JPH04112514A - Semiconductor ceramic capacitor of grain-boundary insulation type - Google Patents

Semiconductor ceramic capacitor of grain-boundary insulation type

Info

Publication number
JPH04112514A
JPH04112514A JP2231731A JP23173190A JPH04112514A JP H04112514 A JPH04112514 A JP H04112514A JP 2231731 A JP2231731 A JP 2231731A JP 23173190 A JP23173190 A JP 23173190A JP H04112514 A JPH04112514 A JP H04112514A
Authority
JP
Japan
Prior art keywords
grain boundary
ceramic capacitor
sintering
layer forming
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231731A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
篤志 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2231731A priority Critical patent/JPH04112514A/en
Publication of JPH04112514A publication Critical patent/JPH04112514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain this capacitor by a method wherein a sintering-promoting additive, a semiconductor-promoting additive and a grain-boundary depletion- layer forming agent, in respectively prescribed quantities, are added to a perovskite-type oxide composed mainly of SrTiO3, this mixture is baked and a diffusion treatment is executed in an oxidizing atmosphere. CONSTITUTION:The following are added to and mixed with a perovskite-type oxide composed mainly of strontium titanate (SrTiO3): 0.1 to 5.0wt.% of a sintering-promoting additive; 0.05 to 2.0wt.% of a semiconductor-promoting additive Nb2O5; and 0.1 to 5.0wt.% of a grain-boundary depletion-layer forming agent composed of Sr1-x-yBaxCay(Cu1/3Ta2/3)O3 (where x<=0.3, y<=0.3 and 0<=x+y<=0.6). This mixture is pressurized and molded. Then, the mixture is baked at 1250 to 1500 deg.C in a reducing atmosphere which contains hydrogen. The surface of its baked substance is coated with a grain-boundary diffusing substance which contains bismuth oxide (Bi2O3). A heat treatment is executed at 850 to 1200 deg.C in an oxidizing atmosphere. Electrodes are formed. Thereby, a large element whose characteristic is good can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒界絶縁型半導体セラミックコンデンサ、特に
積層化された粒界絶縁型半導体セラミックコンデンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a grain boundary insulated semiconductor ceramic capacitor, and more particularly to a laminated grain boundary insulated semiconductor ceramic capacitor.

従来の技術 従来、この種のセラミック酸化物半導体の結晶粒界を絶
縁化することによって、これまでのセラミック誘電体と
比較して、実効誘電率の非常に大きなコンデンサ素体が
得られることが知られている。例えば、5rTiO:+
を主成分とし、これにNb:!0.およびT i O:
! A I20:I S i 02系混合物を添加して
成形し、焼結してなる多結晶磁繕半導体の粒界に、酸化
銅(Cu O)および酸化ビスマス(Bi203)を拡
散させ、前記結晶粒界に空乏層を形成し、粒界を絶縁化
し電極を形成して得た粒界絶縁型半導体コンデンサにお
いて、昇圧破壊電圧1200 V/mm、絶縁抵抗約I
 X 105MΩ/国の絶縁特性を保持しながら、実効
誘電率20.000〜100.000のごとく大きな値
が得られている。なお、ここで、拡散物質であるCub
、BizO3の役割について記すと、CuOは焼結体の
結晶粒界にあって電子トラップセンタを形成し、n型半
導体結晶の結晶粒中にあって、粒界に近い部分に存在す
る電子をトラップし、粒界近傍に電子の存在しない空乏
層を形成する働きをする。粒界絶縁型半導体セラミック
コンデンサはこのようにして形成された空乏層の両側に
電荷を蓄えてコンデンサを構成するのである。一方、B
i2O3はZrO2等とともに酸素の良導体として知ら
れており、粒界に存在して外部より焼結体内部まで酸素
を拡散で運搬し、粒界空乏層形成に必要な酸素を供給す
る働きをする。
Conventional technology It has been known that by insulating the grain boundaries of this type of ceramic oxide semiconductor, it is possible to obtain a capacitor body with a much larger effective dielectric constant than conventional ceramic dielectrics. It is being For example, 5rTiO:+
The main component is Nb:! 0. and T i O:
! A I20: Copper oxide (CuO) and bismuth oxide (Bi203) are diffused into the grain boundaries of a polycrystalline magnetic semiconductor formed by adding an IS i 02-based mixture, molding, and sintering. In a grain boundary insulated semiconductor capacitor obtained by forming a depletion layer at the boundary, insulating the grain boundary, and forming an electrode, the boost breakdown voltage is 1200 V/mm, and the insulation resistance is approximately I.
A large effective dielectric constant of 20.000 to 100.000 is obtained while maintaining insulation properties of 105 MΩ/country. Note that here, Cub, which is a diffusion substance,
Regarding the role of BizO3, CuO forms an electron trap center in the grain boundaries of the sintered body, and traps electrons in the crystal grains of the n-type semiconductor crystal near the grain boundaries. It acts to form a depletion layer in which there are no electrons near the grain boundaries. A grain boundary insulated semiconductor ceramic capacitor forms a capacitor by storing charge on both sides of the depletion layer thus formed. On the other hand, B
i2O3 is known as a good conductor of oxygen, along with ZrO2, etc., and exists at grain boundaries, and functions to transport oxygen from the outside to the inside of the sintered body by diffusion, and to supply oxygen necessary for forming a grain boundary depletion layer.

