1200°C in an oxidizing atmosphere to form an electrode, or by further promoting sintering to a perovskite type oxide whose main component is 5rTiO1. Additive (0,1
~5.0wt%), semiconducting accelerating additive (0.05~2
.. 0 wt%), and Sr1-x-y Ba, Ca,
(Mn+zzNb+zz)Os, (0≦x
+y≦1) grain boundary depletion layer forming agent (0.1 to 6.0
wt%), mixed and pressure molded, and then fired in advance at 1250 to 1500°C in the air, then reduced at 800 to 1400°C in a reducing atmosphere containing hydrogen, and then applied to the surface of the sintered body. By applying a grain boundary diffusion substance containing B + zO1 and performing heat treatment at 850 to 1200°C in an oxidizing atmosphere to form electrodes, it is possible to obtain a grain boundary insulated semiconductor ceramic capacitor with long characteristics. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例による粒界絶縁型半導体セ
ラミックコンデンサを示す概略図である。 11・・・・・・粒界絶縁型半導体セラミックス、12
・・・・・・電極、13・・・・・・リード線。
FIG. 1 is a schematic diagram showing a grain boundary insulated semiconductor ceramic capacitor according to an embodiment of the present invention. 11... Grain boundary insulation type semiconductor ceramics, 12
... Electrode, 13 ... Lead wire.

Claims (5)

