JPH04112517A - Semiconductor ceramic capacitor of grain-boundary insulation type - Google Patents

Semiconductor ceramic capacitor of grain-boundary insulation type

Info

Publication number
JPH04112517A
JPH04112517A JP2231754A JP23175490A JPH04112517A JP H04112517 A JPH04112517 A JP H04112517A JP 2231754 A JP2231754 A JP 2231754A JP 23175490 A JP23175490 A JP 23175490A JP H04112517 A JPH04112517 A JP H04112517A
Authority
JP
Japan
Prior art keywords
grain boundary
sintering
ceramic capacitor
grain
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231754A
Other languages
Japanese (ja)
Inventor
Atsushi Iga
篤志 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2231754A priority Critical patent/JPH04112517A/en
Publication of JPH04112517A publication Critical patent/JPH04112517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain this capacitor by a method wherein a sintering-promoting additive, a semiconductor-promoting additive and a grain-boundary depletion- layer forming agent, in respectively prescribed quantities, are added to a perovskite-type oxide composed mainly of SrTiO3, this mixture is baked and a diffusion treatment is executed in an oxidizing atmosphere. CONSTITUTION:The following are added to and mixed with a perovskite-type oxide composed mainly of strontium titanate (SrTiO3): 0.1 to 5.0wt.% of a sintering-promoting additive; 0.05 to 2.0wt.% of a semiconductor-promoting additive Nb2O5; and 0.1 to 5.0wt.% of a grain-boundary depletion-layer forming agent composed of Sr1-x-yBaxCay(Co1/2W1/2)O3 (where x<=0.3, y<=0.3 and 0<=x+y<=0.6). This mixture is pressurized and molded. Then, the mixture is baked at 1250 to 1500 deg.C in a reducing atmosphere which contains hydrogen. The surface of its baked substance is coated with a grain-boundary diffusing substance which contains bismuth oxide (Bi2O3). A heat treatment is executed at 850 to 1200 deg.C in an oxidizing atmosphere. Electrodes are formed. Thereby, a large element whose characteristic is good can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒界絶縁型半導体セラミンクコンテンサ、特に
積層化された粒界絶縁型半導体セラミックコンデンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to grain boundary insulated semiconductor ceramic capacitors, and more particularly to laminated grain boundary insulated semiconductor ceramic capacitors.

従来の技術 従来、この種のセラミック酸化物半導体の結晶粒界を絶
縁化することによって、これまでのセラミック誘電体と
比較して、実効誘電率の非常に大きなコンデンサ素体が
得られることが知られている。例えば、SrTiO3を
主成分とし、これにN b 205およびTiO2−A
l2O3SiO2系混合物を添加して成形し、焼結して
なる多結晶磁器半導体の粒界に、酸化銅(Cu O)お
よび酸化ビスマス(Bi203)を拡散させ、前北結晶
粒界に空乏層を形成し、粒界を絶縁化し電極を形成して
得た粒界絶縁型半導体コンデンサにおいて、昇圧破壊電
圧1200 V/画、絶縁抵抗約I X 10’MΩ/
amの絶縁特性を保持しながら、実効誘電率20.00
0〜100.000のごとく大きな値が得られている。
Conventional technology It has been known that by insulating the grain boundaries of this type of ceramic oxide semiconductor, it is possible to obtain a capacitor body with a much larger effective dielectric constant than conventional ceramic dielectrics. It is being For example, SrTiO3 is the main component, and N b 205 and TiO2-A
Copper oxide (CuO) and bismuth oxide (Bi203) are diffused into the grain boundaries of a polycrystalline ceramic semiconductor formed by adding an l2O3SiO2-based mixture, molding and sintering, and forming a depletion layer at the front grain boundary. However, in the grain boundary insulated semiconductor capacitor obtained by insulating the grain boundaries and forming electrodes, the boost breakdown voltage is 1200 V/image, and the insulation resistance is approximately I x 10'MΩ/
effective dielectric constant of 20.00 while maintaining the insulation properties of am
Large values such as 0 to 100.000 are obtained.

なお、ここで、拡散物質であるCub、BizO:+の
役割について記すと、CuOは焼結体の結晶粒界にあっ
て電子トラップセンタを形成し、n型半導体結晶の結晶
粒中にあって、粒界に近い部分に存在する電子をトラッ
プし、粒界近傍に電子の存在しない空乏層を形成する働
きをする。粒界絶縁型半導体セラミックコンデンサはこ
のようにして形成された空乏層の両側に電荷を蓄えてコ
ンデンサを構成するのである。一方、Bi2O3はZ 
r 02等とともに酸素の良導体として知られており、
粒界に存在して外部より焼結体内部まで酸素を拡散で運
搬し、粒界空乏層形成に必要な酸素を供給する働きをす
る。
Here, to describe the role of the diffusion substances Cub and BizO:+, CuO forms an electron trap center in the grain boundaries of the sintered body, and forms an electron trap center in the crystal grains of the n-type semiconductor crystal. , traps the electrons present near the grain boundaries and functions to form a depletion layer where no electrons exist near the grain boundaries. A grain boundary insulated semiconductor ceramic capacitor forms a capacitor by storing charge on both sides of the depletion layer thus formed. On the other hand, Bi2O3 is Z
It is known as a good conductor of oxygen along with r02 etc.
It exists in the grain boundaries and transports oxygen from the outside to the inside of the sintered body by diffusion, and functions to supply the oxygen necessary for the formation of grain boundary depletion layers.

