JPH02213101A - Manufacture of grain-boundary barrier type high capacitance ceramic varistor - Google Patents

Manufacture of grain-boundary barrier type high capacitance ceramic varistor

Info

Publication number
JPH02213101A
JPH02213101A JP1033943A JP3394389A JPH02213101A JP H02213101 A JPH02213101 A JP H02213101A JP 1033943 A JP1033943 A JP 1033943A JP 3394389 A JP3394389 A JP 3394389A JP H02213101 A JPH02213101 A JP H02213101A
Authority
JP
Japan
Prior art keywords
grain boundary
grain
type high
high capacitance
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1033943A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
篤志 伊賀
Masahiro Ito
昌宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1033943A priority Critical patent/JPH02213101A/en
Publication of JPH02213101A publication Critical patent/JPH02213101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a ceramic varister having excellent characteristics in a laminated type and the like by adding specified sintering accelerator, semiconductor accelerator, oxygen conductive solid electrolyte and grain-boundary depletion-layer forming agent into perovskite type oxide powder whose main component is SrTiO3, molding the powder by mixing and compression, performing sintering and reduction, and performing heat treatment in an oxidizing atmosphere. CONSTITUTION:To perovskite type oxide powder whose main component is SrTiO3, the following materials are added: 0.1-5.0wt.% sintering accelerator which mainly forms liquid phase at high temperatures; 0.05-2.0wt.% semiconductor accelerator which mainly forms perovskite- phase solid solution; 0.1-10.0wt.% oxygen conductive solid electrolyte which also serves the role of a grain-growth controlling agent; and 0.2-7.0wt.% grain-boundary depletion-layer forming agent Sr(Mn1/2Ta1/2) which also serves as a grain-growth controlling agent. The materials are mixed and compressed, and the molded body is obtained. Thereafter, sintering and reduction are performed at 800-1,500 deg.C. Then, heat treatment is performed in an oxidizing atmosphere at 900-1, 150 deg.C. Thus an electrode 3 is formed. For example, platinum pastes for inner electrodes 2 are printed on a green sheets. The material is sintered in an atmosphere at 1,400 deg.C. Reduction is performed in hydrogen at 1,300 deg.C. Then, heat treatment is performed in atmosphere at 950 deg.C. Thus the outer electrode 3 is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒界バリア型高静電量セラミックバリスタの製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a grain boundary barrier type high capacitance ceramic varistor.

従来の技術 従来、この種のセラミック酸化物半導体の結晶粒界を絶
縁化することによって、これまでのセラミック誘電体と
比較して、見かけ誘電率の非常に大きなコンデンサ素体
が得られるこ七が知られている。さらにこれらコンデン
サ素体に電極を形成するとしきい値電圧で急激に電流が
流れるいわゆるバリスタが得られることがあることも知
られている。例えば、5rTiO3を主成分とし、これ
にNb2O,およびTiO2A1203−3i02系混
合物を添加して成形し、還元雰囲気中で焼結してなる多
結晶セラミック半導体の粒界に、酸化鋼(Cub)およ
び酸化ビスマス(Bi2O3,)を焼結体表面から拡散
せしめ、前記結晶粒界に空乏層を形成して粒界に高抵抗
層を形成して得た粒界バリア型高静電容量セラミックバ
リスタ材料において、1mAの電流が流れはじめる電圧
、すなわち立ち上がり電圧が50〜200V/mm、非
直線抵抗指数αが10の特性を保持しながら、見かけ誘
電率20.000〜ioo、oooのごとく大きな値の
材料が得られている。なお、ここで、従来の製造方法で
しばしば用いられてきた拡散物質であるCub、Bi2
O3の役割について記すと、十分に酸素が供給されたC
uOは焼結体の結晶粒界にあって電子トラップセンタを
形成し、n型半導体5rTiO3結晶の粒界に近い部分
に存在する電子をトラップし、粒界近傍に電子の存在し
ない空乏層を形成する働きをする。粒界バリア型高静電
容量セラミックバリスタはかようにして形成された絶縁
性空乏層の両側に電荷を蓄えてコンデンサとして構成さ
れる一方、しきい値以上の電圧印加では急激に電流が流
れバリスタ特性が現れる。
Conventional Technology Conventionally, by insulating the grain boundaries of this type of ceramic oxide semiconductor, it has been possible to obtain a capacitor body with a much higher apparent dielectric constant than conventional ceramic dielectrics. Are known. Furthermore, it is known that when electrodes are formed on these capacitor bodies, a so-called varistor can be obtained in which current flows rapidly at a threshold voltage. For example, oxidized steel (Cub) and oxidized steel (Cub) and oxidized In a grain boundary barrier type high capacitance ceramic varistor material obtained by diffusing bismuth (Bi2O3,) from the surface of the sintered body to form a depletion layer at the grain boundaries and forming a high resistance layer at the grain boundaries, While maintaining the characteristics of a voltage at which a current of 1 mA begins to flow, that is, a rising voltage of 50 to 200 V/mm and a nonlinear resistance index α of 10, a material with a large apparent dielectric constant of 20.000 to ioo, ooo can be obtained. It is being In addition, here, we will discuss Cub, Bi2, which is a diffusion substance that has often been used in conventional manufacturing methods.
Regarding the role of O3, C
uO forms an electron trap center at the grain boundaries of the sintered body, traps electrons present near the grain boundaries of the n-type semiconductor 5rTiO3 crystal, and forms a depletion layer where no electrons exist near the grain boundaries. work to do. A grain boundary barrier type high capacitance ceramic varistor stores charge on both sides of the insulating depletion layer thus formed and is configured as a capacitor, but when a voltage above the threshold voltage is applied, current rapidly flows and the varistor Characteristics emerge.

その結果、焼結体の見かけの誘電率は5rTi○3の誘
電率(〜200)に焼結体中の5rTfO3の粒径と先
述した粒界空乏層の厚さの比(粒径/空乏層の厚さ)を
かけた程度の値となる。代表的なSrTiO3焼結体の
粒界空乏層の厚さは1つの粒界につき0.2μm位とな
り、SrT″i03焼結体では粒径が2μm、20μm
、200μmの場合に、それぞれ見かけ誘電率のめやす
としては2.000.20.000.200.000を
得る。
As a result, the apparent permittivity of the sintered body is the dielectric constant of 5rTi○3 (~200), the ratio of the grain size of 5rTfO3 in the sintered body and the thickness of the grain boundary depletion layer (grain size/depletion layer). The value is approximately multiplied by the thickness of The thickness of the grain boundary depletion layer in a typical SrTiO3 sintered body is approximately 0.2 μm per grain boundary, and in the SrT″i03 sintered body, the grain size is 2 μm and 20 μm.
, 200 μm, the apparent permittivity is 2.000.20.000.200.000, respectively.

また、Bi2O3はβ−Bi203相とδ−Bi2Ch
相の場合酸素の良導体として知られており、焼結体表面
にBi2O3を塗布して熱処理を施したとき始めに焼結
体の粒界に沿ってBi2O3が拡散し、次に粒界に存在
するBi2O3に沿って外部より焼結体内部まで酸素が
拡散で運搬され、粒界空乏層形成に必要な酸素を供給す
る働きをする。この種の粒界バリア型高静電容量セラミ
ックバリスタは静電容量・対温度特性などにおいて優れ
た特性をもつので産業界で広く使用されている。なお、
以上のような粒界バリア型高静電容量セラミックバリス
タは、−船釣に高温で焼成して焼結体中の結晶粒をでき
るだけ大きなものにし、焼結体の周囲にペースト状にし
た酸化鋼含有の酸化ビスマスなどを塗布し、しかる後に
熱処理を施すことによってB12(h、CuO等を焼結
体内部にまで拡散させ酸化させるという工程を経て製造
されている。
In addition, Bi2O3 has β-Bi203 phase and δ-Bi2Ch
In the case of a phase, it is known to be a good conductor of oxygen, and when Bi2O3 is applied to the surface of a sintered body and heat treated, Bi2O3 first diffuses along the grain boundaries of the sintered body, and then exists at the grain boundaries. Oxygen is transported by diffusion from the outside to the inside of the sintered body along Bi2O3, and serves to supply oxygen necessary for forming grain boundary depletion layers. This type of grain boundary barrier type high capacitance ceramic varistor has excellent characteristics such as capacitance and temperature characteristics, and is therefore widely used in industry. In addition,
The above-mentioned grain boundary barrier type high capacitance ceramic varistor is made of oxidized steel that is fired at high temperatures during boat fishing to make the crystal grains in the sintered body as large as possible, and then made into a paste around the sintered body. It is manufactured through a process in which B12 (h, CuO, etc.) is diffused into the interior of the sintered body and oxidized by applying bismuth oxide, etc., and then performing heat treatment.

発明が解決しようとする課題 以上のような製造方法で、大きな静電容量の特に大きな
積層型の粒界バリア型高静電容量セラミックバリスタを
製造しようとする場合、電極間隔を10〜100μmあ
るいはもっと狭くしようとすると、焼結体の結晶粒の成
長を粒径が1μmから十数μmの小粒径でしかも均一な
ものに抑制されねばならず、また、工程中Bi2O3や
CuO等を焼結体表面から内部にまで均質に拡散するこ
とが必要であり、特に金属電極の層が存在するとその影
響が大きくなり、特性にバラツキができやすく、さらに
厚みのあるものは内部迄十分にBi2O3やCuOなど
を拡散させることが困難であるので、素子の大きさが限
定される等の問題があった。
Problems to be Solved by the Invention When attempting to manufacture a particularly large laminated grain boundary barrier type high capacitance ceramic varistor with a large capacitance using the manufacturing method described above, the electrode spacing should be 10 to 100 μm or more. In order to narrow the size, the growth of crystal grains in the sintered body must be suppressed to small and uniform grain sizes ranging from 1 μm to several dozen μm, and during the process, Bi2O3, CuO, etc. It is necessary to diffuse homogeneously from the surface to the inside, and the presence of a metal electrode layer has a particularly large effect, which tends to cause variations in properties.Furthermore, if the thickness is thick, Bi2O3, CuO, etc. Since it is difficult to diffuse the ions, there are problems such as the size of the element being limited.