【特許請求の範囲】[Claims] (1)チタン酸ストロンチウム(SrTiO_3)を主
成分とするペロブスカイト型酸化物に、焼結促進剤(0
.1〜5.0wt%)、半導体促進剤(0.05〜2.
0wt%)、および少なくともSr_1_−_x_−_
yBa_xCa_y(Mn_1_/_2Nb_1_/_
2)O_3、(0.1〜6.0wt%)Sr_1_−_
x_−_yBa_xCa_y(Co_1_/_3Nb_
2_/_3)O_3、(0.1〜10.0wt%)、S
r_1_−_x_−_yBa_xCa_y(Cu_1_
/_3Nb_2_/_3)O_3、(0.1〜5.0w
t%)、ただし、いずれも0≦x+y≦1のいづれかよ
り選択された粒界空乏層形成剤を添加し、混合・加圧成
型したのち、水素を含む還元雰囲気中1250〜150
0℃にて焼成し、その焼成物の表面に酸化ビスマス(B
i_2O_3)を含む粒界拡散物質を塗布し、酸化雰囲
気中850〜1200℃にて熱処理を施し電極を形成し
てなる粒界絶縁型半導体セラミックコンデンサ。
(1) A sintering accelerator (0
.. 1-5.0 wt%), semiconductor promoter (0.05-2.
0 wt%), and at least Sr_1_−_x_−_
yBa_xCa_y(Mn_1_/_2Nb_1_/_
2) O_3, (0.1-6.0wt%) Sr_1_-_
x_−_yBa_xCa_y(Co_1_/_3Nb_
2_/_3) O_3, (0.1-10.0wt%), S
r_1_-_x_-_yBa_xCa_y(Cu_1_
/_3Nb_2_/_3)O_3, (0.1~5.0w
t%), however, a grain boundary depletion layer forming agent selected from 0≦x+y≦1 is added, mixed and pressure molded, and then 1250 to 150% in a reducing atmosphere containing hydrogen.
It is fired at 0°C, and bismuth oxide (B
A grain boundary insulated semiconductor ceramic capacitor in which electrodes are formed by applying a grain boundary diffusion substance containing i_2O_3) and performing heat treatment at 850 to 1200°C in an oxidizing atmosphere.
(2)焼結促進剤として少なくともSrO−Ga_2O
_3系、TiO_2−MgO−SiO_2系、TiO_
2−MnO−SiO_2系、CaO−MgO−Al_2
O_3−SiO_2系、TiO_2−Al_2O_3−
SiO_2系、ZnO−Nb_2O_5−SiO_2系
、ZrO_2−MnO−SiO_2系の中から選択され
た混合物(0.1〜5.0wt%)、半導体促進剤とし
て少なくともWO_3、Nb_2O_5、Ta_2_O
_5、La_2O_3、Y_2O_3の中から選択され
た一種または二種以上の酸化物(0.05〜2.0wt
%)を添加することを特長とする請求項1記載の粒界絶
縁型半導体セラミックコンデンサ。
(2) At least SrO-Ga_2O as a sintering accelerator
_3 series, TiO_2-MgO-SiO_2 series, TiO_
2-MnO-SiO_2 system, CaO-MgO-Al_2
O_3-SiO_2 system, TiO_2-Al_2O_3-
A mixture (0.1-5.0 wt%) selected from among the SiO_2 system, ZnO-Nb_2O_5-SiO_2 system, ZrO_2-MnO-SiO_2 system, at least WO_3, Nb_2O_5, Ta_2_O as semiconductor promoters.
_5, La_2O_3, Y_2O_3 or two or more oxides (0.05 to 2.0wt
%) is added to the grain boundary insulated semiconductor ceramic capacitor according to claim 1.
(3)SrTiO_3を主成分とするペロブスカイト型
酸化物に、予め少なくともSr_1_−_x_−_yB
a_xCa_y(Mn_1_/_2Nb_1_/_2)
O_3、(0.1〜6.0wt%)、Sr_1_−_x
_−_yBa_xCa_y(Cu_1_/_3Nb_2
_/_3)O_3、(0.1〜5.0wt%)、Sr_
1_−_x_−_yBa_xCa_y(Co_1_/_
3Nb_2_/_3)O_3、(0.1〜10.0wt
%)、(ただし、いずれも0≦x+y≦1)内の中から
選択された粒界空乏層形成剤を反応・固溶させておき、
しかる後に焼結促進添加剤(0.1〜5.0wt%)、
半導体化促進添加剤(0.05〜2.0wt%)を添加
し、混合・加圧成型したのち、水素を含む還元雰囲気中
1250〜1500℃にて焼成し、その焼成物の表面に
Bi_2O_3を含む粒界拡散物質を塗布し、酸化雰囲
気中850〜1200℃にて熱処理を施し電極を形成し
てなる粒界絶縁型半導体セラミックコンデンサ。
(3) At least Sr_1_-_x_-_yB is added to the perovskite oxide mainly composed of SrTiO_3.
a_xCa_y(Mn_1_/_2Nb_1_/_2)
O_3, (0.1-6.0wt%), Sr_1_-_x
____yBa_xCa_y(Cu_1_/_3Nb_2
_/_3) O_3, (0.1-5.0wt%), Sr_
1_-_x_-_yBa_xCa_y(Co_1_/_
3Nb_2_/_3)O_3, (0.1~10.0wt
%), (however, 0≦x+y≦1), a grain boundary depletion layer forming agent selected from among the following is reacted and dissolved in solid solution,
After that, a sintering accelerator additive (0.1 to 5.0 wt%),
After adding a semiconductor-promoting additive (0.05 to 2.0 wt%), mixing and pressure molding, it is fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen, and Bi_2O_3 is deposited on the surface of the fired product. A grain boundary insulated semiconductor ceramic capacitor in which an electrode is formed by applying a grain boundary diffusion substance containing the grain boundary diffusion material and heat-treating the material at 850 to 1200°C in an oxidizing atmosphere.
(4)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤(0.1〜5.0wt%)、
半導体化促進添加剤(0.05〜2.0wt%)および
少なくともSr_1_−_x_−_yBa_xCa_y
(Mn_1_/_2Nb_1_/_2)O_3、(0.
1〜6.0wt%)、Sr_1_−_x_−_yBa_
xCa_y(Cu_1_/_3Nb_2_/_3)O_
3、(0.1〜5.0wt%)、Sr_1_−_x_−
_yBa_xCa_y(Co_1_/_3Nb_2_/
_3)O_3、(0.1〜10.0wt%)、(ただし
、いずれも0≦x+y≦1)内の中から選択された粒界
空乏層形成剤を添加し、混合・加圧成型したのち、予め
大気中1250〜1500℃にて焼成し、次に水素を含
む還元雰囲気中800〜1400℃にて還元したあと焼
結体の表面にBi_2O_3を含む粒界拡散物質を塗布
し、酸化雰囲気中850〜1200℃にて熱処理を施し
電極を形成してなる粒界絶縁型半導体セラミックコンデ
ンサ。
(4) A sintering accelerator additive (0.1 to 5.0 wt%) to the perovskite oxide mainly composed of SrTiO_3,
Semiconductorization promoting additive (0.05 to 2.0 wt%) and at least Sr_1_-_x_-_yBa_xCa_y
(Mn_1_/_2Nb_1_/_2)O_3, (0.
1 to 6.0 wt%), Sr_1_-_x_-_yBa_
xCa_y(Cu_1_/_3Nb_2_/_3)O_
3, (0.1-5.0wt%), Sr_1_-_x_-
_yBa_xCa_y(Co_1_/_3Nb_2_/
_3) After adding a grain boundary depletion layer forming agent selected from O_3, (0.1 to 10.0 wt%) (however, 0≦x+y≦1), mixing and press-molding. , pre-sintered at 1250 to 1500°C in the air, then reduced at 800 to 1400°C in a reducing atmosphere containing hydrogen, and then coated with a grain boundary diffusion substance containing Bi_2O_3 on the surface of the sintered body, and then heated in an oxidizing atmosphere. A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at 850 to 1200°C.
(5)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤(0.1〜5.0wt%)、
半導体化促進添加剤(0.05〜2.0wt%)および
少なくともSr_1_−_x_−_yBa_xCa_y
(Mn_1_/_2Nb_1_/_2)O_3、(0.
1〜6.0wt%)、Sr_1_−_x_−_yBa_
xCa_y(Cu_1_/_3Nb_2_/_3)O_
3、(0.1〜5.0wt%)、Sr_1_−_x_−
_yBa_xCa_y(Co_1_/_3Nb_2_/
_3)O_3、(0.1〜10.0wt%)、(ただし
、いずれも0≦x+y≦1)内の中から選択された粒界
空乏層形成剤を添加し、混合・ペースト化し、電極用ペ
ーストと交互に印刷・成型したのち、予め大気中125
0〜1500℃にて焼成し、次に水素を含む還元雰囲気
中800〜1400℃にて還元したあと焼結体の表面に
Bi_2O_3を含む粒界拡散物質を塗布し、酸化雰囲
気中850〜1200℃にて熱処理を施してなる粒界絶
縁型半導体セラミックコンデンサ。
(5) A sintering accelerator additive (0.1 to 5.0 wt%) to the perovskite oxide mainly composed of SrTiO_3,
Semiconductorization promoting additive (0.05 to 2.0 wt%) and at least Sr_1_-_x_-_yBa_xCa_y
(Mn_1_/_2Nb_1_/_2)O_3, (0.
1 to 6.0 wt%), Sr_1_-_x_-_yBa_
xCa_y(Cu_1_/_3Nb_2_/_3)O_
3, (0.1-5.0wt%), Sr_1_-_x_-
_yBa_xCa_y(Co_1_/_3Nb_2_/
_3) Add a grain boundary depletion layer forming agent selected from O_3, (0.1 to 10.0 wt%) (0≦x+y≦1), mix and make into a paste, and prepare for electrodes. After printing and molding alternately with paste, 125% in the atmosphere in advance.
After firing at 0 to 1,500°C, and then reducing at 800 to 1,400°C in a reducing atmosphere containing hydrogen, a grain boundary diffusion substance containing Bi_2O_3 is applied to the surface of the sintered body, and the sintered body is heated at 850 to 1,200°C in an oxidizing atmosphere. A grain boundary insulated semiconductor ceramic capacitor that is heat treated.
JP2103472A 1990-04-19 1990-04-19 Grain-boundary insulation type semiconductor ceramic capacitor Pending JPH042105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2103472A JPH042105A (en) 1990-04-19 1990-04-19 Grain-boundary insulation type semiconductor ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2103472A JPH042105A (en) 1990-04-19 1990-04-19 Grain-boundary insulation type semiconductor ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH042105A true JPH042105A (en) 1992-01-07

