JPH04112516A - Semiconductor ceramic capacitor of grain-boundary insulation type - Google Patents

Semiconductor ceramic capacitor of grain-boundary insulation type

Info

Publication number
JPH04112516A
JPH04112516A JP2231743A JP23174390A JPH04112516A JP H04112516 A JPH04112516 A JP H04112516A JP 2231743 A JP2231743 A JP 2231743A JP 23174390 A JP23174390 A JP 23174390A JP H04112516 A JPH04112516 A JP H04112516A
Authority
JP
Japan
Prior art keywords
grain boundary
sintering
layer forming
ceramic capacitor
forming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231743A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
篤志 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2231743A priority Critical patent/JPH04112516A/en
Publication of JPH04112516A publication Critical patent/JPH04112516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To obtain this capacitor by a method wherein a sintering-promoting additive, a semiconductor-promoting additive and a grain-boundary depletion- layer forming agent, in respectively prescribed quantities, are added to a perovskite-type oxide composed mainly of SrTiO3, this mixture is sintered and a diffusion treatment is executed in an oxidizing atmosphere. CONSTITUTION:The following are added to and mixed with a perovskite-type oxide composed mainly of strontium titanate (SrTiO3): 0.1 to 5.0wt.% of a sintering-promoting additive; 0.05 to 2.0wt.% of a semiconductor-promoting additive Nb2O5; and 0.1 to 5.0wt.% of a grain-boundary depletion-layer forming agent composed of Sr1-x-yBaxCay(Co1/3Ta2/3)O3 (where x<=0.3, y<=0.3 and 0<=x+y<=0.6). This mixture is pressurized and molded. Then, the mixture is baked at 1250 to 1500 deg.C in a reducing atmosphere which contains hydrogen. The surface of its baked substance is coated with a grain-boundary diffusing substance which contains bismuth oxide (Bi2O3). A heat treatment is executed at 850 to 1200 deg.C in an oxidizing atmosphere. Electrodes are formed. Thereby, a large element whose characteristic is good can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒界絶縁型半導体セラミックコンデンサ、特に
積層化された粒界絶縁型半導体セラミックコンデンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a grain boundary insulated semiconductor ceramic capacitor, and more particularly to a laminated grain boundary insulated semiconductor ceramic capacitor.

従来の技術 従来、この種のセラミック酸化物半導体の結晶粒界を絶
縁化することによって、これまでのセラミック誘電体と
比較して、実効誘電率の非常に大きなコンデンサ素体が
得られることが知られている。例えば、SrTiO3を
主成分とし、これにNb:Or、およびT 102−A
 I:o3−3io2系混合物を添加して成形し、焼結
してなる多結晶磁器半導体の粒界に、酸化銅(Cu O
)および酸化ビスマス(Bi2C1+)を拡散させ、前
記結晶粒界に空乏層を形成し、粒界を絶縁化し電極を形
成して得た粒界絶縁型半導体コンデンサにおいて、昇圧
破壊電圧1200 V/靴、絶縁抵抗約I X 10’
MΩ/口の絶縁特性を保持しながら、実効誘電率20,
000〜100. OOOのごとく大きな値が得られて
いる。なお、ここで、拡散物質であるCub、Bi2O
3の役割について記すと、CuOは焼結体の結晶粒界に
あって電子トラップセンタを形成し、n型半導体結晶の
結晶粒中にあって、粒界に近い部分に存在する電子をト
ラップし、粒界近傍に電子の存在しない空乏層を形成す
る働きをする。粒界絶縁型半導体セラミックコンデンサ
はこのようにして形成された空乏層の両側に電荷を蓄え
てコンデンサを構成するのである。一方、Bi2O3は
ZrO2等ととも)こ酸素の良導体として知られており
、粒界に存在して外部より焼結体内部まで酸素を拡散で
運搬し、粒界空乏層形成に必要な酸素を供給する働きを
する。
Conventional technology It has been known that by insulating the grain boundaries of this type of ceramic oxide semiconductor, it is possible to obtain a capacitor body with a much larger effective dielectric constant than conventional ceramic dielectrics. It is being For example, SrTiO3 is the main component, and Nb:Or and T 102-A
I: Copper oxide (CuO
) and bismuth oxide (Bi2C1+) are diffused, a depletion layer is formed at the grain boundaries, the grain boundaries are insulated, and electrodes are formed.In the grain boundary insulated semiconductor capacitor, the boost breakdown voltage is 1200 V/shoe, Insulation resistance approximately I x 10'
While maintaining the insulation properties of MΩ/mouth, the effective dielectric constant is 20,
000-100. A large value like OOO is obtained. Note that here, the diffusion substances Cub, Bi2O
Regarding role 3, CuO forms an electron trap center in the grain boundaries of the sintered body, and traps electrons in the crystal grains of the n-type semiconductor crystal near the grain boundaries. , which acts to form a depletion layer without electrons near the grain boundaries. A grain boundary insulated semiconductor ceramic capacitor forms a capacitor by storing charge on both sides of the depletion layer thus formed. On the other hand, Bi2O3 (along with ZrO2, etc.) is known to be a good conductor of this oxygen, existing at grain boundaries and transporting oxygen from the outside to the inside of the sintered body by diffusion, supplying the oxygen necessary for the formation of grain boundary depletion layers. work to do.