また、電極間隔が狭いので、焼結体にはミクロ的にも特
性の均質性が要求され、そのため材料組成の均質性が求
められているものであった。
In addition, since the electrode spacing is narrow, the sintered body is required to have microscopically homogeneous properties, and therefore, the material composition is required to be homogeneous.

本発明はこれらの課題を解決した積層型等の粒界バリア
型高静電容量セラミックバリスタを提供するものである
The present invention provides a grain boundary barrier type high capacitance ceramic varistor, such as a laminated type, which solves these problems.

課題を解決するための手段 これらの課題を解決するために本発明は、SrT i 
03を主成分としたペロブスカイト型酸化物粉体に、主
として高温度で液相を形成する焼結促進剤、主としてペ
ロブスカイト相に固溶する半導体促進剤、粒成長制御 電解質、および粒成長制御剤を兼ねた粒界空乏層形成剤
を添加し、1昆合・形成したのち高温で焼結し,半導体
した後、酸化雰囲気中で酸素の拡散処理と粒界空乏層形
成剤の酸化処理をほどこして粒界バリア型高静電容量セ
ラミックバリスタを得るものである。
Means for Solving the Problems In order to solve these problems, the present invention provides SrTi
A sintering accelerator that mainly forms a liquid phase at high temperatures, a semiconductor accelerator that is mainly dissolved in the perovskite phase, a grain growth control electrolyte, and a grain growth control agent are added to the perovskite-type oxide powder containing 03 as the main component. A grain boundary depletion layer forming agent that also serves as a material is added, and the material is sintered at high temperature to form a semiconductor. After that, an oxygen diffusion treatment and an oxidation treatment of the grain boundary depletion layer forming agent are performed in an oxidizing atmosphere. A grain boundary barrier type high capacitance ceramic varistor is obtained.

作用 以上のように本発明は、SrTiO3を主成分としたべ
ロブスカイト型酸化物粉体に、主として高温度で液相を
形成する焼結促進剤、主としてペロブスカイト相に固溶
する半導体化促進剤、粒成長制御剤を兼ねた酸素良導性
固体電解質,および粒成長制御剤を兼ねた粒界空乏層形
成剤を添加し、混合・形成したのち高温で焼結し、半導
体化した後、酸化雰囲気中で酸素の拡散処理と粒界空乏
層形成剤の酸化処理をほどこし粒界に沿ってキャリアの
空乏層を形成し、この空乏層によって良質なバリスタを
得るものである。
Function As described above, the present invention provides a berovskite-type oxide powder mainly composed of SrTiO3 with a sintering accelerator that forms a liquid phase at high temperatures, a semiconducting accelerator that is mainly dissolved in the perovskite phase, A solid electrolyte with good oxygen conductivity, which also serves as a grain growth control agent, and a grain boundary depletion layer forming agent, which also serves as a grain growth control agent, are added, mixed and formed, then sintered at high temperature to become a semiconductor, and then placed in an oxidizing atmosphere. Inside, oxygen is diffused and the grain boundary depletion layer forming agent is oxidized to form a carrier depletion layer along the grain boundaries, and this depletion layer provides a high quality varistor.

実施例 本発明の概要について説明する。Example An overview of the present invention will be explained.

SrTiO3を主成分としたべロブスカイト型酸化物粉
体に、主として高温度で液相を形成する焼結促進剤、主
としてペロブスカイト相に固溶する半導体化促進剤、粒
成長制御剤を兼ねた酸素良導性固体電解質、および粒成
長制御剤を兼ねた粒界空乏層形成剤を添加・混合し、加
圧成型し、還元雰囲気中高温で焼結するとき、主として
高温度で液相を形成する焼結促進剤は、粒成長制御剤を
兼ねた粒界空乏層形成剤と半導体化促進剤とSrT i
 01生成分のべロブスカイト型酸化物との反応・固溶
を促進する。しかし一方SrTiO3主成分相は還元作
用によって一部の酸素を奪われ。
A berovskite-type oxide powder containing SrTiO3 as a main component is supplemented with a sintering accelerator that forms a liquid phase at high temperatures, a semiconducting accelerator that is mainly dissolved in the perovskite phase, and an oxygen-rich agent that also functions as a grain growth control agent. When a conductive solid electrolyte and a grain boundary depletion layer forming agent that also serves as a grain growth control agent are added and mixed, pressure molded, and sintered at high temperature in a reducing atmosphere, the sintering process mainly forms a liquid phase at high temperature. The crystallization promoter is composed of a grain boundary depletion layer forming agent that also serves as a grain growth control agent, a semiconductor formation promoter, and SrT i
Promote the reaction and solid solution of the 01 product with the berovskite type oxide. However, on the other hand, the SrTiO3 main component phase is deprived of some oxygen by the reduction action.

n型半導体物質となる。粒界空乏層形成剤はSrT i
 Osに比べてかなり異なった格子定数を持つのでSr
TiO3に対する固溶範囲はかなり小さくSrTiO3
への固溶量はモル比で数%以下である。そのため、高温
では多量にSrTiOxに固溶していた粒界空乏層形成
剤の一部は焼成時の冷却過程にSrTiO3相の微結晶
粒子からその周囲の粒界に拡散して一様に析出する。か
かる焼結体に酸化雰囲気中で熱処理を施すと、粒界に存
在した主成分Zr02の酸素良導性固体電解質内を酸素
が自由に拡散し、粒界に析出したマンガン等を含む酸化
物は、そこへ到達した酸素によってさらに酸化される。
It becomes an n-type semiconductor material. The grain boundary depletion layer forming agent is SrTi
Sr has a considerably different lattice constant compared to Os.
The solid solution range for TiO3 is quite small and SrTiO3
The amount of solid solution in is several percent or less in terms of molar ratio. Therefore, at high temperatures, part of the grain boundary depletion layer forming agent, which was dissolved in large quantities in SrTiOx, diffuses from the microcrystalline grains of the SrTiO3 phase to the surrounding grain boundaries and precipitates uniformly during the cooling process during firing. . When such a sintered body is heat-treated in an oxidizing atmosphere, oxygen freely diffuses in the solid electrolyte with good oxygen conductivity, mainly composed of ZrO2, which was present at the grain boundaries, and oxides containing manganese etc. precipitated at the grain boundaries. , is further oxidized by the oxygen that reaches it.

その結果粒界には酸化マンガン等を主体とした電子のト
ラップセンタが形成される。これらの電子のトラップセ
ンタは還元によって形成された低抵抗のn型のSrTi
Os半導体結晶粒内から電子を奪い、その結果粒界に沿
ってキャリアの空乏層が形成される。このようにして得
た空乏層は絶縁性がよく、焼結体に電圧が印加されると
空乏層の両側には電荷が蓄えられて良質のバリスタが得
られ、また、従来行われていた、半導体化後のCub,
Bi203等の塗布・拡散の工程を必要とせず、容易に
優れた粒界バリア型高静電容量セラミックバリスタを得
ることができるものである。
As a result, electron trap centers mainly composed of manganese oxide or the like are formed at the grain boundaries. These electron trap centers are low resistance n-type SrTi formed by reduction.
Electrons are taken away from within the Os semiconductor crystal grains, and as a result, a carrier depletion layer is formed along the grain boundaries. The depletion layer obtained in this way has good insulating properties, and when a voltage is applied to the sintered body, charges are stored on both sides of the depletion layer, resulting in a high-quality varistor. Cub after semiconductorization,
It is possible to easily obtain an excellent grain boundary barrier type high capacitance ceramic varistor without requiring a process of applying and diffusing Bi203 or the like.

なお、第1図は本発明の一実施例である積層形粒界バリ
ア型高静電容量セラミックバリスタであり、■は粒界バ
リア型高静電容量セラミックス、2は内部電極、3は外
部電極であり、第2図は本発明の他の実施例である粒界
バリア型高静電容量セラミックバリスタであり、4は粒
界バリア型高静電容量セラミックス、5は電極、そして
6はリード線である。
FIG. 1 shows a laminated grain boundary barrier type high capacitance ceramic varistor which is an embodiment of the present invention, where ■ indicates a grain boundary barrier type high capacitance ceramic, 2 indicates an internal electrode, and 3 indicates an external electrode. FIG. 2 shows a grain boundary barrier type high capacitance ceramic varistor which is another embodiment of the present invention, 4 is a grain boundary barrier type high capacitance ceramic, 5 is an electrode, and 6 is a lead wire. It is.

以下、本発明の一実施例の具体例について説明する。A specific example of one embodiment of the present invention will be described below.

