JPH04112512A - Semiconductor ceramic capacitor of grain-boundary insulation type - Google Patents

Semiconductor ceramic capacitor of grain-boundary insulation type

Info

Publication number
JPH04112512A
JPH04112512A JP2231725A JP23172590A JPH04112512A JP H04112512 A JPH04112512 A JP H04112512A JP 2231725 A JP2231725 A JP 2231725A JP 23172590 A JP23172590 A JP 23172590A JP H04112512 A JPH04112512 A JP H04112512A
Authority
JP
Japan
Prior art keywords
grain boundary
ceramic capacitor
sintering
grain
semiconductor ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231725A
Other languages
Japanese (ja)
Inventor
Tokuji Iga
伊賀 篤司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2231725A priority Critical patent/JPH04112512A/en
Publication of JPH04112512A publication Critical patent/JPH04112512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain this capacitor by a method wherein a sintering-promoting additive, a semiconductor-promoting additive and a grain-boundary depletion- layer forming agent, in respectively prescribed quantities, are added to a perovskite-type oxide composed mainly of SrTiO3, this mixture is sintered and a diffusion treatment is executed in an oxidizing atmosphere. CONSTITUTION:The following are added to and mixed with a perovskite-type oxide composed mainly of strontium titanate (SrTiO3): 0.1 to 5.0wt.% of a sintering-promoting additive; 0.05 to 2.0wt.% of a semiconductor-promoting additive Nb2O5; and 0.1 to 5.0wt.% of a grain-boundary depletion-layer forming agent composed of Sr1-x-yBaxCay(Mn2/3W1/3)O3 (where x<=0.3, y<=0.3 and 0<=x+y<=0.6). This mixture is pressurized and molded. Then, the mixture is baked at 1250 to 1500 deg.C in a reducing atmosphere which contains hydrogen; the surface of its baked substance is coated with a grain-boundary diffusing substance which contains bismuth oxide (Bi2O3); a heat treatment is executed at 850 to 1200 deg.C in an oxidizing atmosphere; electrodes are formed. Thereby, a large element whose characteristic is good can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒界絶縁型半導体セラミックコンデンサ、特に
積層化された粒界絶縁型半導体セラミックコンデンサに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a grain boundary insulated semiconductor ceramic capacitor, and more particularly to a laminated grain boundary insulated semiconductor ceramic capacitor.

従来の技術 従来、この種のセラミック酸化物半導体の結晶粒界を絶
縁化することによって、これまでのセラミック誘電体と
比較して、実効誘電率の非常に大きなコンデンサ素体が
得られることが知られている。例えば、5rT103を
主成分とし、これにNb2O5およびT i 02−A
 1203〜8102系混合物を添加して成形し、焼結
してなる多結晶磁器半導体の粒界に、酸化銅(M n 
O)および酸化ビスマス(Bi203)を拡散させ、前
記結晶粒界に空乏層を形成し、粒界を絶縁化し電極を形
成して得た粒界絶縁型半導体コンデンサにおいて、昇圧
破壊電圧1200 V/順、絶縁抵抗約I X 105
MΩ/cmの絶縁特性を保持しながら、実効誘電率20
,000〜100.000のごとく大きな値か得られて
いる。なお、ここで、拡散物質であるCub、Bi2O
3の役割について記すと、CuOは焼結体の結晶粒界に
あって電子トラップセンタを形成し、n型半導体結晶の
結晶粒中にあって、粒界に近い部分に存在する電子をト
ラップし、粒界近傍に電子の存在しない空乏層を形成す
る働きをする。粒界絶縁型半導体セラミックコンデンサ
はこのようにして形成された空乏層の両側に電荷を蓄え
てコンデンサを構成するのである。一方、B 1203
はZrO2等とともに酸素の良導体として知られており
、粒界に存在して外部より焼結体内部まで酸素を拡散で
運搬し、粒界空乏層形成に必要な酸素を供給する働きを
する。
Conventional technology It has been known that by insulating the grain boundaries of this type of ceramic oxide semiconductor, it is possible to obtain a capacitor body with a much larger effective dielectric constant than conventional ceramic dielectrics. It is being For example, 5rT103 is the main component, and Nb2O5 and Ti02-A
Copper oxide (M n
In a grain boundary insulated semiconductor capacitor obtained by diffusing O) and bismuth oxide (Bi203) to form a depletion layer at the grain boundaries, insulating the grain boundaries and forming electrodes, a boost breakdown voltage of 1200 V/order was obtained. , insulation resistance approximately I x 105
Effective permittivity of 20 while maintaining insulation properties of MΩ/cm
,000 to 100.000. Note that here, the diffusion substances Cub, Bi2O
Regarding role 3, CuO forms an electron trap center in the grain boundaries of the sintered body, and traps electrons in the crystal grains of the n-type semiconductor crystal near the grain boundaries. , which acts to form a depletion layer without electrons near the grain boundaries. A grain boundary insulated semiconductor ceramic capacitor forms a capacitor by storing charge on both sides of the depletion layer thus formed. On the other hand, B 1203
It is known as a good conductor of oxygen along with ZrO2, etc., and exists at the grain boundaries, and functions to transport oxygen from the outside to the inside of the sintered body by diffusion, and to supply the oxygen necessary for forming grain boundary depletion layers.