しかしながら、これらのバルクタイプのものに対し、粒
界絶縁型半導体セラミックコンデンサにおいても積層化
の要求は強い。
However, in contrast to these bulk type capacitors, there is a strong demand for lamination even in grain boundary insulated semiconductor ceramic capacitors.

発明が解決しようとする課題 しかしながら、このような従来の製造方法で得た粒界絶
縁型半導体セラミックコンデンサは、大きな静電容量を
得るため、焼結体中の結晶粒をできるだけ大きなものに
し、ペースト状にした酸化銅含有の酸化、ビスマスなど
を、高温で焼成して得た焼結体の周囲に塗布し、しかる
後に熱処理を施すことによってBi2O3,CuO等を
焼結体内部にまで拡散させるという工程を経ているが、
積層型のセラミックスの電極間隔か狭くなるため焼結体
の結晶粒の粒径は抑制されなければならない。
Problems to be Solved by the Invention However, in order to obtain a large capacitance, grain boundary insulated semiconductor ceramic capacitors obtained by such conventional manufacturing methods are made by making the crystal grains in the sintered body as large as possible and using paste. Bi2O3, CuO, etc. are diffused into the interior of the sintered body by coating the sintered body with oxide containing copper oxide, bismuth, etc., and then applying heat treatment. Although it has gone through the process,
Since the electrode spacing in laminated ceramics becomes narrower, the grain size of the crystal grains in the sintered body must be suppressed.

また、従来のこのような方法で作製した素子は、工程中
B 1203等に比較してCuOなどは拡散しに<<、
そのため特性にバラツキができやす(、さらに厚みのあ
るものは内部まで十分に酸化銅等を拡散させることが困
難であるので、素子の大きさに制限がある等の課題があ
った。
In addition, in devices manufactured using this conventional method, CuO and the like are less likely to diffuse during the process compared to B1203 and the like.
As a result, the characteristics tend to vary (furthermore, if the device is thick, it is difficult to diffuse copper oxide etc. sufficiently into the inside, so there is a problem such as restrictions on the size of the device.

本発明はこのような課題を解決するもので、すなわち、
焼結体部の結晶粒の粒径は小さくしかもよく揃い、粒界
空乏層形成剤である酸化銅等の塗布・拡散を必要とせず
、単に、酸化ビスマス等の粒界拡散物質だけを塗布し空
気中で熱処理を施して拡散するだけで特性のよい、大き
な素子を得ることを目的とするものである。
The present invention solves these problems, namely:
The grain size of the crystal grains in the sintered body is small and uniform, and there is no need to apply or diffuse a grain boundary depletion layer forming agent such as copper oxide, but simply apply a grain boundary diffusion substance such as bismuth oxide. The objective is to obtain large elements with good characteristics simply by performing heat treatment and diffusion in air.

課題を解決するための手段 上記課題を解決するために本発明は、5rTiO3を主
成分としたペロブスカイト型酸化物に、焼結促進添加剤
を061〜5.0wt%、半導体化促進添加剤Nb2O
5を0.05〜2.0wt%、およびS r 1−x−
yB axCa’y (CO1,23T a2z3) 
03 (ただし、X≦13. y≦0.3.0≦X+Y
≦0,6)よりなる粒界空乏層形成剤を0.1〜5.0
wt%添加し、混合、印刷・成形したのち高温で焼結し
、半導体化した後、酸化雰囲気中850〜1200℃で
酸化ビスマス等の拡散処理を施して粒界絶縁型半導体セ
ラミックコンデンサを得るものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a perovskite-type oxide mainly composed of 5rTiO3, with a sintering accelerating additive of 0.61 to 5.0 wt% and a semiconducting accelerating additive of Nb2O.
5 to 0.05 to 2.0 wt%, and S r 1-x-
yB axCa'y (CO1,23T a2z3)
03 (However, X≦13. y≦0.3.0≦X+Y
Grain boundary depletion layer forming agent consisting of ≦0,6) from 0.1 to 5.0
After adding wt%, mixing, printing and molding, sintering at high temperature to make a semiconductor, and then performing a diffusion treatment of bismuth oxide etc. at 850 to 1200°C in an oxidizing atmosphere to obtain a grain boundary insulated semiconductor ceramic capacitor. It is.