(実施例1) 蓚酸チタニルストロンチウム(SrTiO(C204)
2・4H20)を熱分解して得たチタン酸ストロンチウ
ム(SrTiOz)に主きして高温度で液相を形成する
焼結促進剤T i 02−A I 2038102(2
0+ 30: 45wt比)を0.05〜6.0wt%
、主としてペロブスカイト相に固溶する半導体化促進剤
Nb2O5を0.02〜3.0wt%1粒成長制御剤を
兼ねた酸素良導性固体電解質Zr○2を0.05〜12
.0wt%、粒成長制御剤を兼ねた粒界空乏層形成剤S
r(Mn1/zTabz2)03 (0.1〜8.0w
t%)を添加し、よく混合したのち、900℃にて仮焼
した。湿式粉砕の後、乾燥、造粒、成型して、大気中1
300℃にて焼結し、再び湿式粉砕の後、樹脂及び有機
溶剤をもちいてペースト化してシートをつくり、内部電
極用白金ペーストを印刷して積層し、大気中1400℃
にて焼結したあと1300℃で水素還元し、大気中95
0℃にて熱処理し、内部電極と外部7を極を接続すべく
電極を調整して第1図の積層型の粒界バリア型高静電容
量セラミックバリスタを作製し、電気特性を測定した。
(Example 1) Titanyl strontium oxalate (SrTiO(C204)
Sintering accelerator T i 02-A I 2038102 (2
0+30:45wt ratio) from 0.05 to 6.0wt%
, 0.02 to 3.0 wt% of the semiconductor accelerator Nb2O5, which is mainly solid dissolved in the perovskite phase.1 0.05 to 12 of the oxygen-conducting solid electrolyte Zr○2, which also serves as a grain growth control agent.
.. 0wt%, grain boundary depletion layer forming agent S that also serves as a grain growth control agent
r(Mn1/zTabz2)03 (0.1~8.0w
t%) was added, mixed well, and then calcined at 900°C. After wet pulverization, drying, granulation, molding, and 1
Sintered at 300℃, wet-pulverized again, made into a paste using resin and organic solvent, printed and laminated with platinum paste for internal electrodes, and sintered at 1400℃ in the air.
After sintering at 1,300℃, hydrogen reduction was performed at 95
A heat treatment was performed at 0° C., and the electrodes were adjusted to connect the inner electrode and the outer electrode 7 to produce a laminated grain boundary barrier type high capacitance ceramic varistor as shown in FIG. 1, and its electrical characteristics were measured.

その測定結束を第1表に示す。なお、焼結促進剤T’1
02A I203−8 i 02 (20: 30 :
 45wtjt)は市販のT i 02. A l 2
is、 S i 02の粉体を所定の重量比に従って秤
量し、混合し、1200℃にて仮焼し、粉砕して得た。
The measured bundle is shown in Table 1. In addition, the sintering accelerator T'1
02A I203-8 i 02 (20: 30:
45wtjt) is a commercially available T i 02. Al 2
is, S i 02 powders were weighed according to a predetermined weight ratio, mixed, calcined at 1200° C., and pulverized.

更に粒成長制御剤を兼ねた粒界空乏層形成剤S r(M
n、+z2Ta1/2) 03は市販の5rCOs、T
a205.MnCO3などを混合し、1ooo℃にて仮
焼し、粉砕して得た。
Furthermore, a grain boundary depletion layer forming agent S r (M
n, +z2Ta1/2) 03 is commercially available 5rCOs, T
a205. It was obtained by mixing MnCO3 and the like, calcining at 100°C, and pulverizing.

また、焼成後の積層バリスタのサイズは、約4mm平方
で厚みが約0.61であり、誘電体−層の厚み約70μ
mで8層の誘電体より成っていた。この材料の見かけ誘
電率εは積層バリスタの静電容量値(測定1 k&)よ
り計算で求めた。焼結体中の結晶粒の粒径は切断面を研
磨したあと、研磨面にBi2O3系金属石鹸を塗布し、
1000℃で熱処理を施して粒界を鮮明にして光学顕微
鏡で観察して求めた。
The size of the laminated varistor after firing is approximately 4 mm square and approximately 0.61 mm thick, and the thickness of the dielectric layer is approximately 70 μm.
It consisted of 8 layers of dielectric material. The apparent dielectric constant ε of this material was calculated from the capacitance value (measurement 1 k&) of the laminated varistor. The grain size of the crystal grains in the sintered body is determined by polishing the cut surface and applying Bi2O3 metal soap to the polished surface.
The grain boundaries were determined by heat treatment at 1000° C. to make them clearer and observed with an optical microscope.

く  以  下  余  白  ) 表1より明らかなごとく、5rTjO3に焼結促進剤T
 i 02−A 1203−S i 02が0.1〜5
.0wt%、半導体化促進剤Nb2O5が0.05〜2
.0wt%、固体電解質Z「02が0.1〜10.0w
t%、粒成長制御剤を兼ねた粒界空乏層形成剤S r(
Mn1/2Ta+72)Osが0.2〜7.0wt%添
加され焼成されて得た本材料は粒径が均一で極めて優れ
たバリスタ特性を持ち、また高い誘電体特性を示し、高
静電容量バリスタとして使用できる。即ち顕微鏡観察の
結果、焼結体の微粒子は粒径がよくそろっていて、約9
μmで誘電体損失は2.0%以下、見かけ誘電率は9.
000以上であった。バリスタとしての材料の立ち上が
り電圧V 1 m Aは250〜400V/mで、V 
1 m A〜vO,ImA間における非直線抵抗指数α
は殆ど10以上の値をとる。その他バリスタとしてのサ
ージ耐量、高電流域に於ける非直線抵抗特性を表す制限
電圧比、立ち上がり電圧V1mAの温度係数、静電容量
の温度係数などの測定を行ったが満足できる値を得た。
As is clear from Table 1, the sintering accelerator T is added to 5rTjO3.
i 02-A 1203-S i 02 is 0.1 to 5
.. 0 wt%, semiconductor accelerator Nb2O5 is 0.05-2
.. 0 wt%, solid electrolyte Z "02 is 0.1 to 10.0 w
t%, grain boundary depletion layer forming agent Sr(
This material, which is obtained by adding 0.2 to 7.0 wt% of Mn1/2Ta+72)Os and firing, has a uniform particle size and extremely excellent varistor properties.It also exhibits high dielectric properties and is suitable for high capacitance varistors. Can be used as That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well aligned, and the diameter was approximately 9.
The dielectric loss is less than 2.0% in μm, and the apparent permittivity is 9.
It was over 000. The rising voltage V 1 mA of the material used as a varistor is 250 to 400 V/m, and V
Nonlinear resistance index α between 1 m A and vO, ImA
takes a value of 10 or more in most cases. In addition, we measured the surge resistance as a varistor, the limiting voltage ratio representing non-linear resistance characteristics in a high current range, the temperature coefficient of rising voltage V1 mA, the temperature coefficient of capacitance, etc., and found satisfactory values.

なお、焼結促進剤の添加量が5%を越えると焼結体が変
形したり、付着して実用的でない。
It should be noted that if the amount of the sintering accelerator added exceeds 5%, the sintered body may be deformed or adhered, making it impractical.

(実施例2) 市販の工業用チタン酸ストロンチウム(SrTiOv)
にTiO2MgO5i02系(例えば30 : 30 
: 40wt%比),TiO2−MnO−SiO2系(
例えば10:50:40wt%比)、T i 02−A
 1203−8 i 02系(例えば20:35:45
wt%比)から選ばれた主として高温度で液相を形成す
る焼結促進剤を1.0wt%、主としてベブロスカイト
相に固溶する半導体化促進剤Y2O3を0.4 w t
%、粒成長制御剤を兼ねた酸素良導性固体電解質ZrO
2を0.2〜10.0wt%、粒成長制御剤を兼ねた粒
界空乏層形成剤S r (Mn1/2Ta+7t) 0
3を0.4〜6.0wt%添加し、よ(混合したのち、
900℃にて仮焼した。湿式粉砕の後、乾燥、造粒し、
ディスク状に成型して、窒素95%〜水素5%よりなる
還元雰囲気中1380℃にて焼成した後、大気中950
℃にて熱処理し、ディスクの両面に銀電極を形成して第
2図の粒界バリア型高静電容量セラミックバリスタを作
成し、電気特性を測定した。測定結果を第2表に示す。
(Example 2) Commercially available industrial strontium titanate (SrTiOv)
TiO2MgO5i02 system (e.g. 30:30
: 40wt% ratio), TiO2-MnO-SiO2 system (
For example, 10:50:40wt% ratio), T i 02-A
1203-8 i 02 series (e.g. 20:35:45
1.0 wt % of a sintering accelerator that mainly forms a liquid phase at high temperatures (wt % ratio), and 0.4 w t of a semiconducting accelerator Y2O3 that is mainly dissolved in the bevlovskite phase.
%, solid electrolyte with good oxygen conductivity, ZrO, which also serves as a grain growth control agent
0.2 to 10.0 wt% of 2, grain boundary depletion layer forming agent S r (Mn1/2Ta+7t) 0 which also serves as a grain growth control agent
Add 0.4 to 6.0 wt% of 3 (after mixing)
It was calcined at 900°C. After wet grinding, drying and granulation
After molding into a disk shape and firing at 1380°C in a reducing atmosphere consisting of 95% nitrogen to 5% hydrogen,
A grain boundary barrier type high capacitance ceramic varistor as shown in FIG. 2 was prepared by heat treatment at .degree. C. and silver electrodes were formed on both surfaces of the disk, and its electrical characteristics were measured. The measurement results are shown in Table 2.