しかしながら、これらのバルクタイプのものに対し、粒
界絶縁型半導体セラミ・ツクコンデンサにおいても積層
化の要求は強い。
However, in contrast to these bulk type capacitors, there is a strong demand for lamination even in grain boundary insulated semiconductor ceramic capacitors.

発明が解決しようとする課題 しかしながら、このような従来の製造方法で得た粒界絶
縁型半導体セラミ・ツクコンデンサは、大きな静電容量
を得るため、焼結体中の結晶粒をできるだけ大きなもの
にし、ペースト状にした酸化銅含有の酸化ビスマスなど
を、高温で焼成して得た焼結体の周囲に塗布し、しかる
後に熱処理を施すことによってBi:03.CuO等を
焼結体内部にまで拡散させるという工程を経ているか、
積層型のセラミックスの電極間隔が狭くなるため焼結体
の結晶粒の粒径は抑制されなれねばならず、また、従来
のこのような方法で作製した素子は、工程中Bi2O2
等に比較してCuOなどは拡散しに<<、そのため特性
にバラツキができやすく、さらに厚みのあるものは内部
まで十分に酸化銅等を拡散させることが困難であるので
、素子の大きさに制限がある等の課題があった。
Problems to be Solved by the Invention However, grain boundary insulated semiconductor ceramic capacitors obtained by such conventional manufacturing methods require making the crystal grains in the sintered body as large as possible in order to obtain large capacitance. Bi:03. is applied to the periphery of a sintered body obtained by firing a paste-like bismuth oxide containing copper oxide at a high temperature, followed by heat treatment. Does it go through a process of diffusing CuO etc. into the inside of the sintered body?
Since the electrode spacing of laminated ceramics becomes narrower, the grain size of the crystal grains of the sintered body must be suppressed, and elements manufactured by conventional methods do not contain Bi2O2 during the process.
CuO etc. are difficult to diffuse compared to other materials such as CuO, etc. Therefore, the characteristics tend to vary.Furthermore, if the device is thick, it is difficult to diffuse copper oxide etc. sufficiently into the inside, so it is difficult to diffuse copper oxide etc. There were issues such as limitations.

本発明はこのような課題を解決するもので、すなわち、
焼結体部の結晶粒の粒径は小さくしかもよく揃い、粒界
空乏層形成剤である酸化銅等の塗布・拡散を必要とせず
、単に、酸化ビスマス等の粒界拡散物質だけを塗布し空
気中で熱処理を施して拡散するだけで特性かよく、大き
な素子を得ることを目的とするものである。
The present invention solves these problems, namely:
The grain size of the crystal grains in the sintered body is small and uniform, and there is no need to apply or diffuse a grain boundary depletion layer forming agent such as copper oxide, but simply apply a grain boundary diffusion substance such as bismuth oxide. The purpose is to obtain large devices with good characteristics simply by heat-treating and diffusing them in air.