作用 この構成により、高温で、SrTiO3を主成分とした
ペロブスカイト型酸化物と粒界空乏層形成剤S r +
 −x −y B a yi Ca y (Co + 
3T a 23) 03と半導体化促進添加剤Nb2O
5とを反応・固溶させておき、焼成時の冷却過程で銅を
含む酸化物を粒界に析出させ、また、粒界に拡散した酸
化ビスマス内を拡散して到達した酸素によってさらに銅
等の粒界物質を酸化させることによって粒界に電子のト
ラップセンタを形成し、還元によって形成された低抵抗
の半導体結晶内に粒界に沿って空乏層を形成する。この
ようにして得た空乏層は絶縁性かよく、空乏層の両側に
電荷を蓄えて良質のコンデンサが得られる。すなわち本
発明によると、従来、行われていた、半導体化後のCu
O等の塗布・拡散の工程を必要とせず、容易に優れた粒
界絶縁型半導体セラミックコンデンサを得ることかでき
る。
Effect: With this configuration, the perovskite-type oxide mainly composed of SrTiO3 and the grain boundary depletion layer forming agent S r +
-x -y Ba yi Ca y (Co +
3T a 23) 03 and semiconductor-promoting additive Nb2O
5 is reacted and dissolved in solid solution, and during the cooling process during firing, oxides containing copper are precipitated at the grain boundaries, and the oxygen that has diffused through the bismuth oxide that has diffused to the grain boundaries further forms copper, etc. By oxidizing the grain boundary material, an electron trap center is formed at the grain boundary, and a depletion layer is formed along the grain boundary within the low-resistance semiconductor crystal formed by reduction. The depletion layer obtained in this way has good insulating properties, and charges can be stored on both sides of the depletion layer, resulting in a high-quality capacitor. That is, according to the present invention, Cu
Excellent grain boundary insulated semiconductor ceramic capacitors can be easily obtained without the need for coating and diffusing O or the like.

実施例 以下、本発明の一実施例の粒界絶縁型半導体セラミック
コンデンサについて、表と図面を参照しなから説明する
EXAMPLE Hereinafter, a grain boundary insulated semiconductor ceramic capacitor according to an example of the present invention will be described with reference to the tables and drawings.

(実施例1) 蓚酸チタニルストロンチウム(SrTiO(C204)
2・4H20)を熱分解して得たチタン酸ストロンチウ
ム(S rTie3)に焼結促進剤Tie2−Al□0
3 5i02(20:35・45wt%比)を0.05
〜6.0wt%、半導体化促進剤Nb:Osを0.02
〜3.0wt%、粒界空乏層形成剤S r (Cu l
/2W+/2 ) 03を0.05〜6.0wt%添加
し、よ(混合したのち、900℃にて仮焼した。湿式粉
砕の後、乾燥、造粒、成型して、大気中1400℃にて
焼結し、再び湿式粉砕の後、樹脂及び有機溶剤を用いて
ペースト化し、電極用白金ペーストと交互に印刷し、1
300℃にて水素還元し、酸化ビスマスを塗布したあと
大気中950℃にて熱処理し、電極を調整して電気特性
を測定した。測定結果を第1表に示す。なお、焼結促進
剤TiO2Al2O35i02(20:35:45wt
%比)は、市販のT i 02. A I2O3,S 
i 02の粉体を20 : 35 : 45の重量比で
秤量・混合し、1200℃にて仮焼し、粉砕して得た。
(Example 1) Titanyl strontium oxalate (SrTiO(C204)
Sintering accelerator Tie2-Al□0 is added to strontium titanate (S rTie3) obtained by thermal decomposition of
3 5i02 (20:35・45wt% ratio) to 0.05
~6.0wt%, semiconductor accelerator Nb:Os 0.02
~3.0wt%, grain boundary depletion layer forming agent S r (Cu l
/2W+/2) 0.05 to 6.0 wt% of 03 was added, and after mixing, it was calcined at 900°C. After wet grinding, it was dried, granulated, molded, and heated to 1400°C in the atmosphere. After sintering and wet grinding again, it is made into a paste using a resin and an organic solvent, and printed alternately with platinum paste for electrodes.
After hydrogen reduction at 300° C. and application of bismuth oxide, heat treatment was performed at 950° C. in the air, electrodes were adjusted, and electrical properties were measured. The measurement results are shown in Table 1. In addition, the sintering accelerator TiO2Al2O35i02 (20:35:45wt
% ratio) is commercially available T i 02. A I2O3,S
The powder of i02 was weighed and mixed at a weight ratio of 20:35:45, calcined at 1200°C, and pulverized.

さらに粒界空乏層形成剤5r(CO13Ta23)O3
は、市販のSrCO3,Coo、Ta205を混合し、
900℃にて仮焼し、粉砕して得た。
Furthermore, grain boundary depletion layer forming agent 5r(CO13Ta23)O3
Mix commercially available SrCO3, Coo, Ta205,
It was obtained by calcining at 900°C and pulverizing.