なお、焼結促進剤は、例えばTiO2MgO3i02系
(fl(1えば30 : 30 : 40wt%比)は
、市販のT i 02 r M g O、S s 02
の粉体を所定の重量比で秤量・混合し、1.200℃に
て仮焼し、粉砕して得た。更に粒成長制御剤を兼ねた粒
界空乏層形成剤S r (Mn1/2Ta1/z)03
は、市販のS rcO3,Ta2CO5,MnCO3を
混合し、900℃にて仮焼し粉砕して得た。
The sintering accelerator is, for example, TiO2MgO3i02 (fl (for example, 30:30:40 wt% ratio)), commercially available TiO2rMgO, Ss02
The powders were weighed and mixed at a predetermined weight ratio, calcined at 1.200°C, and pulverized. Furthermore, a grain boundary depletion layer forming agent S r (Mn1/2Ta1/z)03 which also serves as a grain growth control agent
was obtained by mixing commercially available SrcO3, Ta2CO5, and MnCO3, calcining the mixture at 900°C, and pulverizing the mixture.

(以  下  余  白  ) 第2表より明らかなごとく、5rTiOsにTiO2M
go−SiO2などの主として高温度で液相を形成する
焼結促進剤が1.0wt%、半導体化促進剤Y2O3が
0.4wt%、粒成長制御剤を兼ねた酸素良導性電解質
ZrO2を0.2〜8 、 Ow t Ob、粒成長制
御剤を兼ねた粒界空乏層形成剤か0.4〜6.0wt%
添加され焼成されて得た本材料は極めて優れたノぐリス
タ特性及び誘電体特性を示し、高静電容量バリスタとし
て使用できる。これらのデバイスに用いられている材料
の電気特性は、はぼ第一の実施例の材料と等しい。
(Left below) As is clear from Table 2, TiO2M is added to 5rTiOs.
1.0 wt% of a sintering accelerator such as go-SiO2 that mainly forms a liquid phase at high temperatures, 0.4 wt% of a semiconductor accelerator Y2O3, and 0% of an oxygen-conducting electrolyte ZrO2 that also serves as a grain growth control agent. .2 to 8, OwtOb, grain boundary depletion layer forming agent that also serves as a grain growth control agent or 0.4 to 6.0 wt%
The material obtained by adding and firing the material exhibits extremely excellent varistor and dielectric properties, and can be used as a high capacitance varistor. The electrical properties of the materials used in these devices are approximately the same as the materials of the first embodiment.

〈実施例3) 市販の工業用チタン酸ストロンチウム(SrT i 0
3) ニ”r i 02  MgOS i 02系(例
えば30 : 30 : 40wt%比)の主として高
温度で液相を形成する焼結促進剤を3.0wt%、半導
体化促進剤WO3,N bzos、 L a203. 
YzO3を0.05〜2.0wt%、粒成長制御剤を兼
ねた酸素良導性固体電解質ZrO2を1.5wt%、粒
成長$i制御剤を兼ねた粒界空乏層形成剤S rO,B
Bao、+Cao、+ (Mn1/zTa+z2)03
または、S ro、6B a、o、tc ao、2 (
M n 1/2T a I/2) 03を2゜Owe%
添加し、よく混合したのち、900℃にて仮焼した。湿
式粉砕の後、乾燥、造粒、成型して、窒素95%−水素
5%よりなる還元雰囲気中1380℃にて焼成し、大気
中1050℃にて熱処理し、電極を形成して第2図の粒
界バリア型高静電容量セラミックバリスタを作製し、電
気特性を測定した。その測定結果を第3表に示す。
<Example 3> Commercially available industrial strontium titanate (SrT i 0
3) 3.0 wt% of the sintering accelerator that mainly forms a liquid phase at high temperatures of the MgOS i02 system (for example, 30:30:40 wt% ratio), the semiconductor accelerators WO3, Nbzos, L a203.
0.05 to 2.0 wt% YzO3, 1.5 wt% oxygen conductive solid electrolyte ZrO2 that also serves as a grain growth control agent, grain boundary depletion layer forming agent S rO,B that also serves as a grain growth control agent
Bao, +Cao, + (Mn1/zTa+z2)03
Or S ro, 6B a, o, tc ao, 2 (
M n 1/2T a I/2) 03 by 2゜Owe%
After adding and mixing thoroughly, it was calcined at 900°C. After wet pulverization, it is dried, granulated, molded, fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen, and heat treated at 1050°C in the air to form an electrode. A grain boundary barrier type high capacitance ceramic varistor was fabricated and its electrical properties were measured. The measurement results are shown in Table 3.

なお、焼結促進剤T i 02−MgO−8i O2系
(30: 30 : 40wt比)は、市販のT i 
02、MgO,5i02の粉体を所定の重量比で秤量・
混合し、1200℃にて仮焼し、粉砕して得た。
The sintering accelerator T i 02-MgO-8i O2 system (30: 30: 40 wt ratio) is a commercially available Ti
Weigh the powders of 02, MgO, 5i02 at a predetermined weight ratio.
The mixture was mixed, calcined at 1200°C, and ground.

さらに、粒成長制御剤を兼ねた粒界空乏層形成剤は、市
販のS r CO3,B a CO3,Ca CO3゜
Ta205.MnCO5を混合し、900℃にて仮焼し
、粉砕して得た。
Furthermore, grain boundary depletion layer forming agents that also serve as grain growth control agents include commercially available S r CO3, B a CO3, Ca CO3 ° Ta205. MnCO5 was mixed, calcined at 900°C, and pulverized.

(以  下  余  白) 第3表より明らかなごとく、5rTi(hにT i 0
2−MgO−8i 02系などの焼結促進剤が3、Ov
t%、半導体化促進剤が0.05〜2.0wt%2粒成
長制御剤を兼ねた固体電解質ZrOを1.5wt%1粒
成長制御剤を兼ねた粒界空乏層形成剤が2.0wt%添
加され焼成されて得た本材料は優れたバリスタ特性及び
誘電体特性を示し、高静電容量バリスタとして使用でき
る。これらのデバイスに用いられている材料の電気特性
は、はぼ第一の実施例の材料と等しい。
(Left below) As is clear from Table 3, 5rTi (T i 0 in h
Sintering accelerator such as 2-MgO-8i 02 series is 3, Ov
t%, 0.05 to 2.0 wt% of semiconductor accelerator, 1.5 wt% of solid electrolyte ZrO which also served as grain growth control agent, 2.0 wt% of grain boundary depletion layer forming agent which also served as grain growth control agent. The material obtained by adding % and firing shows excellent varistor and dielectric properties and can be used as a high capacitance varistor. The electrical properties of the materials used in these devices are approximately the same as the materials of the first embodiment.

(実施例4) 実施例1の粒界空乏層形成剤Sr(Mn2/3W1/z
)03 (0.1〜8.0wt%)に代えて粒界空乏層
形成剤S r (M rH/3w1/3 ) Os (
0.1〜10.0wt%)を使用したものであり、その
他の材料、焼結促進剤等の材料の製造方法を含む製造方
法および測定方法も実施例1と同じである。
(Example 4) Grain boundary depletion layer forming agent Sr (Mn2/3W1/z
)03 (0.1 to 8.0 wt%), a grain boundary depletion layer forming agent S r (M rH/3w1/3 ) Os (
0.1 to 10.0 wt%), and the manufacturing method including the manufacturing method of other materials, sintering accelerator, etc., and the measuring method are also the same as in Example 1.

その測定結果を第4表に示す。The measurement results are shown in Table 4.

なお、粒成長制御剤を兼ねた粒界空乏層形成剤S r 
(Mn2/3W1/z)03は市販のSrCO3゜WO
3,M n C03を混合し、1000℃にて仮焼し、
粉砕して得た。
In addition, a grain boundary depletion layer forming agent S r which also serves as a grain growth control agent
(Mn2/3W1/z)03 is commercially available SrCO3゜WO
3, M n C03 was mixed and calcined at 1000°C,
Obtained by crushing.

(以  下  余  白  ) 第4表より明らかなごとく、5iTiO3に焼結促進剤
T i 02−A I203−8 i 02がo、i〜
5.0wt%、半導体化促進剤Nb2O5が0.05〜
2.0wt%、固体電解質ZrO2が0.1〜1、O,
0wt%、粒成長制御剤を兼ねた粒界空乏層形成剤S 
r(Mn2/zW+7z)03が0.2〜8.0wt%
添加され焼成されて得た本材料は粒径が均一で極めて優
れたバリスタ特性を持ち、また高い誘電体特性を示し、
高静電容量バリスタとして使用できる。即ち顕微鏡観察
の結果、焼結体の微粒子は粒径がよ(そろっていて平均
粒径は6゜08mで、誘電体損失は2.0%以下、見か
け誘電率は6500以上であった。バリスタとしての材
料の立ち上がり電圧V1 mAは350〜500 V 
/ mで、V+m A −VO,1m A間における非
直線抵抗指数αは殆ど10以上の値をとる。その他バリ
スタとしてのサージ耐量、高電流域に於ける非面線抵抗
特性を表す制限電圧比、立ち上がり電圧VImAの温度
係数、静電容量の温度係数などの測定を行ったが満足で
きる値を得た。
(Left below) As is clear from Table 4, the sintering accelerator T i 02-A I203-8 i 02 is o, i ~
5.0wt%, semiconductor accelerator Nb2O5 is 0.05~
2.0 wt%, solid electrolyte ZrO2 is 0.1-1, O,
0wt%, grain boundary depletion layer forming agent S that also serves as a grain growth control agent
r(Mn2/zW+7z)03 is 0.2 to 8.0 wt%
This material obtained by adding and firing has uniform particle size and extremely excellent varistor properties, and also exhibits high dielectric properties.
Can be used as a high capacitance varistor. That is, as a result of microscopic observation, the fine particles of the sintered body were found to have a uniform particle size, with an average particle size of 6°08 m, a dielectric loss of 2.0% or less, and an apparent dielectric constant of 6500 or more. The rising voltage V1 mA of the material as is 350-500 V
/m, the nonlinear resistance index α between V+mA and VO, 1mA takes a value of almost 10 or more. We also measured the surge resistance as a varistor, the limiting voltage ratio representing the non-plane resistance characteristics in the high current range, the temperature coefficient of the rise voltage VImA, the temperature coefficient of capacitance, etc., and found that we obtained satisfactory values. .