課題を解決するための手段 上記課題を解決するために本発明は、5rTiO2を主
成分としたペロプスカイト型酸化物に、焼結促進添加剤
を0.1〜5,9wt%、半導体化促進添加剤N b 
20 sを0.05〜2.0wt%、およびS r 1
−x−yB axCay (Mn2z3W+/3) 0
3 (ただし、X≦o、s、y≦0.3,0≦x+y≦
0.6)よりなる粒界空乏層形成剤を0.1〜5.0w
t%添加し、混合・印刷・成形したのち高温で焼結し、
半導体化した後、酸化雰囲気中850〜1200℃で酸
化ビスマス等の拡散処理を施して粒界絶縁型半導体セラ
ミックコンデンサを得るものである。
Means for Solving the Problems In order to solve the above problems, the present invention adds 0.1 to 5.9 wt% of a sintering promoting additive to a perovskite type oxide mainly composed of 5rTiO2. Agent Nb
20 s to 0.05 to 2.0 wt%, and S r 1
-x-yB axCay (Mn2z3W+/3) 0
3 (However, X≦o, s, y≦0.3, 0≦x+y≦
0.6) grain boundary depletion layer forming agent consisting of 0.1 to 5.0w
After adding t%, mixing, printing, and molding, sintering at high temperature,
After converting into a semiconductor, a grain boundary insulated semiconductor ceramic capacitor is obtained by performing a diffusion treatment of bismuth oxide or the like at 850 to 1200° C. in an oxidizing atmosphere.

作用 この構成により、高温で、5rTiO3を主成分とした
ペロブスカイト型酸化物と粒界空乏層形成剤S r +
 −x−yB a xCa y’(M n =3W+、
)03と半導体化促進添加剤Nb2O,とを反応・固溶
させておき、焼成時の冷却過程で銅を含む酸化物を粒界
に析出させ、また、粒界に拡散した酸化ビスマス内を拡
散して到達した酸素によってさらに銅等の粒界物質を酸
化させることによって粒界に電子のトラップセンタを形
成し、還元によって形成された低抵抗の半導体結晶内に
粒界に沿って空乏層を形成する。このようにして得た空
乏層は絶縁性がよく、空乏層の両側に電荷を蓄えて良質
のコンデンサが得られる。すなわち本発明によると、従
来、行われていた、半導体化後のCuO等の塗布・拡散
の工程を必要とせず、容易に優れた粒界絶縁型半導体セ
ラミックコンデンサを得ることかできる。
Effect: With this configuration, the perovskite-type oxide mainly composed of 5rTiO3 and the grain boundary depletion layer forming agent S r +
−x−yB a xCa y′(M n =3W+,
) 03 and the semiconductor-promoting additive Nb2O are reacted and dissolved in solid solution, and during the cooling process during firing, copper-containing oxides are precipitated at the grain boundaries, and the bismuth oxide diffused at the grain boundaries is diffused. The oxygen that has reached this process further oxidizes grain boundary materials such as copper, forming electron trap centers at the grain boundaries, and forming depletion layers along the grain boundaries within the low-resistance semiconductor crystal formed by reduction. do. The depletion layer obtained in this way has good insulating properties, and charges are stored on both sides of the depletion layer, resulting in a high-quality capacitor. That is, according to the present invention, it is possible to easily obtain an excellent grain boundary insulated semiconductor ceramic capacitor without requiring the conventional process of applying and diffusing CuO or the like after semiconductor formation.

実施例 以下、本発明の一実施例の粒界絶縁型半導体セラミック
コンデンサについて、表と図面を参照しなから説明する
EXAMPLE Hereinafter, a grain boundary insulated semiconductor ceramic capacitor according to an example of the present invention will be described with reference to the tables and drawings.

(実施例1) 蓚酸チタニルストロンチウム(SrTiO(C204)
2・4H20)を熱分解して得たチタン酸ストロンチウ
ム(SrTiO2)に焼結促進剤TiO2Al2O35
i02C20:35:45it%比)を0.05〜6.
0wt%、半導体化促進剤Nb2O5を0.02〜3,
9wt%、粒界空乏層形成剤S r (CLl l/2
W+/2 ) 03を0.05〜6.0wt%添加し、
よく混合したのち、900℃にて仮焼した。湿式粉砕の
後、乾燥、造粒、成型して、大気中1400℃にて焼結
し、再び湿式粉砕の後、樹脂及び有機溶剤を用いてペー
スト化し、電極用白金ペーストと交互に印刷し、130
0℃にて水素還元し、酸化ビスマスを塗布したあと大気
中950℃にて熱処理し、電極を調整して電気特性を測
定した。測定結果を第1表に示す。なお、焼結促進剤T
 1o2−A I203−S i 02 (20: 3
5・45wt%比)は、市販のT i 02. A 1
203.  S i 02の粉体を20 + 35 :
 45の重量比で秤量・混合し、1200℃にて仮焼し
、粉砕して得た。さらに粒界空乏層形成剤S r (M
 n =3W +、=a ) 03は、市販のS r 
C03,M n C03,WO3を混合し、900℃に
て仮焼し、粉砕して得た。
(Example 1) Titanyl strontium oxalate (SrTiO(C204)
Sintering accelerator TiO2Al2O35 is added to strontium titanate (SrTiO2) obtained by thermally decomposing 2.4H20).
i02C20:35:45it% ratio) from 0.05 to 6.
0 wt%, 0.02 to 3 of the semiconductor accelerator Nb2O5,
9 wt%, grain boundary depletion layer forming agent S r (CLl l/2
0.05 to 6.0 wt% of W+/2) 03 is added,
After mixing well, the mixture was calcined at 900°C. After wet pulverization, it is dried, granulated, molded, sintered at 1400°C in the air, wet pulverized again, made into a paste using a resin and an organic solvent, and printed alternately with platinum paste for electrodes. 130
After hydrogen reduction at 0° C. and application of bismuth oxide, heat treatment was performed at 950° C. in the air, electrodes were adjusted, and electrical properties were measured. The measurement results are shown in Table 1. In addition, the sintering accelerator T
1o2-A I203-S i 02 (20: 3
5.45wt% ratio) is commercially available T i 02. A 1
203. S i 02 powder 20 + 35:
They were weighed and mixed at a weight ratio of 45, calcined at 1200°C, and pulverized. Furthermore, grain boundary depletion layer forming agent S r (M
n = 3W +, = a ) 03 is commercially available S r
C03, M n C03, and WO3 were mixed, calcined at 900°C, and pulverized.