しかしながら、これらのバルクタイプのものに対し、粒
界絶縁型半導体セラミックコンデンサにおいても積層化
の要求は強い。
However, in contrast to these bulk type capacitors, there is a strong demand for lamination even in grain boundary insulated semiconductor ceramic capacitors.

発明が解決しようとする課題 しかしながら、このような従来の製造方法で得た粒界絶
縁型半導体セラミックコンデンサは、大きな静電容量を
得るため、焼結体中の結晶粒をできるだけ大きなものに
し、ペースト状にした酸化銅含有の酸化ビスマスなとを
、高温で焼成して得た焼結体の周囲に塗布し、しかる後
に熱処理を施すことによってBi2O3,CuO等を焼
結体内部にまで拡散させるという工程を経ているが、積
層型のセラミックスの電極間隔が狭くなるため焼結体の
結晶粒の粒径は抑制されなれねばならず、また、従来の
このような方法で作製した素子は、工程中Bi2O3等
に比較してCuOなとは拡散しに<<、そのため特性に
バラツキができやす(、さらに厚みのあるものは内部ま
で十分に酸化銅等を拡散させることが困難であるので、
素子の大きさに制限がある等の課題があった。
Problems to be Solved by the Invention However, in order to obtain a large capacitance, grain boundary insulated semiconductor ceramic capacitors obtained by such conventional manufacturing methods are made by making the crystal grains in the sintered body as large as possible and using paste. Bi2O3, CuO, etc. are diffused into the interior of the sintered body by coating bismuth oxide containing copper oxide in the form of bismuth oxide and applying it around the sintered body obtained by firing at high temperature, followed by heat treatment. However, because the spacing between the electrodes of laminated ceramics becomes narrower, the grain size of the sintered body must be suppressed, and elements manufactured using conventional methods Compared to Bi2O3, etc., CuO does not easily diffuse <<, which causes variations in properties (furthermore, if the material is thick, it is difficult to diffuse copper oxide etc. into the interior),
There were problems such as restrictions on the size of the element.

本発明はこのような課題を解決するもので、すなわち、
焼結体部の結晶粒の粒径は小さくしかもよく揃い、粒界
空乏層形成剤である酸化銅等の塗布・拡散を必要とせず
、単に、酸化ビスマス等の粒界拡散物質だけを塗布し空
気中で熱処理を施して拡散するだけで特性かよく、大き
な素子を得ることを目的とするものである。
The present invention solves these problems, namely:
The grain size of the crystal grains in the sintered body is small and uniform, and there is no need to apply or diffuse a grain boundary depletion layer forming agent such as copper oxide, but simply apply a grain boundary diffusion substance such as bismuth oxide. The purpose is to obtain large devices with good characteristics simply by heat-treating and diffusing them in air.

課題を解決するための手段 上記課題を解決するために本発明は、5rTiO:rを
主成分としたペロブスカイト型酸化物に、焼結促進添加
剤を0.1〜5.3wt%、半導体化促進添加剤Nb2
O5を0.05〜2.0wt%、およびS r +−x
−yB a XCa y (Co +、zW+。) 0
3(ただし、X≦0.3.y≦0.3.0≦x+y≦0
.6)よりなる粒界空乏層形成剤を0,1〜5.0wt
%添加し、混合・印刷・成形したのち高温で焼成し、半
導体化した後、酸化雰囲気中850〜1200℃で酸化
ビスマス等の拡散処理を施して粒界絶縁型半導体セラミ
ックコンデンサを得るものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a perovskite-type oxide mainly composed of 5rTiO:r, and a sintering promoting additive of 0.1 to 5.3 wt% to promote semiconductor formation. Additive Nb2
0.05 to 2.0 wt% O5, and S r +−x
-yB a XCa y (Co +, zW+.) 0
3 (However, X≦0.3.y≦0.3.0≦x+y≦0
.. 6) 0.1 to 5.0 wt of grain boundary depletion layer forming agent consisting of
%, mixed, printed, molded, fired at high temperature to become a semiconductor, and then subjected to a diffusion treatment of bismuth oxide, etc. at 850 to 1200°C in an oxidizing atmosphere to obtain a grain boundary insulated semiconductor ceramic capacitor. .