なお、焼結促進剤の添加量が5%を越えると焼結体が変
形したり、付着して実用的でない。
It should be noted that if the amount of the sintering accelerator added exceeds 5%, the sintered body may be deformed or adhered, making it impractical.

(実施例5) 実施例20粒界空乏層形成剤Sr(Mn2/zW+7z
)03 (0.1〜6.Owt%)に代えて粒界空乏層
形成剤S r (M nysWI/s ) Os (0
.4〜4.0wt%)を、粒成長制御を兼ねた酸素良導
性固体電解質Z ro2 (0.2〜7.0wt%)に
代えて酸素良導性固体電解質ZrO2<0.2〜8.0
wt%)を使用したものであり、その他の材料、焼結促
進剤等の材料の製造方法を含む製造方法および測定方法
も実施例2と同じである。その測定結果を第5表に示す
。なお、粒成長制御剤を兼ねた粒界空乏層形成剤S r
 (Mn2/zW+7z)03は市販のS rCO3,
WO3,MnCO3を混合し、900℃にて仮焼し、粉
砕して得た。
(Example 5) Example 20 Grain boundary depletion layer forming agent Sr (Mn2/zW+7z
)03 (0.1 to 6.Owt%), a grain boundary depletion layer forming agent S r (M nysWI/s ) Os (0
.. 4 to 4.0 wt%) is replaced with a solid electrolyte with good oxygen conductivity Zro2 (0.2 to 7.0 wt%) which also serves as grain growth control. 0
wt%), and the manufacturing method including the manufacturing method of other materials and materials such as sintering accelerator, and the measuring method are also the same as in Example 2. The measurement results are shown in Table 5. In addition, a grain boundary depletion layer forming agent S r which also serves as a grain growth control agent
(Mn2/zW+7z)03 is commercially available S rCO3,
WO3 and MnCO3 were mixed, calcined at 900°C, and pulverized.

(以  下  余  白  ) 第5表より明らかなごと(、SrTiO3にT i 0
2−MgO−8i (hなどの主として高温度で液相を
形成する焼結促進剤が1.Ow t%、半導体化促進剤
Y2O3が0.4wt%2粒成長制御剤を兼ねた酸素良
導性固体電解質ZrO2を0.2〜8.0wt52粒成
長制御剤を兼ねた粒界空乏層形成剤が0.4〜3.0w
t%添加され焼成されて得た本材料は極めて優れたバリ
スタ特性及び誘電体特性を示し、高静電容量バリスタと
して使用できる。これらのデバイスの材料の電気特性は
、はぼ第4の実施例の材料特性と等しい。
(Margin below) As is clear from Table 5 (, Ti 0 in SrTiO3
2-MgO-8i (h) is mainly a sintering accelerator that forms a liquid phase at high temperatures, 1.Owt%, a semiconductor accelerator Y2O3 is 0.4wt%2, a good oxygen conductor that also serves as a grain growth control agent. Solid electrolyte ZrO2 is 0.2-8.0wt52 Grain boundary depletion layer forming agent which also serves as grain growth control agent is 0.4-3.0w
The material obtained by adding t% and firing shows extremely excellent varistor properties and dielectric properties, and can be used as a high capacitance varistor. The electrical properties of the materials of these devices are approximately equal to those of the fourth embodiment.

(実施例6) 実施f113の粒界空乏層形成剤S ro、eB a。(Example 6) Grain boundary depletion layer forming agent S ro, eB a of implementation f113.

Cao、+ (Mn2/zW+7z)03又は、Sro
、6B ao、2c ao、2(Mn172Ta1/2
) 03を2.0wt%添加することに代えて粒界空乏
層形成剤S rg、aB aQ、l Cao、+ (M
 n2/yW2ys> Chまたは、S rg、s B
 ao、2 Cao2(M n2/3w2/3 ) 0
3を2.0wt%添加し、また、粒成長制御剤を兼ねた
粒界空乏層形成剤は、市販の5rCOz。
Cao, + (Mn2/zW+7z)03 or Sro
, 6B ao, 2c ao, 2 (Mn172Ta1/2
) Instead of adding 2.0 wt% of 03, the grain boundary depletion layer forming agent S rg, aB aQ, l Cao, + (M
n2/yW2ys> Ch or S rg, s B
ao, 2 Cao2 (M n2/3w2/3 ) 0
The grain boundary depletion layer forming agent which added 2.0 wt% of 3 and also served as a grain growth control agent was commercially available 5rCOz.

BaCO3,CaCO3,WO3,MnCO3を混合し
、900°Cにて仮焼し、粉砕して得たものである。
It was obtained by mixing BaCO3, CaCO3, WO3, and MnCO3, calcining the mixture at 900°C, and pulverizing it.

なお、その他の材料、焼結促進剤等の材料の製造方法を
含む製造方法および測定方法も実施例3と同じである。
Note that the manufacturing method including the manufacturing method of other materials and materials such as sintering accelerator, and the measuring method are also the same as in Example 3.

その測定結果を第6表に示す。The measurement results are shown in Table 6.

(以  下  余  白  ) 慾6表より明らかなごとく、5rTiO3にT i 0
2−MgO−8i 02系などの焼結促進剤が3.0w
t%、半導体化促進剤が0.05〜2.0wt%2粒成
長制御剤を兼ねた固体電解質Zr○2を1.5wt%2
粒成長制御剤を兼ねた粒界空乏層形成剤が2.0wt%
添加され焼成されて得た本材料は優れたバリスタ特性及
び誘電体特性を示し、高静電容量バリスタとして使用で
きる。これらのデバイスの材料の電気特性は、はぼ第4
の実施例の材料特性と等しい。
(Left below) As is clear from Table 6, Ti0 in 5rTiO3
Sintering accelerator such as 2-MgO-8i 02 series is 3.0w
t%, semiconducting accelerator is 0.05 to 2.0wt%2, solid electrolyte Zr○2 which also serves as a grain growth control agent is 1.5wt%2
Grain boundary depletion layer forming agent that also serves as a grain growth control agent is 2.0wt%
The material obtained by doping and firing shows excellent varistor and dielectric properties and can be used as a high capacitance varistor. The electrical properties of the materials used in these devices are approximately
Equivalent to the material properties of the example.

(実施例7) 実施例1の粒界空乏層形成剤Sr(Mn1/2Ta1/
2)03(0.1〜8.0wt%)ニ代えて粒界空乏層
形成剤S r(Mn1/2Nb+72)03(0.1〜
10.0wt%)を使用したものであり、その他の材料
、焼結促進剤等の材料の製造方法を含む製造方法および
測定方法も実施例1と同じである。その測定結果を第7
表に示す。なお、粒成長制御剤を兼ねた粒界空乏層形成
剤Sr(Mn1/2Nb1/2)03は市販のS rC
O3,Nb2O5゜MnCO3を混合し、1000℃に
て仮焼し、粉砕して得た。
(Example 7) Grain boundary depletion layer forming agent Sr (Mn1/2Ta1/
2) Grain boundary depletion layer forming agent Sr(Mn1/2Nb+72)03(0.1~8.0wt%) instead of 03(0.1~8.0wt%)
10.0 wt %), and the manufacturing method including the manufacturing method of other materials and materials such as sintering accelerator, and the measuring method are also the same as in Example 1. The measurement results are shown in the seventh
Shown in the table. The grain boundary depletion layer forming agent Sr(Mn1/2Nb1/2)03, which also serves as a grain growth control agent, is commercially available SrC.
O3, Nb2O5°MnCO3 were mixed, calcined at 1000°C, and pulverized.