(以  下  余  白) 第1表 第1表より明らかなことく、S r T i O2 に
焼結促進剤TiO3−A I =033 i O:か0
,1〜5.0wt%、半導体化促進剤Nb2O5か00
5〜2.0wt%、粒界空乏層形成剤Sr(Mn23W
l:])O0が0.1〜5.0wt%添加され焼成され
て得た本材料は極めて優れた誘電体特性を示し、コンデ
ンサとして使用できる。即ち、顕微鏡観察の結果、焼結
体の微粒子は粒径がよくそろっていて2.0〜4.0μ
mで、誘電体損失は1.0%以下、見かけ誘電率は2.
000以上であった。その他静電容量の温度係数7絶縁
抵抗1昇圧破壊電圧1等価直列抵抗なとの測定を行った
か満足できる値を得た。なお、焼結促進剤か5%以上に
なると焼結体が互いに変形し、付着して実用的でない。
(Margins below) Table 1 As is clear from Table 1, the sintering accelerator TiO3-A I =033 i O: 0 is added to S r T i O2.
, 1 to 5.0 wt%, semiconductor accelerator Nb2O5 or 00
5 to 2.0 wt%, grain boundary depletion layer forming agent Sr (Mn23W
1: ]) This material obtained by adding 0.1 to 5.0 wt% of O0 and firing it exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well aligned, ranging from 2.0 to 4.0μ.
m, dielectric loss is 1.0% or less, and apparent permittivity is 2.
It was over 000. In addition, the temperature coefficient of capacitance, 7 insulation resistance, 1 boosted breakdown voltage, and 1 equivalent series resistance were measured and satisfactory values were obtained. It should be noted that if the sintering accelerator content exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

第1図は本発明の第1の実施例における粒界絶縁型半導
体セラミックコンデンサを示すものである。第1図にお
いて、11は粒界絶縁型半導体セラミックス、12は電
極を、そして13はリード線を示す。
FIG. 1 shows a grain boundary insulated semiconductor ceramic capacitor according to a first embodiment of the present invention. In FIG. 1, 11 is a grain boundary insulated semiconductor ceramic, 12 is an electrode, and 13 is a lead wire.

(実施例2) 市販の工業用チタン酸ストロンチウム (S、r T i 03)にT i 02−MgO−9
i O2系(例えば30:30:40wt%比)、T 
i O2Mn0−8i02系(例えば10:50:40
wt%比)、CaO−MgO−A1203−Sin:系
(例えば30 : 10 :15 : 45wt%比)
、T i 02−A 1203−S i 02系(例え
ば2035:45wt%比)、ZnO−Nb205−5
 i 02系(例えば50:45:5wt%比)、Zr
O。
(Example 2) T i 02-MgO-9 was added to commercially available industrial strontium titanate (S, r T i 03).
i O2 system (e.g. 30:30:40wt% ratio), T
i O2Mn0-8i02 system (e.g. 10:50:40
wt% ratio), CaO-MgO-A1203-Sin: system (e.g. 30:10:15:45wt% ratio)
, T i 02-A 1203-S i 02 system (e.g. 2035:45wt% ratio), ZnO-Nb205-5
i02 series (e.g. 50:45:5wt% ratio), Zr
O.