作用 この構成により、高温で、SrTiO3を主成分とした
ペロブスカイト型酸化物と粒界空乏層形成剤S r 1
−1−y B a x Ca y (Co1/ 2W+
2)03と半導体化促進添加剤N b 205とを反応
・固溶させておき、焼成時の冷却過程で銅を含む酸化物
を粒界に析出させ、また、粒界に拡散した酸化ビスマス
内を拡散して到達した酸素によってさらに銅等の粒界物
質を酸化させることによって粒界に電子のトラップセン
タを形成し、還元によって形成された低抵抗の半導体結
晶内に粒界に沿って空乏層を形成する。このようにして
得た空乏層は絶縁性がよく、空乏層の両側に電荷を蓄え
て良質のコンデンサか得られる。すなわち本発明による
と、従来、行われていた、半導体化後のCuO等の塗布
・拡散の工程を必要とせず、容易に優れた粒界絶縁型半
導体セラミックコンデンサを得ることかできる。
Effect With this configuration, the perovskite type oxide mainly composed of SrTiO3 and the grain boundary depletion layer forming agent S r 1
-1-y B a x Ca y (Co1/ 2W+
2) 03 and the semiconductor-promoting additive N b 205 are reacted and dissolved in solid solution, and during the cooling process during firing, oxides containing copper are precipitated at the grain boundaries, and the bismuth oxide diffused at the grain boundaries is The oxygen that diffuses and reaches grain boundary materials such as copper are further oxidized, forming electron trap centers at the grain boundaries, and a depletion layer is created along the grain boundaries within the low-resistance semiconductor crystal formed by reduction. form. The depletion layer obtained in this way has good insulating properties, and charges are stored on both sides of the depletion layer, resulting in a high-quality capacitor. That is, according to the present invention, it is possible to easily obtain an excellent grain boundary insulated semiconductor ceramic capacitor without requiring the conventional process of applying and diffusing CuO or the like after semiconductor formation.

実施例 以下、本発明の一実施例の粒界絶縁型半導体セラミック
コンデンサについて、表と図面を参照しなから説明する
EXAMPLE Hereinafter, a grain boundary insulated semiconductor ceramic capacitor according to an example of the present invention will be described with reference to the tables and drawings.

(実施例1) 蓚酸チタニルストロンチウム(SrTiO(C204)
2・4H20)を熱分解して得たチタン酸ストロンチウ
ム(SrTiO3)に焼結促進剤TiO2−Al2O2
−3in2(20:35:45wt%比)を0.05〜
6.0wt%、半導体化促進剤N b 205を0.0
2〜3. Oat%、粒界空乏層形成剤S r (Cu
 l−2Wl−2) 03を0.05〜6.0wt%添
加し、よく混合したのち、900℃にて仮焼した。湿式
粉砕の後、乾燥、造粒7成型して、大気中1400℃に
て焼結し、再び湿式粉砕の後、樹脂及び有機溶剤を用い
てペースト化し、電極用白金ペーストと交互に印刷し、
1300℃にて水素還元し、酸化ビスマスを塗布したあ
と大気中950℃にて熱処理し、電極を調整して電気特
性を測定した。測定結果を第1表に示す。なお、焼結促
進剤TiO2−A1203−−SiO2(20:35:
45wt%比)は、市販のTiO□、 A l 203
.  S i 02の粉体を20:35:45の重量比
で秤量・混合し、1200℃にて仮焼し、粉砕して得た
。さらに粒界空乏層形成剤S r (CO+。Wl。)
 03は、市販のSrCO3,Coo、WO2を混合し
、1000℃にて仮焼し、粉砕して得た。
(Example 1) Titanyl strontium oxalate (SrTiO(C204)
Sintering accelerator TiO2-Al2O2 is added to strontium titanate (SrTiO3) obtained by thermal decomposition of
-3in2 (20:35:45wt% ratio) from 0.05 to
6.0 wt%, semiconductor accelerator N b 205 0.0
2-3. Oat%, grain boundary depletion layer forming agent S r (Cu
l-2Wl-2) 03 was added in an amount of 0.05 to 6.0 wt%, mixed well, and then calcined at 900°C. After wet pulverization, drying, granulation 7 molding, sintering at 1400 ° C. in the atmosphere, wet pulverization again, paste using resin and organic solvent, printing alternately with platinum paste for electrodes,
After hydrogen reduction at 1300° C. and application of bismuth oxide, heat treatment was performed at 950° C. in the air, electrodes were adjusted, and electrical properties were measured. The measurement results are shown in Table 1. In addition, the sintering accelerator TiO2-A1203--SiO2 (20:35:
45 wt% ratio) is commercially available TiO□, Al 203
.. The powder of S i 02 was weighed and mixed at a weight ratio of 20:35:45, calcined at 1200°C, and pulverized. Furthermore, grain boundary depletion layer forming agent Sr (CO+.Wl.)
03 was obtained by mixing commercially available SrCO3, Coo, and WO2, calcining the mixture at 1000°C, and pulverizing it.