(以  下  余  白  ) 第7表より明らかなごと(、SrTiO3に焼結促進剤
Ti○2−A I203−8 i 02が0.1〜5.
0wt%、半導体化促進剤Nb2O5が0105〜2.
0wt%、固体電解質ZrO2が0.1〜10.0wt
%、粒成長制御剤を兼ねた粒界空乏層形成剤S r (
Mn1/pNb1/1)03が0.2〜8.0wt%添
加され焼成されて得た本材料は粒径が均一で極めて優れ
たバリスタ特性を持ち、また高い誘電体特性を示し、高
静電容量バリスタとして使用できる。即ち顕微鏡観察の
結果、焼結体の微粒子は粒径がよくそろっていて約8μ
mで、誘電体損失は2.0%以下、見かけ誘電率は8,
000以上であった。バリスタきしての材料の立ち上が
り電圧V1 mAは300〜400 V / mで、V
ImA−VO,1mA間における非直線抵抗指数αは殆
ど10以上の値をとる。その他のバリスタとしてのサー
ジ耐量、高電流域に於ける非直線抵抗特性を表す制限電
圧比、立ち上がり電圧V + m Aの温度係数、静電
容量の温度係数などの測定を行ったが満足できる値を得
た。
(Left below) As is clear from Table 7, the sintering accelerator Ti○2-A I203-8 i02 in SrTiO3 is 0.1 to 5.
0 wt%, and the semiconducting accelerator Nb2O5 is 0105-2.
0wt%, solid electrolyte ZrO2 is 0.1-10.0wt
%, grain boundary depletion layer forming agent S r (
This material obtained by adding 0.2 to 8.0 wt% of Mn1/pNb1/1)03 and firing it has uniform particle size and extremely excellent varistor properties.It also exhibits high dielectric properties and high electrostatic properties. Can be used as a capacitance varistor. In other words, as a result of microscopic observation, the particle size of the fine particles of the sintered body is well aligned, approximately 8 μm.
m, dielectric loss is 2.0% or less, apparent permittivity is 8,
It was over 000. The rising voltage V1 mA of the material used as a varistor is 300 to 400 V/m, and V
The nonlinear resistance index α between ImA and VO, 1 mA takes a value of almost 10 or more. We also measured the surge resistance as a varistor, the limiting voltage ratio representing non-linear resistance characteristics in the high current range, the temperature coefficient of rising voltage V + mA, the temperature coefficient of capacitance, etc., and the values were satisfactory. I got it.

なお、焼結促進剤の添加量が5%を越えると焼結体が変
形したり、付着して実用的でない。
It should be noted that if the amount of the sintering accelerator added exceeds 5%, the sintered body may be deformed or adhered, making it impractical.

(実施例8) 実施例2の粒界空乏層形成剤Sr(Mn+7tTa+7
2)03(0.1〜6.0wt%)に代えて粒界空乏層
形成剤S r(Mn1/2Nb1/2) 03(0.4
〜6.0wt%)を1粒成長制御を兼ねた酸素良導性固
体電解質Z roz (0.2〜7.0wt%)に代え
て酸素良導性固体電解質ZrO2<0.2〜8゜0wt
%)を使用したものであり、その他の材料、焼結促進剤
等の材料の製造方法を含む製造方法および測定方法も実
施f!fiI2と同じである。その測定結果を第8表に
示す。
(Example 8) Grain boundary depletion layer forming agent Sr (Mn+7tTa+7
2) Grain boundary depletion layer forming agent S r (Mn1/2Nb1/2) 03 (0.4
~6.0wt%) is replaced with a solid electrolyte with good oxygen conductivity ZrO2 (0.2~7.0wt%) which also serves as grain growth control.
%), and manufacturing methods and measuring methods, including methods for manufacturing other materials and materials such as sintering accelerators, are also implemented f! It is the same as fiI2. The measurement results are shown in Table 8.

なお、粒成長制御剤を兼ねた粒界空乏層形成剤S r 
(M n 1/2 N b I/2)03は市販のSr
CO3゜N b205. M n COsを混合し、9
00℃にて仮焼し、粉砕して得た。
In addition, a grain boundary depletion layer forming agent S r which also serves as a grain growth control agent
(M n 1/2 N b I/2) 03 is commercially available Sr
CO3°N b205. Mix M n COs, 9
The product was calcined at 00°C and pulverized.

(以  下  余  白) 第8表より明らかなどと(,5rTiO3にTi(h 
 MgO−3fO2などの主として高温度で液相を形成
する焼結促進剤が1.0w t%、半導体化促進剤Y2
O3が0.4wt%2粒成長制御剤を兼ねた酸素良導性
固体電解質ZrO2を0.2〜8.0wt%1粒成長I
11御荊を兼ねた粒界空乏層形成剤が0.4〜6.0w
t%添加され焼成されて得た木材、料は極めて優れたバ
リスタ特性及び誘電体特性を示し、高静電容量バリスタ
として使用できる。これらのデバイスに用いられている
材料の電気特性は、はぼ第7の実施例の材料と等しい。
(Left below) It is clear from Table 8 that (,5rTiO3 has Ti(h
1.0 wt% of sintering accelerator such as MgO-3fO2 that mainly forms a liquid phase at high temperatures, and 1.0 wt% of sintering accelerator such as MgO-3fO2;
O3 is 0.4 wt% 2 grain growth control agent ZrO2 with good oxygen conductivity is 0.2 to 8.0 wt% 1 grain growth I
Grain boundary depletion layer forming agent that also serves as 11 Ojii is 0.4 to 6.0w
The wood material obtained by firing and adding t% shows extremely excellent varistor properties and dielectric properties, and can be used as a high capacitance varistor. The electrical properties of the materials used in these devices are approximately the same as those of the seventh embodiment.

(実施例9) 実施例3の粒界空乏層形成剤S ro、sB ao、I
Cao、+ (Mn+z27a1/1)03又は、5r
(1,6B ao、yc ao、2(Mn+7tTa+
72) 03を2.0wt%添加することに代えて粒界
空乏層形成剤S r3sBao、ICao、+(Mn1
/2Nb1/2)03又は、S r6.aB ao、!
c ao、2(M n I/2N b I/2)03を
2.0wt%添加し、また、粒成長制御剤を兼ねた粒界
空乏層形成剤は市販のSrCO3゜BaCO3,CaC
O3,NbxOs、  MnCO3を混合し、900℃
にて仮焼し、粉砕して得たものである。
(Example 9) Grain boundary depletion layer forming agent S ro, sB ao, I of Example 3
Cao, + (Mn+z27a1/1)03 or 5r
(1,6B ao, yc ao, 2(Mn+7tTa+
72) Instead of adding 2.0 wt% of 03, grain boundary depletion layer forming agent S r3sBao, ICao, +(Mn1
/2Nb1/2)03 or S r6. aB ao,!
c ao, 2(M n I/2N b I/2) 03 was added at 2.0 wt%, and the grain boundary depletion layer forming agent that also served as a grain growth control agent was commercially available SrCO3゜BaCO3, CaC.
Mix O3, NbxOs, MnCO3 and heat to 900℃
It was obtained by calcining and pulverizing.

なお、その他の材料、焼結促進剤等の材料の製造方法を
含む製造方法および測定方法も実施例3と同じである。
Note that the manufacturing method including the manufacturing method of other materials and materials such as sintering accelerator, and the measuring method are also the same as in Example 3.

その測定結果を第9表に示す。The measurement results are shown in Table 9.

〈  以  下  余  白  ) 第9表より明らかなごとく、5rTiOsにT i 0
2  MgO−8i 02系などの焼結促進剤が3.0
wt%、半導体化促進剤Y2O3が0.5又は1.0w
t%1粒成長制御剤を兼ねた固体電解質ZrO2を1.
5wt%、粒成長制御剤を兼ねた粒界空乏層形成剤が2
゜0wt%添加され焼成されて得た本材料は優れたバリ
スタ特性及び誘電体特性を示し、高静電容量バリスタと
して使用できる。即ち顕微鏡観察の結果、焼結体の自由
表面における?M拉子はそれぞれの組成で粒径がよくそ
ろっていて、7.0〜12.0μmであり、誘電体損失
は2.0%以下、見かけ誘電率はs、ooo以上であっ
た。またバリスタとしての材料の立ち上がり電圧V1m
Aは350〜400 V / waで、V1mA〜Vo
、1mA間における非直線抵抗指数αは殆ど10以上の
値をとる。その他バリスタとしてのサージ耐量、立ち上
がり電圧V+ mAの温度係数。
(Margin below) As is clear from Table 9, 5rTiOs has T i 0
2 Sintering accelerator such as MgO-8i 02 series is 3.0
wt%, semiconducting accelerator Y2O3 is 0.5 or 1.0w
t%1 solid electrolyte ZrO2 which also serves as a grain growth control agent.
5wt%, grain boundary depletion layer forming agent which also serves as grain growth control agent is 2
This material obtained by adding 0 wt% and firing shows excellent varistor properties and dielectric properties, and can be used as a high capacitance varistor. That is, as a result of microscopic observation, on the free surface of the sintered body? The particle size of each composition of the M lattice was well matched, ranging from 7.0 to 12.0 μm, the dielectric loss was 2.0% or less, and the apparent dielectric constant was s, ooo or more. Also, the rising voltage V1m of the material as a varistor
A is 350-400 V/wa, V1mA-Vo
, 1 mA, the nonlinear resistance index α takes a value of almost 10 or more. In addition, surge resistance as a varistor, temperature coefficient of rise voltage V + mA.

静電容量の温度係数などの測定を行ったが満足できる値
を得た。これらのデバイスに用いられている材料の電気
特性は、はぼ第7の実施例の材料と等しい。
We measured the temperature coefficient of capacitance, etc., and found satisfactory values. The electrical properties of the materials used in these devices are approximately the same as those of the seventh embodiment.

なお、実施例2.3.5,6,8.9において、5rT
iOsに焼結促進剤、半導体化促進剤、tl成長制御剤
を兼ねた酸素良導性固体電解質および、粒成長制御剤を
粒界空乏層形成剤を添加し、混合・加圧成型したのち、
800〜1500℃にて焼結と還元を施し、次に酸化雰
囲気中900〜1150℃にて熱処理を行なった場合も
、それぞれの実施例と同様の結果が確認された。
In addition, in Examples 2.3.5, 6, and 8.9, 5rT
A solid electrolyte with good oxygen conductivity that also serves as a sintering accelerator, a semiconductor accelerator, and a TL growth control agent, a grain growth control agent, and a grain boundary depletion layer forming agent are added to iOs, and the mixture is mixed and pressure-molded.
Even when sintering and reduction were performed at 800 to 1500°C, and then heat treatment was performed at 900 to 1150°C in an oxidizing atmosphere, the same results as in each example were confirmed.