Family

ID=14354953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103472A Pending JPH042105A (en) 1990-04-19 1990-04-19 Grain-boundary insulation type semiconductor ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH042105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928746A (en) * 2017-12-19 2019-06-25 三星电子株式会社 Ceramic dielectric, its manufacturing method, ceramic electronic assembly and electronic equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928746A (en) * 2017-12-19 2019-06-25 三星电子株式会社 Ceramic dielectric, its manufacturing method, ceramic electronic assembly and electronic equipment

Similar Documents

Publication Publication Date Title
US3474043A (en) Method of manufacturing ceramic dielectrics and resistances from the same composition ceramic material
JPH042105A (en) Grain-boundary insulation type semiconductor ceramic capacitor
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPH04112516A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112515A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112518A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112513A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112517A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112514A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112512A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH02213101A (en) Manufacture of grain-boundary barrier type high capacitance ceramic varistor
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JPH03211703A (en) Manufacture of grain boundary barrier type high electrostatic capacitance ceramic varistor
JPH02263418A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH05283278A (en) Manufacture of laminated ceramic chip capacitor
KR810002052B1 (en) Composite of insulator composed magnetic semi conductor particle with poly cristal property
JPH0332009A (en) Capacitor and manufacture thereof
JPS633442B2 (en)
KR960001657B1 (en) Preparation for strontium titanates of grain boundary layer
JPH0374818A (en) Ceramic capacitor having varistor characteristics and its manufacture
JPH02215103A (en) Manufacture of grain boundary barrier type high capacitance ceramic varistor
JPH02222515A (en) Manufacture of ceramic capacitor possessing varistor characteristics