Mn0−SiO2系(例えば10:55:35wt%比
)から選ばれた焼結促進剤を0.05〜5.0wt%、
半導体化促進剤N b 205を0.4wt%、粒界空
乏層形成剤S r (M n 2/3W +/3 ) 
03を2、(1wt%添加し、よく混合したのち、90
0℃にて仮焼した。湿式粉砕の後、乾燥、造粒、成型し
て、窒素95%−水素5%よりなる還元雰囲気中138
0℃にて焼成し、酸化ビスマスを塗布したあと大気中9
50℃にて熱処理し、電極を形成して電気特性を測定し
た。測定結果を第2表に示す。
0.05 to 5.0 wt% of a sintering accelerator selected from the Mn0-SiO2 system (for example, 10:55:35 wt% ratio);
0.4 wt% of semiconductor accelerator N b 205, grain boundary depletion layer forming agent S r (M n 2/3W +/3)
After adding 2 (1 wt%) of 03 and mixing well, 90
It was calcined at 0°C. After wet pulverization, drying, granulation, and molding are performed in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen.
After baking at 0℃ and applying bismuth oxide,
Heat treatment was performed at 50° C., electrodes were formed, and electrical properties were measured. The measurement results are shown in Table 2.

なお、焼結促進剤は、例えばTiO2−MgO−810
2系(30: 30 = 40wt%比)は、市販のT
 i O=、MgO,S i O2の粉体を30304
0の重量比で秤量・混合し、1200℃にて仮焼し、粉
砕して得た。さらに粒界空乏層形成剤は、市販のS r
 C03,M n C03,WO3を混合し、900℃
にて仮焼し、粉砕して得た。
Note that the sintering accelerator is, for example, TiO2-MgO-810.
2 system (30: 30 = 40wt% ratio) is commercially available T
i O=, MgO, Si O2 powder 30304
They were weighed and mixed at a weight ratio of 0, calcined at 1200°C, and pulverized. Furthermore, the grain boundary depletion layer forming agent is commercially available S r
Mix C03, M n C03, WO3 and heat to 900℃
It was calcined and crushed.

(以  下  余  白) 第2表 第2表より明らかなごと<、5rTiOs にT 10
2−MgO−S i O: なとの焼結促進剤か0、1
−5.0wt%、半導体化促進剤Nb2O5か0.4w
t%1粒界空乏層形成剤か2.0wt%添加され焼成さ
れて得た本材料は極めて優れた誘電体特性を示し、コン
デンサとして使用できる。即ち顕微鏡観察の結果、焼結
体の微粒子はそれぞれの組成で粒径かよくそろっていて
2.0〜4.0μmで、誘電体損失は1.0%以下、見
かけ誘電率は22O00以上であった。その他静電容量
の温度係数、絶縁抵抗、昇圧破壊電圧2等価直列抵抗な
どの測定を行ったが満足できる値を得た。なお、焼結促
進剤が5%以上になると焼結体が互いに変形し、付着し
て実用的でない。
(Left below) Table 2 It is clear from Table 2 that 5rTiOs has T 10
2-MgO-S i O: 0, 1 sintering accelerator
-5.0wt%, semiconductor accelerator Nb2O5 or 0.4w
This material obtained by adding 2.0 wt % of a grain boundary depletion layer forming agent and firing the material exhibits extremely excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was well matched for each composition, 2.0 to 4.0 μm, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 22000 or more. Ta. Other measurements were taken of the temperature coefficient of capacitance, insulation resistance, boosted breakdown voltage 2 equivalent series resistance, etc., and satisfactory values were obtained. Note that if the sintering accelerator exceeds 5%, the sintered bodies will deform and adhere to each other, making it impractical.

(実施例3) 市販の工業用チタン酸ストロンチウム (SrTiO3)にT i 02−MgO−5i 02
系(例えば30:30:40wt%比)の焼結促進剤を
3.0wt%、半導体化促進剤N b 20 sを0.
5wt%、粒界空乏層形成剤S ro、8 B ao、
+ Cao、+(M n2.・3W+/3)  03.
  S  r O4B ao、2Cao  3(M n
 2.3W 1%3 ) 03を0.05〜6.0wt
%添加し、よく混合したのち、900℃にて仮焼した。
(Example 3) Ti02-MgO-5i02 was added to commercially available industrial strontium titanate (SrTiO3).
3.0 wt % of the sintering accelerator (for example, 30:30:40 wt % ratio) and 0.0 wt % of the semiconductor accelerator N b 20 s.
5 wt%, grain boundary depletion layer forming agent S ro, 8 B ao,
+Cao, +(M n2.・3W+/3) 03.
S r O4B ao, 2Cao 3(M n
2.3W 1%3) 03 to 0.05~6.0wt
% was added, mixed well, and then calcined at 900°C.