しかしながら、これらのバルクタイプのものに対し、粒
界絶縁型半導体セラミックコンデンサにおいても積層化
の要求は強い。
However, in contrast to these bulk type capacitors, there is a strong demand for lamination even in grain boundary insulated semiconductor ceramic capacitors.

発明が解決しようとする課題 しかしながら、このような従来の製造方法で得た粒界絶
縁型半導体セラミックコンデンサは、大きな静電容量を
得るため、焼結体中の結晶粒をできるだけ大きなものに
し、ペースト状にした酸化銅含有の酸化ビスマスなどを
、高温で焼成して得た焼結体の周囲に塗布し、しかる後
に熱処理を施すことによってBi2O,、CuO等を焼
結体内部にまで拡散させるという工程を経ているが、積
層型のセラミックスの電極間隔が狭くなるため焼結体の
結晶粒の粒径は抑制されなければならない。
Problems to be Solved by the Invention However, in order to obtain a large capacitance, grain boundary insulated semiconductor ceramic capacitors obtained by such conventional manufacturing methods are made by making the crystal grains in the sintered body as large as possible and using paste. Bi2O, CuO, etc. are diffused into the inside of the sintered body by coating bismuth oxide containing copper oxide in the form of bismuth oxide, etc., around the sintered body obtained by firing at high temperature, and then applying heat treatment. However, since the spacing between the electrodes of laminated ceramics becomes narrower, the grain size of the crystal grains in the sintered body must be controlled.

また、従来のこのような方法で作製した素子は、工程中
B12Q3等に比較してCuOなどは拡散しに<<、そ
のため特性にバラツキができやすく、さらに厚みのある
ものは内部まで十分に酸化銅等を拡散させることが困難
であるので、素子の大きさに制限がある等の課題があっ
た。
In addition, in devices manufactured using conventional methods, CuO and the like are less likely to diffuse during the process than B12Q3, etc. Therefore, characteristics tend to vary, and thicker devices are not sufficiently oxidized to the inside. Since it is difficult to diffuse copper or the like, there are problems such as restrictions on the size of the element.

本発明はこのような課題を解決するもので、すなわち、
焼結体部の結晶粒の粒径は小さくしかもよく揃い、粒界
空乏層形成剤である酸化銅等の塗布・拡散を必要とせす
、単に、酸化ビスマス等の粒界拡散物質だけを塗布し空
気中で熱処理を施して拡散するだけで特性のよい、大き
な素子を得ることを目的とするものである。
The present invention solves these problems, namely:
The grain size of the crystal grains in the sintered body is small and well-aligned, and it is not necessary to apply and diffuse a grain boundary depletion layer forming agent such as copper oxide, but simply apply a grain boundary diffusion substance such as bismuth oxide. The objective is to obtain large elements with good characteristics simply by performing heat treatment and diffusion in air.

課題を解決するための手段 上記課題を解決するために本発明は、5rT103を主
成分としたペロプスカイト型酸化物に、焼結促進添加剤
を0.1〜5.0wt%、半導体化促進添加剤Nb2O
5を0.05〜2.0wt%、およびS rl−1−y
B aXcay (Cu+3Ta23)O3 (ただし
、X≦0.3.y≦0.3.0≦X+y≦0.6)より
なる粒界空乏層形成剤を0.1〜5.0wt%添加し、
混合、印刷・成形したのち高温で焼結し、半導体化した
後、酸化雰囲気中850〜1200℃で酸化ビスマス等
の拡散処理を施して粒界絶縁型半導体セラミックコンデ
ンサを得るものである。
Means for Solving the Problems In order to solve the above problems, the present invention adds 0.1 to 5.0 wt% of a sintering accelerating additive to a perovskite oxide mainly composed of 5rT103. agent Nb2O
5 to 0.05 to 2.0 wt%, and S rl-1-y
Adding 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent consisting of BaXcay (Cu+3Ta23)O3 (X≦0.3.y≦0.3.0≦X+y≦0.6),
After mixing, printing, and molding, the materials are sintered at high temperatures to become a semiconductor, and then subjected to a diffusion treatment of bismuth oxide or the like at 850 to 1200° C. in an oxidizing atmosphere to obtain a grain boundary insulated semiconductor ceramic capacitor.