(以  下  余  白) 第1表 第1表より明らかなごとく、5rTiO:+ に焼結促
進剤T i 02−A I20:+−SiO2が0.1
〜5.0wt%、半導体化促進剤Nb2O5が0.05
〜2.0wt%、粒界空乏層形成剤Sr (Cot 2
W1゜)03が0.1〜5.0wt%添加され焼成され
て得た本材料は極めて優れた誘電体特性を示し、コンデ
ンサきして使用できる。即ち、顕微鏡観察の結果、焼結
体の微粒子は粒径がよくそろっていて2,0〜4.0μ
mで、誘電体損失は1.0%以下、見かけ誘電率は2.
000以上であった。その他静電容量の温度係数、絶縁
抵抗、昇圧破壊電圧9等価直列抵抗などの測定を行った
が満足できる値を得た。なお、焼結促進剤が5%以上に
なると焼結体が互いに変形し、付着して実用的でない。
(Margins below) Table 1 As is clear from Table 1, the sintering accelerator Ti02-A I20:+-SiO2 was added to 5rTiO:+ by 0.1.
~5.0 wt%, semiconductor accelerator Nb2O5 is 0.05
~2.0wt%, grain boundary depletion layer forming agent Sr (Cot 2
This material obtained by adding 0.1 to 5.0 wt% of W1°)03 and firing it exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well aligned, ranging from 2.0 to 4.0μ.
m, dielectric loss is 1.0% or less, and apparent permittivity is 2.
It was over 000. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage 9 equivalent series resistance, etc., and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

第1図は本発明の第1の実施例における粒界絶縁型半導
体セラミックコンデンサを示すものである。第1図にお
いて、1)は粒界絶縁型半導体セラミックス、12は電
極を、そして13はリード線を示す。
FIG. 1 shows a grain boundary insulated semiconductor ceramic capacitor according to a first embodiment of the present invention. In FIG. 1, 1) indicates a grain boundary insulated semiconductor ceramic, 12 an electrode, and 13 a lead wire.

(実施例2) 市販の工業用チタン酸ストロンチウム (SrTiO3)にT i O□M g OS i 0
2系(例えば30:30:40wt%比)、TiO2M
n0−8i02系(例えば10:50:40wt%比)
 、Cao  MgOA 1203  S i O2系
(例えば30 : 10 :15 : 45wt%比)
、T i 02  A l 203  S i O2系
(例えば2035:45wt%比)、ZnONb:Os
  S i O2系(例えば50ニー45:5wt%比
) 、Z r O2Mn0−8iOz系(例えば10:
55:35wt%比)から選ばれた焼結促進剤を0.0
5〜5.0wt%、半導体化促進剤Nb2O5を0.4
wt%、粒界空乏層形成剤S r (CO+/2W+z
2) 03を2.0wt%添加し、よく混合したのち、
900℃にて仮焼した。湿式粉砕の後、乾燥、造粒、成
型して、窒素95%−水素5%よりなる還元雰囲気中1
380℃にて焼成し、酸化ビスマスを塗布したあと大気
中950℃にて熱処理し、電極を形成して電気特性を測
定した。測定結果を第2表に示す。
(Example 2) T i O□M g OS i 0 was added to commercially available industrial strontium titanate (SrTiO3).
2 system (e.g. 30:30:40wt% ratio), TiO2M
n0-8i02 series (e.g. 10:50:40wt% ratio)
, Cao MgOA 1203 S i O2 system (e.g. 30:10:15:45wt% ratio)
, T i 02 A l 203 S i O2 system (e.g. 2035:45wt% ratio), ZnONb:Os
S i O2 system (for example, 50:5 wt% ratio), Z r O2Mn0-8iOz system (for example, 10:5 wt% ratio),
0.0 sintering accelerator selected from 55:35wt% ratio)
5 to 5.0 wt%, and 0.4 of Nb2O5 as a semiconductor accelerator
wt%, grain boundary depletion layer forming agent S r (CO+/2W+z
2) After adding 2.0 wt% of 03 and mixing well,
It was calcined at 900°C. After wet pulverization, drying, granulation, and molding are carried out in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen.
It was fired at 380°C, coated with bismuth oxide, and then heat-treated at 950°C in the atmosphere to form electrodes and measure electrical properties. The measurement results are shown in Table 2.

なお、焼結促進剤は、例えばTiO2−MgOSiO2
系(80:30・40wt%比)は、市販のT i 0
2.MgO,S i02の粉体を30 : 30:40
の重量比で秤量・混合し、1200℃にて仮焼し、粉砕
して得た。さらに粒界空乏層形成剤は、市販のS r 
CO3,CoO,WO3を混合し、1000℃にて仮焼
し、粉砕して得た。
Note that the sintering accelerator is, for example, TiO2-MgOSiO2
The system (80:30/40wt% ratio) was commercially available T i 0
2. MgO, Si02 powder at 30:30:40
They were weighed and mixed at a weight ratio of , calcined at 1200°C, and pulverized. Furthermore, the grain boundary depletion layer forming agent is commercially available S r
It was obtained by mixing CO3, CoO, and WO3, calcining at 1000°C, and pulverizing.