(以  下  余  白) 第1表 第1表より明らかなごとく、5rT103に焼結促進剤
T i 02−A I203S i O:か0.1〜5
.0wt%、半導体化促進剤Nb、O3か0.05〜2
゜0wt%、粒界空乏層形成剤5r(C。
(Left below) Table 1 As is clear from Table 1, the sintering accelerator T i 02-A I203S i O: 0.1 to 5 is added to 5rT103.
.. 0wt%, semiconductor accelerator Nb, O3 or 0.05-2
゜0wt%, grain boundary depletion layer forming agent 5r (C.

T a23)O3が0.1〜5.0wt%添加され焼成
されて得た本材料は極めて優れた誘電体特性を示し、コ
ンデンサとして使用できる。即ち、顕微鏡観察の結果、
焼結体の微粒子は粒径がよくそろっていて2.0〜4.
0μmで、誘電体損失は10%以下、見かけ誘電率は2
.000以上であった。その他静電容量の温度係数、絶
縁抵抗、昇圧破壊電圧9等価能列抵抗などの測定を行っ
たが満足できる値を得た。なお、焼結促進剤が5%以上
になると焼結体が互いに変形し、付着して実用的でない
Ta23) This material obtained by adding 0.1 to 5.0 wt% of O3 and firing it exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation,
The fine particles of the sintered body have a uniform particle size of 2.0 to 4.
At 0 μm, dielectric loss is less than 10% and apparent dielectric constant is 2.
.. It was over 000. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage 9 equivalent series resistance, etc., and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

第1図は本発明の第1の実施例における粒界絶縁型半導
体セラミックコンデンサを示すものである。第1図にお
いて、11は粒界絶縁型半導体セラミックス、12は電
極を、モして13はリード線を示す。
FIG. 1 shows a grain boundary insulated semiconductor ceramic capacitor according to a first embodiment of the present invention. In FIG. 1, 11 is a grain boundary insulated semiconductor ceramic, 12 is an electrode, and 13 is a lead wire.

(実施例2) 市販の工業用チタン酸ストロンチウム (SrTiO3)にT 102−Mg0−8 I02系
(例えば30:30:40wt%比)、Tie:Mn0
−5i02系(例えば10:50:40wt%比) 、
CaO−Mg0−A I2O3−3i O2系(例えば
30 : 10 :15 : 45wt%比)、T i
 02−A 1203− S i 02系(例えば20
35:45wt%比)、Zn0−Nb::05−8 i
 02系(例えば50:45:5wt%比)、2102
M n OS i 02系(例えば10:55:35w
t%比)から選ばれた焼結促進剤を0,05〜6.0w
t%、半導体化促進剤Nb2O5を0.4wt%、粒界
空乏層形成剤S r (Co +、3T a 2.、’
3) 03を2.0wt%添加し、よく混合したのち、
900℃にて仮焼した。湿式粉砕の後、乾燥、造粒、成
型して、窒素95%−水素5%よりなる還元雰囲気中1
380℃にて焼成し、酸化ビスマスを塗布したあと大気
中950℃にて熱処理し、電極を形成して電気特性を測
定した。測定結果を第2表に示す。
(Example 2) T 102-Mg0-8 I02 system (for example, 30:30:40 wt% ratio), Tie:Mn0 was added to commercially available industrial strontium titanate (SrTiO3).
-5i02 series (e.g. 10:50:40wt% ratio),
CaO-Mg0-A I2O3-3i O2 system (e.g. 30:10:15:45wt% ratio), Ti
02-A 1203-S i 02 series (e.g. 20
35:45wt% ratio), Zn0-Nb::05-8i
02 series (e.g. 50:45:5wt% ratio), 2102
M n OS i 02 series (e.g. 10:55:35w
0.05~6.0w of sintering accelerator selected from
t%, 0.4 wt% of semiconductor accelerator Nb2O5, grain boundary depletion layer forming agent S r (Co +, 3T a 2.,'
3) After adding 2.0 wt% of 03 and mixing well,
It was calcined at 900°C. After wet pulverization, drying, granulation, and molding are carried out in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen.
It was fired at 380°C, coated with bismuth oxide, and then heat-treated at 950°C in the atmosphere to form electrodes and measure electrical properties. The measurement results are shown in Table 2.

なお、焼結促進剤は、例えばTiO2−MgO−8iO
2系(30: 30 : 40wt%比)は、市販のT
 i O2,MgO,S i 02の粉体を3030:
40の重量比で秤量・混合し、1200℃にて仮焼し、
粉砕して得た。さらに粒界空乏層形成剤は、市販のS 
rcO3,Coo、T a2O5を混合し、900℃に
て仮焼し、粉砕して得た。
Note that the sintering accelerator is, for example, TiO2-MgO-8iO
2 system (30: 30: 40 wt% ratio) is commercially available T
i O2, MgO, S i 02 powder 3030:
Weighed and mixed at a weight ratio of 40, calcined at 1200°C,
Obtained by crushing. Furthermore, the grain boundary depletion layer forming agent is commercially available S
It was obtained by mixing rcO3, Coo, and Ta2O5, calcining at 900°C, and pulverizing.