湿式粉砕の後、乾燥、造粒、成型して、窒素95%−水
素5%よりなる還元雰囲気中1380℃にて焼成し、酸
化ビスマスを塗布したあと大気中950℃にて熱処理し
、電極を形成して電気特性を測定した。測定結果を第3
表に示す。なお、焼結促進剤は、例えばT i 02 
 M g OS i 02系(30: 30 : 40
wt%比)は、市販のT i O2M g O,S i
 02の粉体を30 : 30 : 40の重量比で秤
量・混合し、1200℃にて仮焼し、粉砕して得た。さ
らに粒界空乏層形成剤は、市販のSrCO3,BaCO
3,CaCO3,MnCO3WO3を混合し、900℃
にて仮焼し、粉砕して得た。
After wet pulverization, it is dried, granulated, molded, and fired at 1380°C in a reducing atmosphere consisting of 95% nitrogen and 5% hydrogen. After coating with bismuth oxide, it is heat-treated at 950°C in the air to form an electrode. The electrical properties were measured. The measurement results are shown in the third
Shown in the table. Note that the sintering accelerator is, for example, T i 02
M g OS i 02 series (30: 30: 40
wt% ratio) is commercially available T i O2M g O, S i
The powders of No. 02 were weighed and mixed at a weight ratio of 30:30:40, calcined at 1200°C, and pulverized. Furthermore, the grain boundary depletion layer forming agent is commercially available SrCO3, BaCO
3. Mix CaCO3, MnCO3WO3 and heat to 900℃
It was calcined and crushed.

第3表 (以  下  余  白) 第3表より明らかなごとく、5rTiO2にTiO3−
MgO−3io2なとの焼結促進剤か3.0wt%、半
導体化促進剤Nb2O5か0.5wt%粒界空乏層形成
剤か0.1〜5.0wt%添加され焼成されて得た本材
料は優れた誘電体特性を示し、コンデンサとして使用で
きる。即ち顕微鏡観察の結果、焼結体の微粒子はそれぞ
れの組成で粒径かよくそろっていて2〜3μmで、誘電
体損失は1.0%以下、見かけ誘電率は2.000以上
であった。その他静電容量の温度係数、絶縁抵抗昇圧破
壊電圧1等価直列抵抗などの測定を行ったが満足できる
値を得た。なお、焼結促進剤が5%以上になると焼結体
か互いに変形し、付着して実用的でない。
Table 3 (margin below) As is clear from Table 3, 5rTiO2 has TiO3-
This material was obtained by adding 3.0 wt% of a sintering accelerator such as MgO-3io2, 0.5 wt% of a semiconductor accelerator Nb2O5, and 0.1 to 5.0 wt% of a grain boundary depletion layer forming agent and firing. exhibits excellent dielectric properties and can be used as a capacitor. That is, as a result of microscopic observation, the particle size of the fine particles of the sintered body was uniform for each composition and was 2 to 3 μm, the dielectric loss was 1.0% or less, and the apparent dielectric constant was 2.000 or more. Other measurements such as temperature coefficient of capacitance and insulation resistance boosted breakdown voltage 1 equivalent series resistance were obtained, and satisfactory values were obtained. Incidentally, if the sintering accelerator exceeds 5%, the sintered bodies deform and adhere to each other, making it impractical.