また、実施例1,4.7において、SrTiO3に焼結
促進剤、半導体化促進剤2粒成長制御剤を兼ねた酸素良
導性固体電解質および、粒成長制御剤を粒界空乏層形成
剤を添加し、混合・加圧したのち、大気中1200〜1
500℃にて焼成し、これを微粉砕して貴金属内部電極
材料と交互に層状に成型し、予め大気中1250〜15
00℃にて焼成し、次に水素を含む還元雰囲気中800
〜1500℃にて還元し、酸化雰囲気中900〜1i5
0℃にて熱処理を行なった場合も、それぞれの実施例と
同様の結果が確認された。
In addition, in Examples 1 and 4.7, a sintering accelerator, a semiconducting accelerator, and a well-oxygen-conducting solid electrolyte which also served as a grain growth controlling agent, and a grain boundary depletion layer forming agent were added to SrTiO3. After adding, mixing and pressurizing, 1200 to 1
It is fired at 500°C, finely pulverized, formed into layers alternately with noble metal internal electrode materials, and heated to 1250-150°C in advance in air.
Calcined at 00°C, then heated at 800°C in a reducing atmosphere containing hydrogen.
Reduction at ~1500℃, 900~1i5 in oxidizing atmosphere
Even when the heat treatment was performed at 0° C., the same results as in each example were confirmed.

発明の効果 以上のように、本発明によれば、チタン酸ストロンチウ
ム(S rT i O3)を主成分とするペロブスカイ
ト型酸化物粉体に、主として混合物よりなり液相を形成
する焼結促進剤を0.1〜5.0wt、主としてペロブ
スカイト相に固溶する半導体化促進剤を0.05〜2.
0wt%、粒成長制御剤を兼ねた酸素良導性固体電解質
ZrO2を0.1〜10.0wt%、および粒成長制御
剤を兼ねた粒界空乏層形成剤を加えて混合して得た粉体
を加圧成型したのち、1250〜1500℃における焼
結・還元工程を施し、酸化雰囲気中900〜1150℃
にて熱処理を施し電極を形成ずれば、あるいは前記粉体
を貴金属内部電極材料と交互に層状に成型したのち、1
250〜1500℃における焼結・還元工程を施し、次
に酸化雰囲気中900〜1150℃にて熱処理を施した
後外部電極を形成すれば、良導性の粒界バリア型高静電
容量セラミックバリスタを得ることができるという効果
が得られる。
Effects of the Invention As described above, according to the present invention, a sintering accelerator mainly consisting of a mixture and forming a liquid phase is added to a perovskite-type oxide powder containing strontium titanate (S rT i O3) as a main component. 0.1 to 5.0 wt, and 0.05 to 2.0 wt.
0 wt%, 0.1 to 10.0 wt% of an oxygen-conducting solid electrolyte ZrO2 that also serves as a grain growth control agent, and a grain boundary depletion layer forming agent that also serves as a grain growth control agent. After the body is pressure molded, it is subjected to a sintering and reduction process at 1250 to 1500°C, and then heated to 900 to 1150°C in an oxidizing atmosphere.
After heat treatment is performed to form electrodes, or after forming the powder into layers alternately with noble metal internal electrode material, 1.
A grain boundary barrier type high capacitance ceramic varistor with good conductivity can be obtained by performing a sintering/reduction process at 250 to 1500°C, then heat treatment at 900 to 1150°C in an oxidizing atmosphere, and then forming an external electrode. This has the effect of being able to obtain the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である積層形粒界バリア型高
静電容量セラミックバリスタの構造を説明する図であり
、第2図は同化の実施例である粒界バリア型高静電容量
セラミックバリスタの構造を説明する図である。 1.4・・・・・・粒界バリア型高静電容量セラミック
ス、2・・・・・・内部電極、3・・・・・・外部電極
、5・・・・・・電極、6・・・・・・リード線。
FIG. 1 is a diagram explaining the structure of a laminated grain boundary barrier type high capacitance ceramic varistor which is an embodiment of the present invention, and FIG. FIG. 3 is a diagram illustrating the structure of a capacitive ceramic varistor. 1.4... Grain boundary barrier type high capacitance ceramics, 2... Internal electrode, 3... External electrode, 5... Electrode, 6... ·····Lead.

Claims (15)