(以  下  余  白) 第2表 第2表より明らかなごとく、SrTiO3にTiO3−
MgO−SiO2などの焼結促進剤が0、1〜5.0w
t%、半導体化促進剤N b 205か0.4wt%1
粒界空乏層形成剤が2.0wt%添加され焼成されて得
た本材料は極めて優れた誘電体特性を示し、コンデンサ
として使用できる。即ち顕微鏡観察の結果、焼結体の微
粒子はそれぞれの組成で粒径がよくそろっていて2.0
〜4.0μmで、誘電体損失は1.0%以下、見かけ誘
電率は2、000以上であった。その他静電容量の温度
係数、絶縁抵抗、昇圧破壊電圧1等価直列抵抗などの測
定を行ったが満足できる値を得た。なお、焼結促進剤が
5%以上になると焼結体が互いに変形し、付着して実用
的でない。
(Left below) Table 2 As is clear from Table 2, SrTiO3 has TiO3-
Sintering accelerator such as MgO-SiO2 is 0, 1~5.0w
t%, semiconductor accelerator N b 205 or 0.4wt%1
This material obtained by adding 2.0 wt % of grain boundary depletion layer forming agent and firing exhibits extremely excellent dielectric properties and can be used as a capacitor. In other words, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well matched depending on the composition.
~4.0 μm, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 2,000 or more. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage 1 equivalent series resistance, etc., and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例3) 市販の工業用チタン酸ストロンチウム (SrTiO3)にT i 02−Mg0−S i 0
2系(例えば30:30:40wt%比)の焼結促進剤
を3.0wt%、半導体化促進剤N b 20 sをQ
、5wt%、粒界空乏層形成剤S ro、8 B ao
、l Ca。
(Example 3) T i 02-Mg0-S i 0 was added to commercially available industrial strontium titanate (SrTiO3).
3.0 wt% of the sintering accelerator of 2 systems (for example, 30:30:40 wt% ratio), and Q of the semiconductor accelerator N b 20 s.
, 5wt%, grain boundary depletion layer forming agent S ro, 8 B ao
, l Ca.

(CO+  2W+  2  )  03.  S r
o、<B ao、3c ao、3(C012W1.’2
 )03を0.05〜6.Qwt%添加し、よく混合し
たのち、900℃にて仮焼した。湿式粉砕の後、乾燥、
造粒、成型して、窒素95%−水素5%よりなる還元雰
囲気中1380℃にて焼成し、酸化ビスマスを塗布した
あと大気中950℃にて熱処理し、電極を形成して電気
特性を測定した。測定結果を第3表に示す。なお、焼結
促進剤は、例えばT 102−Mg0−3 i02系(
30: 30 : 40wt%比)は、市販のTiO2
MgO,SiO2の粉体を30・3040の重量比で秤
量・混合し、1200℃にて仮焼し、粉砕して得た。さ
らに粒界空乏層形成剤は、市販のSrCO3,BaCO
3,CaC0:+、Cod。
(CO+ 2W+ 2) 03. S r
o, <B ao, 3c ao, 3(C012W1.'2
)03 to 0.05 to 6. After adding Qwt% and mixing well, it was calcined at 900°C. After wet grinding, drying
Granulated and molded, fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen, coated with bismuth oxide, and then heat treated at 950°C in the air to form electrodes and measure electrical properties. did. The measurement results are shown in Table 3. Note that the sintering accelerator is, for example, T 102-Mg0-3 i02 series (
30:30:40wt% ratio) is commercially available TiO2
The powders of MgO and SiO2 were weighed and mixed at a weight ratio of 30.times.3040, calcined at 1200.degree. C., and pulverized. Furthermore, the grain boundary depletion layer forming agent is commercially available SrCO3, BaCO
3, CaC0:+, Cod.

W O3を混合し、900℃にて仮焼し、粉砕して得た
W O3 was mixed, calcined at 900°C, and pulverized.