発明の効果 以上のように、本発明によれば、チタン酸ストロンチウ
ム(SrTiO3)を主成分とするペロブスカイト型酸
化物に、焼結促進添加剤を01〜5.Ovt% 半導体
化促進添加剤Nb:05を02O5〜2.0wt%、お
よびS r +−x−y B a x Ca y(N1
 n 23W+ 3 )03 (たたし、X≦03.y
≦03,0≦X+y≦0.6)よりなる粒界空乏層形成
剤を0.1〜5.0wt%添加し、混合・加圧成型した
のち、水素を含む還元雰囲気中1250〜1500℃に
て焼成し、その焼成物の表面に酸化ビスマス(Bi。0
3)を含む粒界拡散物質を塗布し、酸化雰囲気中850
〜1200℃にて熱処理を施し電極を形成することによ
り、あるいは、実施例は示さなかったが、5rTiO2
を主成分とするペロブスカイト型酸化物に、予めSr、
〜、−7B  axCay  (Mn2  :I   
wi   3   )   03   (プこ た し
 、  X≦0.3.y≦0.3.0≦x+y≦0,6
)よりなる粒界空乏層形成剤を0.1〜5.0wt%反
応・固溶させておき、しかる後に焼結促進添加剤を0.
1〜5.0wt%、半導体化促進添加剤Nb:05を0
.05〜2.0wt%添加し、混合・加圧成型したのち
、水素を含む還元雰囲気中1250〜1500℃にて焼
成し、その焼成物の表面にBi2O3を含む粒界拡散物
質を塗布し、酸化雰囲気中850〜1200℃にて熱処
理を施し電極を形成することにより、あるいは、さらに
5rTiO,+を主成分とするペロブスカイト型酸化物
に、焼結促進添加剤を0.1〜5.0wt%、半導体化
促進添加剤を02O5〜2.0wt%、およびS r 
+ −x−y B a x Cay(Mn2.z2 W
l/3) 03  (ただし、X≦0.3.y≦0.3
.0≦x+y≦0.6)よりなる粒界空乏層形成剤を0
.1〜5.Oyt%添加し、混合・加圧成型したのち、
予め大気中1250〜1500℃にて焼成し、次に水素
を含む還元雰囲気中850〜1400℃にて還元したあ
と、焼結体の表面にBi2O3を含む粒界拡散物質を塗
布し、酸化雰囲気中850〜1200℃にて熱処理を施
し電極を形成することにより、層特性の粒界絶縁型半導
体セラミックコンデンサを得ることができるという効果
が得られる。
Effects of the Invention As described above, according to the present invention, a sintering accelerator additive is added to a perovskite-type oxide whose main component is strontium titanate (SrTiO3). Ovt% Semiconductorization promoting additive Nb: 05 to 02O5 to 2.0 wt%, and S r + -x-y B a x Ca y (N1
n 23W+ 3 )03 (Tap, X≦03.y
0.1 to 5.0 wt% of a grain boundary depletion layer forming agent consisting of 0.3, 0.03,0.0 The surface of the fired product is coated with bismuth oxide (Bi.0
3) is coated with a grain boundary diffusion substance containing 850%
By performing heat treatment at ~1200°C to form an electrode, or, although no examples are shown, 5rTiO2
The perovskite type oxide whose main component is Sr,
~, -7B axCay (Mn2:I
wi 3) 03 (pukotashi, X≦0.3.y≦0.3.0≦x+y≦0,6
0.1 to 5.0 wt % of a grain boundary depletion layer forming agent consisting of ) is reacted and dissolved in solid solution, and then 0.1 to 5.0 wt % of a sintering accelerating additive is added.
1 to 5.0 wt%, semiconducting accelerating additive Nb:05
.. After adding 05 to 2.0 wt%, mixing and pressure molding, it is fired at 1250 to 1500 °C in a reducing atmosphere containing hydrogen, and a grain boundary diffusion substance containing Bi2O3 is applied to the surface of the fired product, and oxidized. By performing heat treatment at 850 to 1200°C in an atmosphere to form an electrode, or by adding 0.1 to 5.0 wt% of a sintering accelerator additive to a perovskite type oxide whose main component is 5rTiO,+. 02O5 to 2.0 wt% of the semiconducting accelerating additive, and S r
+ -x-y B a x Cay(Mn2.z2 W
l/3) 03 (However, X≦0.3.y≦0.3
.. 0≦x+y≦0.6)
.. 1-5. After adding Oyt%, mixing and pressure molding,
After firing in advance at 1250 to 1500°C in the air and then reducing at 850 to 1400°C in a reducing atmosphere containing hydrogen, a grain boundary diffusion substance containing Bi2O3 is applied to the surface of the sintered body, and then fired in an oxidizing atmosphere. By performing heat treatment at 850 to 1200° C. to form electrodes, it is possible to obtain a grain boundary insulated semiconductor ceramic capacitor with layer characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による粒界絶縁型半導体セラ
ミックコンデンサを示す概略図である。 11・・・・・・粒界絶縁型半導体セラミックス、12
・・・・・・電極、13・・・・・・リード線。
FIG. 1 is a schematic diagram showing a grain boundary insulated semiconductor ceramic capacitor according to an embodiment of the present invention. 11... Grain boundary insulation type semiconductor ceramics, 12
... Electrode, 13 ... Lead wire.