(以  下  余  白) 第2去 第2表より明らかなごとく、SrTiO3にT io:
 −MgO−5io:なとの焼結促進剤か0.1〜5.
0wt%、半導体化促進剤N b :! 05か0.4
wt%9粒界空乏層形成剤か2.0wt%添加され焼成
されて得た本材料は極めて優れた誘電体特性を示し、コ
ンデンサとして使用できる。即ち顕微鏡観察の結果、焼
結体の微粒子はそれぞれの組成で粒径がよくそろってい
て2.0〜4.0μmで、誘電体損失は1.0%以下、
見かけ誘電率は2、000以上であった。その他静電容
量の温度係数、絶縁抵抗、昇圧破壊電圧1等価直列抵抗
などの測定を行ったが満足できる値を得た。なお、焼結
促進剤が5%以上になると焼結体か互いに変形し、付着
して実用的でない。
(Left below) As is clear from Table 2, SrTiO3 has Tio:
-MgO-5io: sintering accelerator or 0.1 to 5.
0wt%, semiconductor accelerator Nb:! 05 or 0.4
This material obtained by adding 2.0 wt % of the grain boundary depletion layer forming agent and firing the material exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the fine particles of the sintered body have a uniform particle size of 2.0 to 4.0 μm for each composition, and the dielectric loss is 1.0% or less.
The apparent dielectric constant was 2,000 or more. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage 1 equivalent series resistance, etc., and satisfactory values were obtained. Incidentally, if the sintering accelerator exceeds 5%, the sintered bodies deform and adhere to each other, making it impractical.

(実施例3) 市販の工業用チタン酸ストロンチウム (SrTiO3)にT i 02−MgO−3i O2
系(例えば30:30:40wt%比)の焼結促進剤を
3.0wt%、半導体化促進剤Nb2O5を0.5wt
%、粒界空乏層形成剤S ro8B ao、+  Ca
(Example 3) TiO2-MgO-3iO2 was added to commercially available industrial strontium titanate (SrTiO3).
3.0 wt % of the sintering accelerator (for example, 30:30:40 wt % ratio) and 0.5 wt % of the semiconductor accelerator Nb2O5.
%, grain boundary depletion layer forming agent S ro8B ao, + Ca
.

(C013T a2.3)  03.  S ro、4
B ao、3Cao、3(CO+ :]Ta23)O3
を0.05〜6.0wt%添加し、よく混合したのち、
900℃にて仮焼した。湿式粉砕の後、乾燥、造粒、成
型して、窒素95%−水素5%よりなる還元雰囲気中1
380℃にて焼成し、酸化ビスマスを塗布したあと大気
中950℃にて熱処理し、電極を形成して電気特性を測
定した。測定結果を第3表に示す。なお、焼結促進剤は
、例えばTiO2−MgO−SiO2系(30: 30
 : 4C1wt%比)は、市販のTiQ2M・go、
5io2の粉体を30 : 30 : 40の重量比で
秤量・混合し、1200℃にて仮焼し、粉砕して得た。
(C013T a2.3) 03. S ro, 4
B ao, 3Cao, 3(CO+:]Ta23)O3
After adding 0.05 to 6.0 wt% of and mixing well,
It was calcined at 900°C. After wet pulverization, drying, granulation, and molding are carried out in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen.
It was fired at 380°C, coated with bismuth oxide, and then heat-treated at 950°C in the atmosphere to form electrodes and measure electrical properties. The measurement results are shown in Table 3. The sintering accelerator is, for example, TiO2-MgO-SiO2 (30:30
:4C1wt% ratio) is commercially available TiQ2M・go,
5io2 powders were weighed and mixed at a weight ratio of 30:30:40, calcined at 1200°C, and pulverized.

さらに粒界空乏層形成剤は、市販のSrCO3,BaC
O2、CaCO5、Coo。
Furthermore, grain boundary depletion layer forming agents are commercially available SrCO3, BaC
O2, CaCO5, Coo.

Ta205を混合し、900℃にて仮焼し、粉砕して得
た。
Ta205 was mixed, calcined at 900°C, and pulverized.