作用 この構成により、高温で、5rTiO3を主成分とした
ペロブスカイト型酸化物と粒界空乏層形成剤S r 1
−x−yB axCay (Cu I 3T a23)
 O=と半導体化促進添加剤Nb2O5とを反応・固溶
させておき、焼成時の冷却過程で銅を含む酸化物を粒界
に析出させ、また、粒界に拡散した酸化ビスマス内を拡
散して到達した酸素によってさらに銅等の粒界物質を酸
化させることによって粒界に電子のトラップセンタを形
成し、還元によって形成された低抵抗の半導体結晶内に
粒界に沿って空乏層を形成する。このようにして得た空
乏層は絶縁性かよく、空乏層の両側に電荷を蓄えて良質
のコンデンサが得られる。すなわち本発明によると、従
来、行われていた、半導体化後のCuO等の塗布・拡散
の工程を必要とせず、容易に優れた粒界絶縁型半導体セ
ラミックコンデンサを得ることができる。
Effect With this configuration, the perovskite type oxide mainly composed of 5rTiO3 and the grain boundary depletion layer forming agent S r 1
-x-yB axCay (Cu I 3T a23)
O = is reacted with Nb2O5, an additive for promoting semiconducting, to form a solid solution, and during the cooling process during firing, oxides containing copper are precipitated at the grain boundaries, and the bismuth oxide that has diffused into the grain boundaries is diffused. The oxygen that has arrived at this process further oxidizes grain boundary substances such as copper, forming electron trap centers at the grain boundaries, and forming depletion layers along the grain boundaries within the low-resistance semiconductor crystal formed by reduction. . The depletion layer obtained in this way has good insulating properties, and charges can be stored on both sides of the depletion layer, resulting in a high-quality capacitor. That is, according to the present invention, it is possible to easily obtain an excellent grain boundary insulated semiconductor ceramic capacitor without requiring the conventional process of applying and diffusing CuO or the like after semiconductor formation.

実施例 以下、本発明の一実施例の粒界絶縁型半導体セラミック
コンデンサについて、表と図面を参照しながら説明する
EXAMPLE Hereinafter, a grain boundary insulated semiconductor ceramic capacitor according to an example of the present invention will be described with reference to tables and drawings.

(実施例1) 蓚酸チタニルストロンチウム(SrTiO(C204)
2・4H20)を熱分解して得たチタン酸ストロンチウ
ム(S rTiO:+ )に焼結促進剤TieニーAl
2O3SiO:(20:35:45wt%比)を0,0
5〜6.0wt%、半導体化促進剤Nb2O5を0゜0
2〜3.0wt%、粒界空乏層形成剤S r (Cu 
l/2Wl/2 ) 03を0.05〜6.0wt%添
加し、よく混合したのち、900℃にて仮焼した。湿式
粉砕の後、乾燥、造粒、成型して、大気中1400℃に
て焼結し、再び湿式粉砕の後、樹脂及び有機溶剤を用い
てペースト化し、電極用白金ペーストと交互に印刷し、
1300℃にて水素還元し、酸化ビスマスを塗布したあ
と大気中950℃にて熱処理し、電極を調整して電気特
性を測定した。測定結果を第1表に示す。なお、焼結促
進剤TiO2Al2O35i02(20+35:45i
t%比)は、市販のT i 02. A I2O3,S
 i 02の粉体を2015:45の重量比で秤量・混
合し、1200℃にて仮焼し、粉砕して得た。今らに粒
界空乏層形成剤S r (Cu+ :+Ta= 3)O
3は、市販のS rCCF+  Cub、Ta2C);
を混合し、900℃にて仮焼し、粉砕して得た。
(Example 1) Titanyl strontium oxalate (SrTiO(C204)
Strontium titanate (SrTiO:+) obtained by thermal decomposition of 2.4H20) was added with a sintering accelerator, Tieney Al.
2O3SiO: (20:35:45wt% ratio) 0.0
5 to 6.0 wt%, 0°0 of semiconductor formation accelerator Nb2O5
2 to 3.0 wt%, grain boundary depletion layer forming agent S r (Cu
0.05 to 6.0 wt% of 0.03 to 0.03 was added, mixed well, and then calcined at 900°C. After wet pulverization, it is dried, granulated, molded, sintered at 1400°C in the air, wet pulverized again, made into a paste using a resin and an organic solvent, and printed alternately with platinum paste for electrodes.
After hydrogen reduction at 1300° C. and application of bismuth oxide, heat treatment was performed at 950° C. in the air, electrodes were adjusted, and electrical properties were measured. The measurement results are shown in Table 1. In addition, the sintering accelerator TiO2Al2O35i02 (20+35:45i
t% ratio) is commercially available T i 02. A I2O3,S
The powder of i02 was weighed and mixed at a weight ratio of 2015:45, calcined at 1200°C, and pulverized. Grain boundary depletion layer forming agent Sr (Cu+:+Ta=3)O
3 is commercially available S rCCF+ Cub, Ta2C);
were mixed, calcined at 900°C, and pulverized.