第3表 (以  下  余  白) 第3表より明らかなごとく、5rTjO3にT 102
−Mg0−3 i O2なとの焼結促進剤か3.0wt
%、半導体化促進剤Nb2O5か0.5wt%粒界空乏
層形成剤が0.1〜5.0wt%添加され焼成されて得
た本材料は優れた誘電体特性を示し、コンデンサとして
使用できる。即ち顕微鏡観察の結果、焼結体の微粒子は
それぞれの組成で粒径かよ(そろっていて2〜3μmで
、誘電体損失は1.0%以下、見かけ誘電率は2.00
0以上であった。その他静電容量の温度係数、絶縁抵抗
7昇圧破壊電圧1等価直列抵抗などの測定を行ったが満
足できる値を得た。なお、焼結促進剤が5%以上になる
と焼結体が互いに変形し、付着して実用的でない。
Table 3 (margin below) As is clear from Table 3, T 102 in 5rTjO3
-3.0wt of sintering accelerator with Mg0-3 i O2
%, a semiconductor accelerator Nb2O5 or 0.5 wt% grain boundary depletion layer forming agent is added in an amount of 0.1 to 5.0 wt%, and the material obtained by firing exhibits excellent dielectric properties and can be used as a capacitor. In other words, as a result of microscopic observation, the fine particles of the sintered body have a particle size of 2 to 3 μm depending on the composition, the dielectric loss is less than 1.0%, and the apparent dielectric constant is 2.00.
It was 0 or more. Other measurements such as temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage, and equivalent series resistance were obtained, and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

発明の効果 以上のように、本発明によれば、チタン酸ストロンチウ
ム(SrTiO3)を主成分とするペロブスカイト型酸
化物に、焼結促進添加剤を0.1〜5.0wt%、半導
体化促進添加剤Nb2O5を0、05〜2. Ovt%
、およびS r +−x−y B a x Ca y(
Cot :W+ = ) Owl  (たたし、X≦0
.3.y≦0.3.0≦z+y≦0.6)よりなる粒界
空乏層形成剤を0.1〜5.0wt%添加し、混合・加
圧成型したのち、水素を含む還元雰囲気中1250〜1
500℃にて焼成し、その焼成物の表面に酸化ビスマス
(Bi::03)を含む粒界拡散物質を塗布し、酸化雰
囲気中850〜1200℃にて熱処理を施し電極を形成
することにより、あるいは、実施例は示さなかったが、
5rTiO,+を主成分とするペロブスカイト型酸化物
に、予め3 rH−x−yB aXc ay (Co、
2W+ −)03  (たたし、X≦0.3.y≦0.
3.0≦x+y≦0.6)よりなる粒界空乏層形成剤を
0.1〜5.Qwt%反応・固溶させておき、しかる後
に焼結促進添加剤を0.1〜5.0wt%、半導体化促
進添加剤Nb2O5を0.05〜2.Qwt%添加し、
混合・加圧成型したのち、水素を含む還元雰囲気中12
50〜1500℃にて焼成し、その焼成物の表面にBi
2O3を含む粒界拡散物質を塗布し、酸化雰囲気中85
0〜1200℃にて熱処理を施し電極を形成することに
より、あるいは、さらに5rTiO,+を主成分とする
ペロブスカイト型酸化物に、焼結促進添加剤を0.1〜
5.0wt%、半導体化促進添加剤を0、05〜2.0
wt%、およびS r I−x−yB a、、c a 
y(Co 1.z’2 W+/2 ) 03  (ただ
し、X≦0.3゜y≦0.3.O≦z+y≦0.6)よ
りなる粒界空乏層形成剤を0.1〜5.0wt%添加し
、混合・加圧成型したのち、予め大気中1250〜15
00℃にて焼成し、次に水素を含む還元雰囲気中850
〜1400℃にて還元したあと焼結体の表面にBi2O
3を含む粒界拡散物質を塗布し、酸化雰囲気中850〜
1200℃にて熱処理を施し電極を形成することにより
、層特性の粒界絶縁型半導体セラミックコンデンサを得
ることができるという効果が得られる。
Effects of the Invention As described above, according to the present invention, 0.1 to 5.0 wt% of a sintering accelerating additive is added to a perovskite-type oxide whose main component is strontium titanate (SrTiO3). The agent Nb2O5 was 0.05~2. Ovt%
, and S r +−x−y B a x Ca y (
Cot: W+ = ) Owl (Tatashi, X≦0
.. 3. After adding 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent consisting of y≦0.3.0≦z+y≦0.6), mixing and pressure molding, 1250 to 1000 g in a reducing atmosphere containing hydrogen. 1
By firing at 500°C, applying a grain boundary diffusion substance containing bismuth oxide (Bi::03) on the surface of the fired product, and performing heat treatment at 850 to 1200°C in an oxidizing atmosphere to form an electrode, Alternatively, although no examples were shown,
3 rH-x-yB aXc ay (Co,
2W+ -)03 (Tap, X≦0.3.y≦0.
3.0≦x+y≦0.6), the grain boundary depletion layer forming agent is 0.1 to 5. Qwt% reaction/solid solution, then 0.1 to 5.0 wt% of the sintering accelerator additive and 0.05 to 2.0 wt% of the semiconductor formation accelerating additive Nb2O5. Qwt% added,
After mixing and pressure molding, 12% in a reducing atmosphere containing hydrogen.
It is fired at 50 to 1500°C, and Bi is added to the surface of the fired product.
A grain boundary diffusion substance containing 2O3 is applied and 85% is applied in an oxidizing atmosphere.
By heat-treating at 0 to 1200°C to form an electrode, or by adding 0.1 to 0.1 to 0.1 to 0.1 to 0.1 sintering accelerating additive to a perovskite type oxide whose main component is 5rTiO,+.
5.0wt%, semiconducting accelerating additive 0.05~2.0
wt%, and S r I-x-yB a,,ca
A grain boundary depletion layer forming agent consisting of y(Co 1.z'2 W+/2) 03 (where X≦0.3゜y≦0.3.O≦z+y≦0.6) is used in an amount of 0.1 to 5 After adding .0wt%, mixing and pressure molding,
Calcined at 00°C and then heated at 850°C in a reducing atmosphere containing hydrogen.
After reduction at ~1400℃, Bi2O is deposited on the surface of the sintered body.
850~ in an oxidizing atmosphere.
By performing a heat treatment at 1200° C. to form an electrode, it is possible to obtain a grain boundary insulated semiconductor ceramic capacitor with layer characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による粒界絶縁型半導体セラ
ミックコンデンサを示す概略図である。 1)・・・・・・粒界絶縁型半導体セラミックス、12
・・・・・・電極、13・・・・・・リード線。 ℃う三ツクス 12・・・電極 13・ リード線
FIG. 1 is a schematic diagram showing a grain boundary insulated semiconductor ceramic capacitor according to an embodiment of the present invention. 1) Grain boundary insulation type semiconductor ceramics, 12
... Electrode, 13 ... Lead wire. ℃33x12...Electrode 13/Lead wire