第3表 (以  下  余  白) 第3表より明らかなごとく、S r T i O3にT
 io2−MgO−8io:なとの焼結促進剤か3.0
wt%、半導体化促進剤Nb2O5が0.5wt%、粒
界空乏層形成剤が0.1〜5.0wt%添加され焼成さ
れて得た本材料は優れた誘電体特性を示し、コンデンサ
として使用できる。即ち顕微鏡観察の結果、焼結体の微
粒子はそれぞれの組成で粒径かよくそろっていて2〜3
μmで、誘電体損失は1.0%以下、見かけ誘電率は2
.000以上であった。その他静電容量の温度係数、絶
縁抵抗。
Table 3 (margin below) As is clear from Table 3, T in S r Ti O3
io2-MgO-8io: sintering accelerator 3.0
This material, which is obtained by adding 0.5 wt% of the semiconductor accelerator Nb2O5 and 0.1 to 5.0 wt% of the grain boundary depletion layer forming agent and firing, exhibits excellent dielectric properties and is used as a capacitor. can. That is, as a result of microscopic observation, the fine particles of the sintered body have a uniform particle size of 2 to 3 depending on the composition.
μm, dielectric loss is 1.0% or less, apparent permittivity is 2
.. It was over 000. Other temperature coefficient of capacitance, insulation resistance.

昇圧破壊電圧2等価波列抵抗などの測定を行ったか満足
できる値を得た。なお、焼結促進剤が5%以上になると
焼結体が互いに変形し、付着して実用的でない。
The boosted breakdown voltage, 2 equivalent wave train resistance, etc. were measured and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

発明の効果 以上のように、本発明によれば、チタン酸ストロンチウ
ム(SrTiO3)を主成分とするペロブスカイト型酸
化物に、焼結促進添加剤を0.1〜5.0wt%、半導
体化促進添加剤Nb2O,を0.05〜2.0wt%、
およびS r + −x−y B a x Ca y(
COl 3T a23) 03 (ただし、X≦0.3
.y≦0.3.0≦)(+y≦0.6)よりなる粒界空
乏層形成剤を0.1〜5.0wt%添加し、混合・加圧
成型したのち、水素を含む還元雰囲気中1250〜15
00℃にて焼成し、その焼成物の表面に酸化ビスマス(
Bi:03)を含む粒界拡散物質を塗布し、酸化雰囲気
中850〜1200℃にて熱処理を施し電極を形成する
ことにより、あるいは、実施例は示さなかったか、5r
TiO3を主成分とするペロブスカイト型酸化物に、予
めSr+−1−vB axCay (C01/3T a
ニア3) 03  (ただし、X≦0.3.y≦0.3
.0≦x+y≦0.6)よりなる粒界空乏層形成剤を0
.1〜5.0wt%反応・固溶させておき、しかる後に
焼結促進添加剤を0.1〜5.0wt%、半導体化促進
添加剤N b 20 sを0.05〜2,0wt%添加
し、混合・加圧成型したのち、水素を含む還元雰囲気中
1250〜1500℃にて焼成し、その焼成物の表面に
Bi2O3を含む粒界拡散物質を塗布し、酸化雰囲気中
850〜1200℃にて熱処理を施し電極を形成するこ
とにより、あるいは、さらに5rTiO3を主成分とす
るペロブスカイト型酸化物に、焼結促進添加剤を0.1
〜5.0wt%、半導体化促進添加剤Nb2O5を0.
05〜2.0wt%、および5rt−1−yB axC
ay (C01,/3Ta:3)O3  (ただし、x
≦0.3. y≦0.3.0≦x+y≦0.6) ヨり
なる粒界空乏層形成剤を0.1〜5.0wt%添加し、
混合・加圧成型したのち、予め大気中1250〜150
0℃にて焼成し、次に水素を含む還元雰囲気中850〜
1400℃にて還元したあと焼結体の表面にBi2O3
を含む粒界拡散物質を塗布し、酸化雰囲気中850〜1
200℃にて熱処理を施し電極を形成することにより、
良特性の粒界絶縁型半導体セラミックコンデンサを得る
ことができるという効果が得られる。
Effects of the Invention As described above, according to the present invention, 0.1 to 5.0 wt% of a sintering accelerating additive is added to a perovskite-type oxide whose main component is strontium titanate (SrTiO3). 0.05 to 2.0 wt% of agent Nb2O,
and S r + −x−y B a x Ca y (
COl 3T a23) 03 (However, X≦0.3
.. After adding 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent consisting of y≦0.3.0≦) (+y≦0.6), mixing and pressure molding, in a reducing atmosphere containing hydrogen. 1250-15
Bismuth oxide (
By applying a grain boundary diffusion substance containing Bi:03) and performing heat treatment at 850 to 1200°C in an oxidizing atmosphere to form an electrode,
Sr+-1-vB axCay (C01/3T a
Near 3) 03 (However, X≦0.3.y≦0.3
.. 0≦x+y≦0.6)
.. 1 to 5.0 wt% reaction/solid solution, then 0.1 to 5.0 wt% of the sintering accelerating additive and 0.05 to 2.0 wt% of the semiconducting accelerating additive Nb20s. After mixing and pressure molding, it is fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen, a grain boundary diffusion substance containing Bi2O3 is applied to the surface of the fired product, and it is heated to 850 to 1200°C in an oxidizing atmosphere. By applying heat treatment to form an electrode, or by adding 0.1% of a sintering accelerating additive to a perovskite-type oxide whose main component is 5rTiO3.
~5.0 wt%, and 0.0 wt% of Nb2O5, an additive for promoting semiconductor formation.
05-2.0 wt%, and 5rt-1-yB axC
ay (C01,/3Ta:3)O3 (However, x
≦0.3. y≦0.3.0≦x+y≦0.6) Adding 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent,
After mixing and pressure molding, 1250 to 150
Calcined at 0°C, then heated to 850°C in a reducing atmosphere containing hydrogen.
After reduction at 1400℃, Bi2O3 is deposited on the surface of the sintered body.
850-1 in an oxidizing atmosphere.
By applying heat treatment at 200°C to form electrodes,
The effect is that a grain boundary insulated semiconductor ceramic capacitor with good characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による粒界絶縁型半導体セラ
ミックコンデンサを示す概略図である。 11・・・・・・粒界絶縁型半導体セラミックス、12
・・・・・・電極、13・・・・・・リード線。 セラミックス 12・・を極 13  ソード縁
FIG. 1 is a schematic diagram showing a grain boundary insulated semiconductor ceramic capacitor according to an embodiment of the present invention. 11... Grain boundary insulation type semiconductor ceramics, 12
... Electrode, 13 ... Lead wire. Ceramics 12...Kole 13 Sword edge