(以  下  余  白) 第1表 第1表より明らかなごとく、S r T i O3に焼
結促進剤T i 02−A 1203−3 i O:!
か0,1〜5.0wt%、半導体化促進剤Nb2O5か
0.05〜2.0wt%、粒界空乏層形成剤5r(Cu
+、+Ta、3)O3が0.1〜5.Owt%添加サ添
加サネ焼成得た本材料は極めて優れた誘電体特性を示し
、コンデンサとして使用できる。即ち、顕微鏡観察の結
果、焼結体の微粒子は粒径かよくそろっていて2.0〜
4.0μmで、誘電体損失は1.0%以下、見かけ誘電
率は2.000以上であった。その他静電容量の温度係
数、絶縁抵抗、昇圧破壊電圧1等価直列抵抗などの測定
を行ったが満足できる値を得た。なお、焼結促進剤が5
%以上になると焼結体が互いに変形し、付着し−で実用
的でない。
(Margin below) Table 1 As is clear from Table 1, the sintering accelerator T i 02-A 1203-3 i O:!
0.1 to 5.0 wt% of Nb2O5, 0.05 to 2.0 wt% of Nb2O5, a grain boundary depletion layer forming agent, 5r (Cu
+, +Ta, 3) O3 is 0.1 to 5. This material obtained by firing with Owt% added saponide exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well aligned, with a diameter of 2.0~
At 4.0 μm, the dielectric loss was 1.0% or less and the apparent dielectric constant was 2.000 or more. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage 1 equivalent series resistance, etc., and satisfactory values were obtained. In addition, the sintering accelerator is 5
% or more, the sintered bodies deform and adhere to each other, making it impractical.

第1図は本発明の第1の実施例における粒界絶縁型半導
体セラミックコンデンサを示すものである。第1図にお
いて、11は粒界絶縁型半導体セラミックス、12は電
極を、そして13はリード線を示す。
FIG. 1 shows a grain boundary insulated semiconductor ceramic capacitor according to a first embodiment of the present invention. In FIG. 1, 11 is a grain boundary insulated semiconductor ceramic, 12 is an electrode, and 13 is a lead wire.

(実施例2) 市販の工業用チタン酸ストロンチウム (SrTiO3)にT io2−MgO−3io2系(
例えば30 : 30・40wt%比)、T i 02
Mn0−3i02系(例えば10 : 50 : 40
wt%比) 、CaO−Mg0−A 1203−3 i
o:系(例えば30・10:15:45wt%比)、T
iO2Al2O35i02系(例えば2035:45w
t%比)、ZnO−Nb20s−S i O−系(例え
ば50:45:5wt%比)、ZrO2Mn0−3i0
2系(例えば10:55:35wt%比)から選ばれた
焼結促進剤を0.05〜5,0wt%、半導体化促進剤
Nb2O5を0.4wt%、粒界空乏層形成剤S r 
(Cu+・3T a273) 03を2.0wt%添加
し、よく混合したのち、9008Cにて仮焼した。湿式
粉砕の後、乾燥、造粒、成型して、窒素95%−水素5
%よりなる還元雰囲気中1380℃にて焼成し、酸化ビ
スマスを塗布したあと大気中950℃にて熱処理し、電
極を形成して電気特性を測定した。測定結果を第2表に
示す。
(Example 2) Tio2-MgO-3io2 system (
For example, 30:30.40wt% ratio), T i 02
Mn0-3i02 series (e.g. 10:50:40
wt% ratio), CaO-Mg0-A 1203-3 i
o: system (e.g. 30.10:15:45wt% ratio), T
iO2Al2O35i02 series (e.g. 2035:45w
t% ratio), ZnO-Nb20s-S i O- system (e.g. 50:45:5 wt% ratio), ZrO2Mn0-3i0
0.05 to 5.0 wt% of a sintering accelerator selected from two systems (for example, 10:55:35 wt% ratio), 0.4 wt% of a semiconductor accelerator Nb2O5, and a grain boundary depletion layer forming agent Sr.
(Cu+.3T a273) 03 was added in an amount of 2.0 wt%, mixed well, and then calcined at 9008C. After wet pulverization, drying, granulation, and molding yield 95% nitrogen and 5% hydrogen.
After baking at 1380° C. in a reducing atmosphere consisting of 10%, bismuth oxide was applied and heat treated at 950° C. in the air to form electrodes and the electrical properties were measured. The measurement results are shown in Table 2.

なお、焼結促進剤は、例えばTiO2MgO−8102
系(30: 30 : 40wt%比)は、市販のT 
i O2,MgO,S io2の粉体を30・3040
の重量比で秤量・混合し、1200℃にて仮焼し、粉砕
して得た。さらに粒界空乏層形成剤は、市販のS rc
O3,Cub、Ta205を混合し、900℃にて仮焼
し、粉砕して得た。
Note that the sintering accelerator is, for example, TiO2MgO-8102.
The system (30:30:40wt% ratio) was commercially available T
i O2, MgO, S io2 powder at 30.3040
They were weighed and mixed at a weight ratio of , calcined at 1200°C, and pulverized. Furthermore, the grain boundary depletion layer forming agent is commercially available Src
O3, Cub, and Ta205 were mixed, calcined at 900°C, and pulverized.