Claims (5)

【特許請求の範囲】[Claims] (1)チタン酸ストロンチウム(SrTiO_3)を主
成分とするペロブスカイト型酸化物に、焼結促進添加剤
を0.1〜5.0wt%、半導体化促進添加剤Nb_2
O_5を0.05〜2.0wt%、およびSr_1_−
_x_−_yBa_xCa_y(Co_1_/_2W_
1_/_2)O_3(ただし、x≦0.3、y≦0.3
、0≦x+y≦0.6)よりなる粒界空乏層形成剤を0
.1〜5.0wt%添加し、混合・加圧成型したのち、
水素を含む還元雰囲気中1250〜1500℃にて焼成
し、その焼成物の表面に酸化ビスマス(Bi_2O_3
)を含む粒界拡散物質を塗布し、酸化雰囲気中850〜
1200℃にて熱処理を施し電極を形成してなる粒界絶
縁型半導体セラミックコンデンサ。
(1) A perovskite type oxide whose main component is strontium titanate (SrTiO_3), 0.1 to 5.0 wt% of a sintering accelerating additive, and a semiconductor accelerating additive Nb_2
0.05 to 2.0 wt% O_5 and Sr_1_-
_x_−_yBa_xCa_y(Co_1_/_2W_
1_/_2)O_3 (however, x≦0.3, y≦0.3
, 0≦x+y≦0.6).
.. After adding 1 to 5.0 wt%, mixing and pressure molding,
It is fired at 1250-1500°C in a reducing atmosphere containing hydrogen, and bismuth oxide (Bi_2O_3) is deposited on the surface of the fired product.
) in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at 1200°C.
(2)焼結促進添加剤がTiO_2−MgO−SiO_
2系、TiO_2−MnO−SiO_2系、CaO−M
gO−Al_2O_3−SiO_2系、TiO_2−A
l_2O_3−SiO_2系、ZnO−Nb_2O_5
−SiO_2系、ZrO_2−MnO−SiO_2系の
中から選択された混合物よりなる請求項1記載の粒界絶
縁型半導体セラミックコンデンサ。
(2) The sintering accelerator additive is TiO_2-MgO-SiO_
2 system, TiO_2-MnO-SiO_2 system, CaO-M
gO-Al_2O_3-SiO_2 system, TiO_2-A
l_2O_3-SiO_2 system, ZnO-Nb_2O_5
The grain boundary insulated semiconductor ceramic capacitor according to claim 1, comprising a mixture selected from -SiO_2 series and ZrO_2-MnO-SiO_2 series.
(3)SrTiO_3を主成分とするペロブスカイト型
酸化物に、予めSr_1_−_x_−_yBa_xCa
_y(Cu_1_/_3Ta_2_/_3)O_3(た
だし、x≦0.3、y≦0.3、0≦x+y≦0.6)
よりなる粒界空乏層形成剤を0.1〜5.0wt%反応
・固溶させておき、しかる後に焼結促進添加剤を0.1
〜5.0wt%、半導体化促進添加剤Nb_2O_5を
0.05〜2.0wt%添加し、混合・加圧成型したの
ち、水素を含む還元雰囲気中1250〜1500℃にて
焼成し、その焼成物の表面にBi_2O_3を含む粒界
拡散物質を塗布し、酸化雰囲気中850〜1200℃に
て熱処理を施し電極を形成してなる粒界絶縁型半導体セ
ラミックコンデンサ。
(3) Sr_1_-_x_-_yBa_xCa is added to the perovskite-type oxide mainly composed of SrTiO_3.
_y(Cu_1_/_3Ta_2_/_3)O_3 (however, x≦0.3, y≦0.3, 0≦x+y≦0.6)
0.1 to 5.0 wt% of the grain boundary depletion layer forming agent is reacted and dissolved in solid solution, and then 0.1 wt% of the sintering accelerating additive is added.
~5.0 wt% and 0.05 to 2.0 wt% of the semiconducting accelerator Nb_2O_5 are added, mixed and pressure molded, and then fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen to obtain the fired product. A grain boundary insulated semiconductor ceramic capacitor is formed by applying a grain boundary diffusion substance containing Bi_2O_3 to the surface of the capacitor and heat-treating the surface at 850 to 1200°C in an oxidizing atmosphere to form electrodes.
(4)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Co_1_/_2W_1_/_2)O_3(ただし
、x≦0.3、y≦0.3、0≦x+y≦0.6)より
なる粒界空乏層形成剤を0.1〜5.0wt%添加し、
混合・加圧成型したのち、予め大気中1250〜150
0℃にて焼成し、次に水素を含む還元雰囲気中850〜
1400℃にて還元したあと焼結体の表面にBi_2O
_3を含む粒界拡散物質を塗布し、酸化雰囲気中850
〜1200℃にて熱処理を施し電極を形成してなる粒界
絶縁型半導体セラミックコンデンサ。
(4) Add 0.1 to 5.0 wt % of a sintering accelerator additive and 0.05 to 2.0 w of a semiconductor accelerator Nb_2O_5 to a perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Co_1_/_2W_1_/_2)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) death,
After mixing and pressure molding, 1250 to 150
Calcined at 0°C, then heated to 850°C in a reducing atmosphere containing hydrogen.
After reduction at 1400℃, Bi_2O is deposited on the surface of the sintered body.
A grain boundary diffusion substance containing _3 is applied, and 850