【特許請求の範囲】[Claims] (1) チタン酸ストロンチウム(SrTiO_3)を
主成分とするペロブスカイト型酸化物粉体に、主として
高温度で液相を形成する焼結促進剤(0.1〜5.0w
t%)、主としてペロブスカイト相に固溶する半導体化
促進剤(0.05〜2.0wt%)、粒成長制御剤を兼
ねた酸素良導性固体電解質ZrO_2(0.1〜10.
0wt%)、および、粒成長制御剤を兼ねた粒界空乏層
形成剤Sr(Mn_1_/_2Ta_1_/_2)O_
3(0.2〜7.0wt%)を添加し、混合・加圧成型
したのち、800〜1500℃にて焼結と還元を施し、
次に酸化雰囲気中900〜1150℃にて熱処理を施し
、電極を形成する粒界バリア型高静電容量セラミックバ
リスタの製造方法。
(1) A sintering accelerator (0.1 to 5.0 w
t%), a semiconducting accelerator (0.05 to 2.0 wt%) mainly dissolved in the perovskite phase, and a solid electrolyte with good oxygen conductivity, ZrO_2 (0.1 to 10 wt%), which also serves as a grain growth control agent.
0wt%), and a grain boundary depletion layer forming agent Sr(Mn_1_/_2Ta_1_/_2)O_ which also serves as a grain growth control agent.
3 (0.2 to 7.0 wt%), mixed and pressure molded, and then sintered and reduced at 800 to 1500°C.
A method for manufacturing a grain boundary barrier type high capacitance ceramic varistor, which is then subjected to heat treatment at 900 to 1150°C in an oxidizing atmosphere to form an electrode.
(2) 焼結促進剤として、少なくともTiO_2−M
gO−SiO_2系,TiO_2−MnO−SiO_2
系,TiO_2−Al_2O_3−SiO_2系の内の
いずれかより選択してなる請求項1記載の粒界バリア型
高静電容量セラミックバリスタの製造方法。
(2) At least TiO_2-M as a sintering accelerator
gO-SiO_2 system, TiO_2-MnO-SiO_2
2. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1, wherein the ceramic varistor is selected from the group consisting of TiO_2-Al_2O_3-SiO_2 system.
(3) 半導体化促進剤として、少なくともWO_3,
Nb_2O_5,La_2O_3,Y_2O_3の内よ
り選択してなる酸化物(0.05〜2.0wt%)を添
加した請求項1記載の粒界バリア型高静電容量セラミッ
クバリスタの製造方法。
(3) As a semiconductor accelerator, at least WO_3,
2. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1, wherein an oxide (0.05 to 2.0 wt%) selected from Nb_2O_5, La_2O_3, and Y_2O_3 is added.
(4) 粒成長制御剤を兼ねた粒界空乏層形成剤として
Sr(Mn_2_/_3W_1_/_3)O_3(0.
2〜8.0wt%)を添加したことを特長とする請求項
1記載の粒界バリア型高静電容量セラミックバリスタの
製造方法。
(4) Sr(Mn_2_/_3W_1_/_3)O_3(0.
2. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1, characterized in that 2 to 8.0 wt%) is added.
(5) 粒成長制御剤を兼ねた粒界空乏層形成剤として
Sr(Mn_2_/_3W_1_/_3)O_3(0.
2〜8.0wt%)を添加し、焼結促進剤として少なく
ともTiO_2−MgO−SiO_2系,TiO_2−
MnO−SiO_2系,TiO_2−Al_2O_3−
SiO_2系から選択してなる請求項1記載の粒界バリ
ア型高静電容量セラミックバリスタの製造方法。
(5) Sr(Mn_2_/_3W_1_/_3)O_3(0.
2 to 8.0 wt%), and at least TiO_2-MgO-SiO_2 system, TiO_2-
MnO-SiO_2 system, TiO_2-Al_2O_3-
The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1, wherein the varistor is selected from SiO_2 series.
(6) 粒成長制御剤を兼ねた粒界空乏層形成剤として
Sr(Mn_2_/_3W_1_/_3)O_3(0.
2〜8.0wt%)を添加し、半導体化促進剤がWO_
3,Nb_2O_5,La_2O_3,Y_2O_3の
中から選択された酸化物(0.05〜2.0wt%)よ
りなる請求項1記載の粒界バリア型高静電容量セラミッ
クバリスタの製造方法。
(6) Sr(Mn_2_/_3W_1_/_3)O_3(0.
2 to 8.0 wt%), and the semiconducting accelerator is WO_
3. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1, comprising an oxide (0.05 to 2.0 wt%) selected from among 3, Nb_2O_5, La_2O_3, and Y_2O_3.
(7) 粒成長制御剤を兼ねた粒界空乏層形成剤として
Sr (Mn_1_/_2Nb_1_/_2)O_3(
0.2〜8.0wt%)を添加したことを特長とする請
求項1記載の粒界バリア型高静電容量セラミックバリス
タの製造方法。
(7) Sr (Mn_1_/_2Nb_1_/_2)O_3(
2. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1, characterized in that 0.2 to 8.0 wt%) is added.
(8) 粒成長制御剤を兼ねた粒界空乏層形成剤として
Sr(Mn_1_/_2Nb_1_/_2)O_3(0
.2〜8.0wt%)を添加し、焼結促進剤として少な
くともTiO_2−MgO−SiO_2系,TiO_2
−MnO−SiO_2系,TiO_2−Al_2O_3
−SiO_2のいずれかから選択してなる請求項1記載
の粒界バリア型高静電容量セラミックバリスタの製造方
法。
(8) Sr(Mn_1_/_2Nb_1_/_2)O_3(0
.. 2 to 8.0 wt%) and at least TiO_2-MgO-SiO_2 system, TiO_2 as a sintering accelerator.
-MnO-SiO_2 system, TiO_2-Al_2O_3
-SiO_2. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1.
(9) 粒成長制御剤を兼ねた粒界空乏層形成剤として
Sr(Mn_1_/_2Nb_1_/_2)O_3(0
.2〜8.0wt%)を添加し、半導体化促進剤がWO
_3,Nb_2O_5,La_2O_3,Y_2O_3
の中から選択された酸化物(0.05〜2.0wt%)
よりなる請求項1記載の粒界バリア型高静電容量セラミ
ックバリスタの製造方法。
(9) Sr(Mn_1_/_2Nb_1_/_2)O_3(0
.. 2 to 8.0 wt%), and the semiconducting accelerator is WO.
_3, Nb_2O_5, La_2O_3, Y_2O_3
Oxide selected from (0.05-2.0wt%)
A method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 1.
(10) チタン酸ストロンチウム(SrTiO_3)
を主成分とするペロブスカイト型酸化物粉体に、焼結促
進剤(0.1〜5.0wt%),半導体化促進剤(0.
05〜2.0wt%),粒成長制御剤を兼ねた固体電解
質ZrO_2(0.1〜10.0wt%)、および粒成
長制御剤を兼ねた粒界空乏層形成剤Sr_1_−_x_
−_yBa_xCa_y(Mn_1_/_2Ta_1_
/_2)O_3(ただし、0<x+y≦1)(0.2〜
7.0wt%)を添加し、混合・加圧成型したのち、1
250〜1500℃にて焼結と還元を施し、次に酸化雰
囲気中900〜1150℃にて熱処理を施し、電極を形
成する粒界バリア型高静電容量セラミックバリスタの製
造方法。
(10) Strontium titanate (SrTiO_3)
A sintering accelerator (0.1 to 5.0 wt%) and a semiconducting accelerator (0.
05 to 2.0 wt%), solid electrolyte ZrO_2 (0.1 to 10.0 wt%) which also serves as a grain growth control agent, and grain boundary depletion layer forming agent Sr_1_-_x_ which also serves as a grain growth control agent.
−_yBa_xCa_y(Mn_1_/_2Ta_1_
/_2) O_3 (0<x+y≦1) (0.2~
7.0wt%), mixed and pressure molded, 1
A method for manufacturing a grain boundary barrier type high capacitance ceramic varistor, which comprises performing sintering and reduction at 250 to 1500°C, and then heat treatment at 900 to 1150°C in an oxidizing atmosphere to form an electrode.
(11) 粒成長制御剤を兼ねた粒界空乏層形成剤とし
て、Sr_1_−_x_−_yBa_xCa_x(Mn
_2_/_3W_1_/_3)O_3(ただし、0<x
+y≦1)(0.2〜8.0wt%)を添加したことを
特長とする請求項10記載の粒界バリア型高静電容量セ
ラミックバリスタの製造方法。
(11) Sr_1_-_x_-_yBa_xCa_x (Mn
_2_/_3W_1_/_3)O_3 (however, 0<x
The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 10, characterized in that +y≦1) (0.2 to 8.0 wt%) is added.
(12) 粒成長制御剤を兼ねた粒界空乏層形成剤とし
て、Sr_1_−_x_−_yBa_xCa_x(Mn
_2_/_3Nb_1_/_3)O_3(ただし、0<
x+y≦1)(0.2〜8.0wt%)を添加したこと
を特長とする請求項10記載の粒界バリア型高静電容量
セラミックバリスタの製造方法。
(12) Sr_1_-_x_-_yBa_xCa_x (Mn
_2_/_3Nb_1_/_3)O_3(However, 0<
The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 10, characterized in that x+y≦1) (0.2 to 8.0 wt%) is added.
(13) チタン酸ストロンチウム(SrTiO_3)
を主成分とするペロブスカイト型酸化物粉体に、焼結促
進剤(0.1〜5.0wt%),半導体化促進剤(0.
05〜2.0wt%),粒径制御剤を兼ねた固体電解質
ZrO_2(0.1〜10.0wt%)、および粒界空
乏層形成剤兼粒径制御剤Sr (Mn_1_/_2Ta
_1_/_2)O_3(0.2〜7.0wt%)を添加
し、混合・加圧したのち、大気中1200〜1500℃
にて焼成し、これを微粉砕して貴金属内部電極材料と交
互に層状に成型し、予め大気中1250〜1500℃に
て焼成し、次に水素を含む還元雰囲気中800〜150
0℃にて還元し、次に酸化雰囲気中900〜1150℃
にて熱処理を施す積層状粒界バリア型高静電容量セラミ
ックバリスタの製造方法。
(13) Strontium titanate (SrTiO_3)
A sintering accelerator (0.1 to 5.0 wt%) and a semiconducting accelerator (0.
05 to 2.0 wt%), solid electrolyte ZrO_2 (0.1 to 10.0 wt%), which also serves as a grain size control agent, and Sr (Mn_1_/_2Ta), which also serves as a grain boundary depletion layer forming agent and grain size control agent.
_1_/_2) After adding O_3 (0.2 to 7.0 wt%), mixing and pressurizing, heat at 1200 to 1500°C in the atmosphere.
This is then finely pulverized and formed into layers alternately with noble metal internal electrode materials, and pre-fired in the air at 1250-1500°C, then heated at 800-150°C in a reducing atmosphere containing hydrogen.
Reduction at 0°C, then 900-1150°C in an oxidizing atmosphere
A method for manufacturing a laminated grain boundary barrier type high capacitance ceramic varistor that is heat-treated.
(14) 粒成長制御剤を兼ねた粒界空乏層形成剤とし
て、Sr(Mn_2_/_3W_1_/_3)O_3(
0.2〜8.0wt%)を添加したことを特長とする請
求項13記載の粒界バリア型高静電容量セラミックバリ
スタの製造方法。
(14) Sr(Mn_2_/_3W_1_/_3)O_3(
14. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 13, characterized in that 0.2 to 8.0 wt%) is added.
(15) 粒成長制御剤を兼ねた粒界空乏層形成剤とし
て、Sr(Mn_2_/_3Nb_1_/_2)O_3
(0.2〜8.0wt%)を添加したことを特長とする
請求項13記載の粒界バリア型高静電容量セラミックバ
リスタの製造方法。
(15) As a grain boundary depletion layer forming agent that also serves as a grain growth control agent, Sr(Mn_2_/_3Nb_1_/_2)O_3
14. The method for manufacturing a grain boundary barrier type high capacitance ceramic varistor according to claim 13, characterized in that 0.2 to 8.0 wt% of the ceramic varistor is added.
JP1033943A 1989-02-14 1989-02-14 Manufacture of grain-boundary barrier type high capacitance ceramic varistor Pending JPH02213101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1033943A JPH02213101A (en) 1989-02-14 1989-02-14 Manufacture of grain-boundary barrier type high capacitance ceramic varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1033943A JPH02213101A (en) 1989-02-14 1989-02-14 Manufacture of grain-boundary barrier type high capacitance ceramic varistor

Publications (1)

Publication Number Publication Date
JPH02213101A true JPH02213101A (en) 1990-08-24

Family

ID=12400591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1033943A Pending JPH02213101A (en) 1989-02-14 1989-02-14 Manufacture of grain-boundary barrier type high capacitance ceramic varistor

Country Status (1)

Country Link
JP (1) JPH02213101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520759A (en) * 1992-09-03 1996-05-28 Matsushita Electric Industrial Co., Ltd. Method for producing ceramic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520759A (en) * 1992-09-03 1996-05-28 Matsushita Electric Industrial Co., Ltd. Method for producing ceramic parts

Similar Documents

Publication Publication Date Title
KR100296932B1 (en) Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element
JPS634339B2 (en)
JPH0524646B2 (en)
EP0418394B1 (en) Process for producing ceramic capacitors having varistor characteristics
JPH02213101A (en) Manufacture of grain-boundary barrier type high capacitance ceramic varistor
JPS623569B2 (en)
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH03211703A (en) Manufacture of grain boundary barrier type high electrostatic capacitance ceramic varistor
JPH02222515A (en) Manufacture of ceramic capacitor possessing varistor characteristics
JPH02215103A (en) Manufacture of grain boundary barrier type high capacitance ceramic varistor
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH02263418A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH02303106A (en) Manufacture of ceramic capacitor having varistor characteristic
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH04112517A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH0350710A (en) Manufacture of grain boundary insulation type semiconductor ceramic capacitor
JPH05198408A (en) Manufacture of semiconductor ceramic varistor
JPH04112518A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH03190209A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH042105A (en) Grain-boundary insulation type semiconductor ceramic capacitor
JPH0374818A (en) Ceramic capacitor having varistor characteristics and its manufacture
JPH04112513A (en) Semiconductor ceramic capacitor of grain-boundary insulation type