(以  下  余  白) 第2表より明らかなごとく、5rTiO:+ にT10
ニ一〜1g0−3in:なとの焼結促進剤か0.1〜5
.0wt%、半導体化促進剤Nb、○、か0.4wt%
2粒界空乏層形成剤が2,0wt%添加され焼成されて
得た本材料は極めて優れた誘電体特性を示し、コンデン
サとして使用できる。即ち顕微鏡観察の結果、焼結体の
微粒子はそれぞれの組成で粒径がよくそろっていて2.
0〜4.0μmで、誘電体損失は1.0%以下、見かけ
誘電率は2.000以上であった。その他静電容量の温
度係数、絶縁抵抗、昇圧破壊電圧5等価直列抵抗なとの
測定を行ったが満足できる値を得た。なお、焼結促進剤
が5%以上になると焼結体か互いに変形し、付着して実
用的でない。
(Margin below) As is clear from Table 2, 5rTiO:+ has T10
2~1g0-3in: Nato sintering accelerator 0.1~5
.. 0 wt%, semiconductor accelerator Nb, ○, or 0.4 wt%
This material obtained by adding 2.0 wt % of a grain boundary depletion layer forming agent and firing the material exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body is well matched depending on the composition.2.
In the range of 0 to 4.0 μm, the dielectric loss was 1.0% or less and the apparent dielectric constant was 2.000 or more. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, and boosted breakdown voltage 5 equivalent series resistance, and satisfactory values were obtained. Incidentally, if the sintering accelerator exceeds 5%, the sintered bodies deform and adhere to each other, making it impractical.

(実施例3) 市販の工業用チタン酸ストロンチウム (SrTiO3)にT io2−MgO−S i○2系
(例えば30・30:40wt%比)の焼結促進剤を3
.0wt%、半導体化促進剤N b 20 sをQ、5
wt%、粒界空乏層形成剤S ro、a B ao、+
 Ca。
(Example 3) A sintering accelerator based on Tio2-MgO-Si○2 (for example, 30.30:40 wt% ratio) was added to commercially available industrial strontium titanate (SrTiO3).
.. 0 wt%, semiconducting accelerator N b 20 s, Q, 5
wt%, grain boundary depletion layer forming agent S ro, a B ao, +
Ca.

((:u、  3Ta23)  Os、  S  ro
  、+Bao  :+Caa、:+(CLI 1.3
T a=3) 03を0.05−6.0wt%添加し、
よく混合したのち、900℃にて仮焼した。湿式粉砕の
後、乾燥、造粒、成型して、窒素95%−水素5%より
なる還元雰囲気中1380℃にて焼成し、酸化ビスマス
を塗布したあと大気中950℃にて熱処理し、電極を形
成して電気特性を測定した。測定結果を第3表に示す。
((:u, 3Ta23) Os, S ro
, +Bao :+Caa, :+(CLI 1.3
T a = 3) 0.05-6.0 wt% of 03 was added,
After mixing well, the mixture was calcined at 900°C. After wet pulverization, it is dried, granulated, molded, and fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen. After coating with bismuth oxide, it is heat-treated at 950°C in the air to form an electrode. The electrical properties were measured. The measurement results are shown in Table 3.

なお、焼結促進剤は、例えばT i 02−MgO−8
i O2系(30: 30 : 40wt%比)は、市
販のTiO2MgO,SiO□の粉体を3030・40
の重量比で秤量・混合し、1200℃にて仮焼し、粉砕
して得た。さらに粒界空乏層形成剤は、市販のSrCO
3,BaCO3,CaC0:+ 、Cu0T a、、O
sを混合し、900℃にて仮焼し、粉砕して得た。
Note that the sintering accelerator is, for example, T i 02-MgO-8
For the iO2 system (30:30:40wt% ratio), commercially available TiO2MgO, SiO□ powder was mixed with 3030.40%
They were weighed and mixed at a weight ratio of , calcined at 1200°C, and pulverized. Furthermore, the grain boundary depletion layer forming agent is commercially available SrCO
3, BaCO3, CaC0: + , Cu0T a,, O
s was mixed, calcined at 900°C, and pulverized.