Claims (5)

【特許請求の範囲】[Claims] (1)チタン酸ストロンチウム(SrTiO_3)を主
成分とするペロブスカイト型酸化物に、焼結促進添加剤
を0.1〜5.0wt%、半導体化促進添加剤Nb_2
O_5を0.05〜2.0wt%、およびSr_1_−
_x_−_yBa_xCa_y(Co_1_/_3Ta
_2_/_3)O_3(ただし、x≦0.3、y≦0.
3、0≦x+y≦0.6)よりなる粒界空乏層形成剤を
0.1〜5.0wt%添加し、混合・加圧成型したのち
、水素を含む還元雰囲気中1250〜1500℃にて焼
成し、その焼成物の表面に酸化ビスマス(Bi_2O_
3)を含む粒界拡散物質を塗布し、酸化雰囲気中850
〜1200℃にて熱処理を施し電極を形成してなる粒界
絶縁型半導体セラミックコンデンサ。
(1) A perovskite type oxide whose main component is strontium titanate (SrTiO_3), 0.1 to 5.0 wt% of a sintering accelerating additive, and a semiconductor accelerating additive Nb_2
0.05 to 2.0 wt% O_5 and Sr_1_-
____−_yBa_xCa_y(Co_1_/_3Ta
_2_/_3)O_3 (However, x≦0.3, y≦0.
3. Add 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent consisting of 0≦x+y≦0.6), mix and pressure mold, and then at 1250 to 1500°C in a reducing atmosphere containing hydrogen. Bismuth oxide (Bi_2O_
3) is coated with a grain boundary diffusion substance containing 850%
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at ~1200°C.
(2)焼結促進添加剤がTiO_2−MgO−SiO_
2系、TiO_2−MnO−SiO_2系、CaO−M
gO−Al_2O_3−SiO_2系、TiO_2−A
l_2O_3−SiO_2系、ZnO−Nb_2O_5
−SiO_2系、ZrO_2−MnO−SiO_2系の
中から選択された混合物よりなる請求項1記載の粒界絶
縁型半導体セラミックコンデンサ。
(2) The sintering accelerator additive is TiO_2-MgO-SiO_
2 system, TiO_2-MnO-SiO_2 system, CaO-M
gO-Al_2O_3-SiO_2 system, TiO_2-A
l_2O_3-SiO_2 system, ZnO-Nb_2O_5
The grain boundary insulated semiconductor ceramic capacitor according to claim 1, comprising a mixture selected from -SiO_2 series and ZrO_2-MnO-SiO_2 series.
(3)SrTiO_3を主成分とするペロブスカイト型
酸化物に、予めSr_1_−_x_−_yBa_xCa
_y(Co_1_/_3Ta_2_/_3)O_3(た
だし、x≦0.3、y≦0.3、0≦x+y≦0.6)
よりなる粒界空乏層形成剤を0.1〜5.0wt%反応
・固溶させておき、しかる後に焼結促進添加剤を0.1
〜5.0wt%、半導体化促進添加剤Nb_2O_5を
0.05〜2.0wt%添加し、混合・加圧成型したの
ち、水素を含む還元雰囲気中1250〜1500℃にて
焼成し、その焼成物の表面にBi_2O_3を含む粒界
拡散物質を塗布し、酸化雰囲気中850〜1200℃に
て熱処理を施し電極を形成してなる粒界絶縁型半導体セ
ラミックコンデンサ。
(3) Sr_1_-_x_-_yBa_xCa is added to the perovskite-type oxide mainly composed of SrTiO_3.
_y(Co_1_/_3Ta_2_/_3)O_3 (however, x≦0.3, y≦0.3, 0≦x+y≦0.6)
0.1 to 5.0 wt% of the grain boundary depletion layer forming agent is reacted and dissolved in solid solution, and then 0.1 wt% of the sintering accelerating additive is added.
~5.0 wt% and 0.05 to 2.0 wt% of the semiconducting accelerator Nb_2O_5 are added, mixed and pressure molded, and then fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen to obtain the fired product. A grain boundary insulated semiconductor ceramic capacitor is formed by applying a grain boundary diffusion substance containing Bi_2O_3 to the surface of the capacitor and heat-treating the surface at 850 to 1200°C in an oxidizing atmosphere to form electrodes.
(4)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Co_1_/_3Ta_2_/_3)O_3(ただ
し、x≦0.3、y≦0.3、0≦x+y≦0.6)よ
りなる粒界空乏層形成剤を0.1〜5.0wt%添加し
、混合・加圧成型したのち、予め大気中1250〜15
00℃にて焼成し、次に水素を含む還元雰囲気中850
〜1400℃にて還元したあと焼結体の表面にBi_2
O_3を含む粒界拡散物質を塗布し、酸化雰囲気中85
0〜1200℃にて熱処理を施し電極を形成してなる粒
界絶縁型半導体セラミックコンデンサ。
(4) Add 0.1 to 5.0 wt% of the sintering accelerator additive and 0.05 to 2.0 w of the semiconducting accelerator Nb_2O_5 to the perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Co_1_/_3Ta_2_/_3)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) After mixing and pressure molding, it is heated to 1250 to 15
Calcined at 00°C and then heated at 850°C in a reducing atmosphere containing hydrogen.