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at ~1200°C.
(5)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Co_1_/_2W_1_/_2)O_3(ただし
、x≦0.3、y≦0.3、0≦x+y≦0.6)より
なる粒界空乏層形成剤を0.1〜5.0wt%添加し、
混合・ペースト化し、電極用ペーストと交互に印刷・成
型したのち、予め大気中1250〜1500℃にて焼成
し、次に水素を含む還元雰囲気中850〜1400℃に
て還元したあと焼結体の表面にBi_2O_3を含む粒
界拡散物質を塗布し、酸化雰囲気中850〜1200℃
にて熱処理を施してなる粒界絶縁型半導体セラミックコ
ンデンサ。
(5) Add 0.1 to 5.0 wt % of a sintering accelerator additive and 0.05 to 2.0 w of a semiconductor accelerator additive Nb_2O_5 to a perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Co_1_/_2W_1_/_2)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) death,
After mixing and forming a paste, printing and molding it alternately with the electrode paste, it is fired in advance at 1250 to 1500°C in the air, then reduced at 850 to 1400°C in a reducing atmosphere containing hydrogen, and then the sintered body is A grain boundary diffusion substance containing Bi_2O_3 is applied to the surface and heated at 850 to 1200°C in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor that is heat treated.
JP2231754A 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type Pending JPH04112517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231754A JPH04112517A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231754A JPH04112517A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Publications (1)

Publication Number Publication Date
JPH04112517A true JPH04112517A (en) 1992-04-14

Family

ID=16928514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231754A Pending JPH04112517A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Country Status (1)

Country Link
JP (1) JPH04112517A (en)

Similar Documents

Publication Publication Date Title
Subbarao Ceramic dielectrics for capacitors
EP0418394B1 (en) Process for producing ceramic capacitors having varistor characteristics
US4761711A (en) Barrier layer ceramic dielectric capacitor containing barium plumbate
JPH04112517A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPS623569B2 (en)
JPH04112512A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112513A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112518A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112516A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112515A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH04112514A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH042105A (en) Grain-boundary insulation type semiconductor ceramic capacitor
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH02213101A (en) Manufacture of grain-boundary barrier type high capacitance ceramic varistor
JPH0547589A (en) Intergranular insulation type semiconductor ceramic capacitor
JPH03211703A (en) Manufacture of grain boundary barrier type high electrostatic capacitance ceramic varistor
JPH02303106A (en) Manufacture of ceramic capacitor having varistor characteristic
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH02215103A (en) Manufacture of grain boundary barrier type high capacitance ceramic varistor
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPH02222515A (en) Manufacture of ceramic capacitor possessing varistor characteristics
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH0350710A (en) Manufacture of grain boundary insulation type semiconductor ceramic capacitor
JPH02263418A (en) Manufacture of ceramic capacitor having varistor characteristic