(以  下  余  白) 第3表 第3表より明らかなごとく、S r T IO:I に
T i O: −MgO−5i O2なとの焼結促進剤
か3.0wt%、半導体化促進剤Nb2O5がQ、5w
t%、粒界空乏層形成剤が0.1〜5.0wt%添加さ
れ焼成されて得た本材料は優れた誘電体特性を示し、コ
ンデンサとして使用できる。即ち顕微鏡観察の結果、焼
結体の微粒子はそれぞれの組成で粒径かよくそろってい
て2〜4μmで、誘電体損失は1.0%以下、見かけ誘
電率は2.000以上であった。その低静電容量の温度
係数、絶縁抵抗昇圧破壊電圧7等価直列抵抗などの測定
を行ったが満足できる値を得た。なお、焼結促進剤が5
%以上になると焼結体が互いに変形し、付着して実用的
でない。
(Margins below) As is clear from Table 3, 3.0 wt % of sintering accelerator such as Ti O: -MgO-5i O2 and semiconducting accelerator were added to S r T IO:I. Nb2O5 is Q, 5w
This material, which is obtained by adding 0.1 to 5.0 wt% of grain boundary depletion layer forming agent and firing, exhibits excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the fine particles of the sintered body were found to have a uniform particle size of 2 to 4 μm for each composition, a dielectric loss of 1.0% or less, and an apparent dielectric constant of 2.000 or more. We measured the temperature coefficient of its low capacitance, insulation resistance boost breakdown voltage, 7 equivalent series resistance, etc., and found satisfactory values. In addition, the sintering accelerator is 5
% or more, the sintered bodies deform and adhere to each other, making it impractical.

発明の効果 以上のように、本発明によれば、チタン酸ストロンチウ
ム(SrTiO3)を主成分とするペロブスカイト型酸
化物に、焼結促進添加剤を0.1〜5.0wt%、半導
体化促進添加剤Nb2O5を0.05〜2.Owt%、
およびS r 1−x−yB a=Cay(CU+ 3
T a2 :]) Owl (たたし、X≦0.3.y
≦0.3.0≦x+y≦06)よりなる粒界空乏層形成
剤を0,1〜5.Qwt%添加し、混合・加圧成型した
のち、水素を含む還元雰囲気中1250〜1500℃に
て焼成し、その焼成物の表面に酸化ビスマス(Bi20
.+)を含む粒界拡散物質を塗布し、酸化雰囲気中85
0〜1200℃にて熱処理を施し電極を形成することに
より、あるいは、実施例は示さなかったが、5rTiO
:+を主成分とするペロブスカイト型酸化物に、予めS
r+−1−アB axCay (Cut/3Ta2/3
)O:]  (ただし、X≦0.3.y≦0.3.0≦
X十Y≦0.6)よりなる粒界空乏層形成剤を0.1〜
5.Owt%反応・固溶させておき、しかる後に焼結促
進添加剤を0.1〜5.0wt%、半導体化促進添加剤
Nb2O5を0.05〜2.0wt%添加し、混合・加
圧成型したのち、水素を含む還元雰囲気中1250〜1
500℃にて焼成し、その焼成物の表面にBi2O5を
含む粒界拡散物質を塗布し、酸化雰囲気中850〜12
00℃にて熱処理を施し電極を形成することにより、あ
るいは、さらにSrTiO3を主成分とするペロブスカ
イト型酸化物に、焼結促進添加剤を0.1〜5,0wt
%、半導体化促進添加剤を0.05〜2.0wt%、お
よび5rl−x−y B a x Ca y(Cu+、
3Ta2z:+ )03 (ただし、X≦0.3゜y≦
0.3、0≦x+y≦0.6)よりなる粒界空乏層形成
剤を0.1〜5.0wt%添加し、混合・加圧成型した
のち、予め大気中1250〜1500℃にて焼成し、次
に水素を含む還元雰囲気中850〜1400℃にて還元
したあと焼結体の表面にBi2O3を含む粒界拡散物質
を塗布し、酸化雰囲気中850〜1200℃にて熱処理
を施し電極を形成することにより、良特性の粒界絶縁型
半導体セラミックコンデンサを得ることができるという
効果が得られる。
Effects of the Invention As described above, according to the present invention, 0.1 to 5.0 wt% of a sintering accelerating additive is added to a perovskite-type oxide whose main component is strontium titanate (SrTiO3). The agent Nb2O5 is 0.05 to 2. Owt%,
and S r 1−x−yB a=Cay(CU+ 3
T a2 :]) Owl (Tatashi, X≦0.3.y
≦0.3.0≦x+y≦06). After adding Qwt%, mixing and pressure molding, it is fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen, and bismuth oxide (Bi20
.. 85% in an oxidizing atmosphere.
By performing heat treatment at 0 to 1200°C to form an electrode, or by forming an electrode, 5rTiO
: A perovskite type oxide mainly composed of
r+-1-A B axCay (Cut/3Ta2/3
)O:] (However, X≦0.3.y≦0.3.0≦
Grain boundary depletion layer forming agent consisting of 0.1~
5. Owt% reaction and solid solution, then 0.1 to 5.0 wt% of the sintering accelerator additive and 0.05 to 2.0 wt% of the semiconductor accelerator Nb2O5, mixed and pressure molded. After that, 1250~1 in a reducing atmosphere containing hydrogen.
It is fired at 500°C, a grain boundary diffusion substance containing Bi2O5 is applied to the surface of the fired product, and 850-12
By performing heat treatment at 00°C to form an electrode, or by adding 0.1 to 5.0 wt of a sintering accelerating additive to a perovskite oxide whose main component is SrTiO3.
%, 0.05 to 2.0 wt% of the semiconducting accelerating additive, and 5rl-x-y B a x Ca y (Cu+,
3Ta2z:+ )03 (However, X≦0.3゜y≦
0.3, 0≦x+y≦0.6) 0.1 to 5.0 wt% of grain boundary depletion layer forming agent is added, mixed and pressure molded, and then pre-sintered at 1250 to 1500°C in the atmosphere. Then, after reduction at 850 to 1400°C in a reducing atmosphere containing hydrogen, a grain boundary diffusion substance containing Bi2O3 is applied to the surface of the sintered body, and heat treatment is performed at 850 to 1200°C in an oxidizing atmosphere to form an electrode. By forming this, it is possible to obtain a grain boundary insulated semiconductor ceramic capacitor with good characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による粒界絶縁型半導体セラ
ミックコンデンサを示す概略図である。 11・・・・・・粒界絶縁型半導体セラミックス、12
・・・・・・電極、13・・・・・・リード線。 tラミックス 1z−電極 13・・・す、−ド線
FIG. 1 is a schematic diagram showing a grain boundary insulated semiconductor ceramic capacitor according to an embodiment of the present invention. 11... Grain boundary insulation type semiconductor ceramics, 12
... Electrode, 13 ... Lead wire. t Lamix 1z-electrode 13...su, -d wire