After reduction at ~1400℃, Bi_2 is added to the surface of the sintered body.
A grain boundary diffusion substance containing O_3 is applied and 85% is applied in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at 0 to 1200°C.
(5)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Co_1_/_3Ta_2_/_3)O_3(ただ
し、x≦0.3、y≦0.3、0≦x+y≦0.6)よ
りなる粒界空乏層形成剤を0.1〜5.0wt%添加し
、混合・ペースト化し、電極用ペーストと交互に印刷・
成型したのち、予め大気中1250〜1500℃にて焼
成し、次に水素を含む還元雰囲気中850〜1400℃
にて還元したあと焼結体の表面にBi_2O_3を含む
粒界拡散物質を塗布し、酸化雰囲気中850〜1200
℃にて熱処理を施してなる粒界絶縁型半導体セラミック
コンデンサ。
(5) Add 0.1 to 5.0 wt % of a sintering accelerator additive and 0.05 to 2.0 w of a semiconductor accelerator additive Nb_2O_5 to a perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Co_1_/_3Ta_2_/_3)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) mixed and made into a paste, and printed/printed alternately with the electrode paste.
After molding, it is fired in advance at 1250 to 1500°C in the air, and then at 850 to 1400°C in a reducing atmosphere containing hydrogen.
After reducing the sintered body in
A grain boundary insulated semiconductor ceramic capacitor heat-treated at ℃.
JP2231743A 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type Pending JPH04112516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231743A JPH04112516A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231743A JPH04112516A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Publications (1)

Publication Number Publication Date
JPH04112516A true JPH04112516A (en) 1992-04-14

Family

ID=16928348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231743A Pending JPH04112516A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Country Status (1)

Country Link
JP (1) JPH04112516A (en)

Similar Documents

Publication Publication Date Title
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
JPH04112516A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPH042105A (en) Grain-boundary insulation type semiconductor ceramic capacitor
JPH04112515A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112517A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112518A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112514A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112512A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112513A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH02213101A (en) Manufacture of grain-boundary barrier type high capacitance ceramic varistor
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPH0547589A (en) Intergranular insulation type semiconductor ceramic capacitor
JP2970405B2 (en) Grain boundary insulating semiconductor porcelain composition and method for producing the same
JPH02215103A (en) Manufacture of grain boundary barrier type high capacitance ceramic varistor
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JPH02303106A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH03211703A (en) Manufacture of grain boundary barrier type high electrostatic capacitance ceramic varistor
JPH02222515A (en) Manufacture of ceramic capacitor possessing varistor characteristics
JPH0332009A (en) Capacitor and manufacture thereof
JPH0374818A (en) Ceramic capacitor having varistor characteristics and its manufacture
JPH0350710A (en) Manufacture of grain boundary insulation type semiconductor ceramic capacitor
JPS633442B2 (en)