Claims (5)

【特許請求の範囲】[Claims] (1)チタン酸ストロンチウム(SrTiO_3)を主
成分とするペロブスカイト型酸化物に、焼結促進添加剤
を0.1〜5.0wt%、半導体化促進添加剤Nb_2
O_5を0.05〜2.0wt%、およびSr_1_−
_x_−_yBa_xCa_y(Cu_1_/_3Ta
_2_/_3)O_3(ただし、x≦0.3、y≦0.
3、0≦x+y≦0.6)よりなる粒界空乏層形成剤を
0.1〜5.0wt%添加し、混合・加圧成型したのち
、水素を含む還元雰囲気中1250〜1500℃にて焼
成し、その焼成物の表面に酸化ビスマス(Bi_2O_
3)を含む粒界拡散物質を塗布し、酸化雰囲気中850
〜1200℃にて熱処理を施し電極を形成してなる粒界
絶縁型半導体セラミックコンデンサ。
(1) A perovskite type oxide whose main component is strontium titanate (SrTiO_3), 0.1 to 5.0 wt% of a sintering accelerating additive, and a semiconductor accelerating additive Nb_2
0.05 to 2.0 wt% O_5 and Sr_1_-
____−_yBa_xCa_y(Cu_1_/_3Ta
_2_/_3)O_3 (However, x≦0.3, y≦0.
3. Add 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent consisting of 0≦x+y≦0.6), mix and pressure mold, and then at 1250 to 1500°C in a reducing atmosphere containing hydrogen. Bismuth oxide (Bi_2O_
3) is coated with a grain boundary diffusion substance containing 850%
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at ~1200°C.
(2)焼結促進添加剤がTiO_2−MgO−SiO_
2系、TiO_2−MnO−SiO_2系、CaO−M
gO−Al_2O_3−SiO_2系、TiO_2−A
l_2O_3−SiO_2系、ZnO−Nb_2O_5
−SiO_2系、ZrO_2−MnO−SiO_2系の
中から選択された混合物よりなる請求項1記載の粒界絶
縁型半導体セラミックコンデンサ。
(2) The sintering accelerator additive is TiO_2-MgO-SiO_
2 system, TiO_2-MnO-SiO_2 system, CaO-M
gO-Al_2O_3-SiO_2 system, TiO_2-A
l_2O_3-SiO_2 system, ZnO-Nb_2O_5
The grain boundary insulated semiconductor ceramic capacitor according to claim 1, comprising a mixture selected from -SiO_2 series and ZrO_2-MnO-SiO_2 series.
(3)SrTiO_3を主成分とするペロブスカイト型
酸化物に、予めSr_1_−_x_−_yBa_xCa
_y(Cu_1_/_3Ta_2_/_3)O_3(た
だし、x≦0.3、y≦0.3、0≦x+y≦0.6)
よりなる粒界空乏層形成剤を0.1〜5.0wt%反応
・固溶させておき、しかる後に焼結促進添加剤を0.1
〜5.0wt%、半導体化促進添加剤Nb_2O_5を
0.05〜2.0wt%添加し、混合・加圧成型したの
ち、水素を含む還元雰囲気中1250〜1500℃にて
焼成し、その焼成物の表面にBi_2O_3を含む粒界
拡散物質を塗布し、酸化雰囲気中850〜1200℃に
て熱処理を施し電極を形成してなる粒界絶縁型半導体セ
ラミックコンデンサ。
(3) Sr_1_-_x_-_yBa_xCa is added to the perovskite-type oxide mainly composed of SrTiO_3.
_y(Cu_1_/_3Ta_2_/_3)O_3 (however, x≦0.3, y≦0.3, 0≦x+y≦0.6)
0.1 to 5.0 wt% of the grain boundary depletion layer forming agent is reacted and dissolved in solid solution, and then 0.1 wt% of the sintering accelerating additive is added.
~5.0 wt% and 0.05 to 2.0 wt% of the semiconducting accelerator Nb_2O_5 are added, mixed and pressure molded, and then fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen to obtain the fired product. A grain boundary insulated semiconductor ceramic capacitor is formed by applying a grain boundary diffusion substance containing Bi_2O_3 to the surface of the capacitor and heat-treating the surface at 850 to 1200°C in an oxidizing atmosphere to form electrodes.
(4)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Cu_1_/_3Ta_2_/_3)O_3(ただ
し、x≦0.3、y≦0.3、0≦x+y≦0.6)よ
りなる粒界空乏層形成剤を0.1〜5.0wt%添加し
、混合・加圧成型したのち、予め大気中1250〜15
00℃にて焼成し、次に水素を含む還元雰囲気中850
〜1400℃にて還元したあと焼結体の表面にBi_2
O_3を含む粒界拡散物質を塗布し、酸化雰囲気中85
0〜1200℃にて熱処理を施し電極を形成してなる粒
界絶縁型半導体セラミックコンデンサ。
(4) Add 0.1 to 5.0 wt% of the sintering accelerator additive and 0.05 to 2.0 w of the semiconducting accelerator Nb_2O_5 to the perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Cu_1_/_3Ta_2_/_3)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) After mixing and pressure molding, it is heated to 1250 to 15
Calcined at 00°C and then heated at 850°C in a reducing atmosphere containing hydrogen.
After reduction at ~1400℃, Bi_2 is added to the surface of the sintered body.
A grain boundary diffusion substance containing O_3 is applied and 85% is applied in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at 0 to 1200°C.
(5)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Cu_1_/_3Ta_2_/_3)O_3(ただ
し、x≦0.3、y≦0.3、0≦x+y≦0.6)よ
りなる粒界空乏層形成剤を0.1〜5.0wt%添加し
、混合・ペースト化し、電極用ペーストと交互に印刷・
成型したのち、予め大気中1250〜1500℃にて焼
成し、次に水素を含む還元雰囲気中850〜1400℃
にて還元したあと焼結体の表面にBi_2O_3を含む
粒界拡散物質を塗布し、酸化雰囲気中850〜1200
℃にて熱処理を施してなる粒界絶縁型半導体セラミック
コンデンサ。
(5) Add 0.1 to 5.0 wt % of a sintering accelerator additive and 0.05 to 2.0 w of a semiconductor accelerator additive Nb_2O_5 to a perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Cu_1_/_3Ta_2_/_3)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) mixed and made into a paste, and printed/printed alternately with the electrode paste.
After molding, it is fired in advance at 1250 to 1500°C in the air, and then at 850 to 1400°C in a reducing atmosphere containing hydrogen.
After reducing the sintered body in
A grain boundary insulated semiconductor ceramic capacitor heat-treated at ℃.
JP2231731A 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type Pending JPH04112514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231731A JPH04112514A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231731A JPH04112514A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Publications (1)

Publication Number Publication Date
JPH04112514A true JPH04112514A (en) 1992-04-14

Family

ID=16928150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231731A Pending JPH04112514A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Country Status (1)

Country Link
JP (1) JPH04112514A (en)

Similar Documents

Publication Publication Date Title
JPH0524646B2 (en)
KR20010051354A (en) Semiconducting Ceramic Material, Process for Producing the Ceramic Material, and Thermistor
JPH04112514A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH04112517A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112513A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112516A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112512A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112518A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112515A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH042105A (en) Grain-boundary insulation type semiconductor ceramic capacitor
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH02213101A (en) Manufacture of grain-boundary barrier type high capacitance ceramic varistor
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPH0374818A (en) Ceramic capacitor having varistor characteristics and its manufacture
JPS5828726B2 (en) Porcelain for semiconductor capacitors
JP2506286B2 (en) Method for manufacturing grain boundary insulated semiconductor porcelain
JP2838249B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain
JPH03211703A (en) Manufacture of grain boundary barrier type high electrostatic capacitance ceramic varistor
JPH02303106A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH02215103A (en) Manufacture of grain boundary barrier type high capacitance ceramic varistor
JPH02222515A (en) Manufacture of ceramic capacitor possessing varistor characteristics
JPH0350710A (en) Manufacture of grain boundary insulation type semiconductor ceramic capacitor