Claims (5)

【特許請求の範囲】[Claims] (1)チタン酸ストロンチウム(SrTiO_3)を主
成分とするペロブスカイト型酸化物に、焼結促進添加剤
を0.1〜5.0wt%、半導体化促進添加剤Nb_2
O_5を0.05〜2.0wt%、およびSr_1_−
_x_−_yBa_xCa_y(Mn_2_/_3W_
1_/_3)O_3(ただし、x≦0.3、y≦0.3
、0≦x+y≦0.6)よりなる粒界空乏層形成剤を0
.1〜5.0wt%添加し、混合・加圧成型したのち、
水素を含む還元雰囲気中1250〜1500℃にて焼成
し、その焼成物の表面に酸化ビスマス(Bi_2O_3
)を含む粒界拡散物質を塗布し、酸化雰囲気中850〜
1200℃にて熱処理を施し電極を形成してなる粒界絶
縁型半導体セラミックコンデンサ。
(1) A perovskite type oxide whose main component is strontium titanate (SrTiO_3), 0.1 to 5.0 wt% of a sintering accelerating additive, and a semiconductor accelerating additive Nb_2
0.05 to 2.0 wt% O_5 and Sr_1_-
_x_-_yBa_xCa_y(Mn_2_/_3W_
1_/_3)O_3 (however, x≦0.3, y≦0.3
, 0≦x+y≦0.6).
.. After adding 1 to 5.0 wt%, mixing and pressure molding,
It is fired at 1250-1500°C in a reducing atmosphere containing hydrogen, and bismuth oxide (Bi_2O_3) is deposited on the surface of the fired product.
) in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at 1200°C.
(2)焼結促進添加剤がTiO_2−MgO−SiO_
2系、TiO_2−MnO−SiO_2系、CaO−M
gO−Al_2O_3−SiO_2系、TiO_2−A
l_2O_3−SiO_2系、ZnO−Nb_2O_5
−SiO_2系、ZrO_2−MnO−SiO_2系の
中から選択された混合物よりなる請求項1記載の粒界絶
縁型半導体セラミックコンデンサ。
(2) The sintering accelerator additive is TiO_2-MgO-SiO_
2 system, TiO_2-MnO-SiO_2 system, CaO-M
gO-Al_2O_3-SiO_2 system, TiO_2-A
l_2O_3-SiO_2 series, ZnO-Nb_2O_5
The grain boundary insulated semiconductor ceramic capacitor according to claim 1, comprising a mixture selected from -SiO_2 series and ZrO_2-MnO-SiO_2 series.
(3)SrTiO_3を主成分とするペロブスカイト型
酸化物に、予めSr_1_−_x_−_yBa_xCa
_y(Cu_1_/_3Ta_2_/_3)O_3(た
だし、x≦0.3、y≦0.3、0≦x+y≦0.6)
よりなる粒界空乏層形成剤を0.1〜5.0wt%反応
・固溶させておき、しかる後に焼結促進添加剤を0.1
〜5.0wt%、半導体化促進添加剤Nb_2O_5を
0.05〜2.0wt%添加し、混合・加圧成型したの
ち、水素を含む還元雰囲気中1250〜1500℃にて
焼成し、その焼成物の表面にBi_2O_3を含む粒界
拡散物質を塗布し、酸化雰囲気中850〜1200℃に
て熱処理を施し電極を形成してなる粒界絶縁型半導体セ
ラミックコンデンサ。
(3) Sr_1_-_x_-_yBa_xCa is added to the perovskite-type oxide mainly composed of SrTiO_3.
_y(Cu_1_/_3Ta_2_/_3)O_3 (however, x≦0.3, y≦0.3, 0≦x+y≦0.6)
0.1 to 5.0 wt% of the grain boundary depletion layer forming agent is reacted and dissolved in solid solution, and then 0.1 wt% of the sintering accelerating additive is added.
~5.0 wt% and 0.05 to 2.0 wt% of the semiconducting accelerator Nb_2O_5 are added, mixed and pressure molded, and then fired at 1250 to 1500°C in a reducing atmosphere containing hydrogen to obtain the fired product. A grain boundary insulated semiconductor ceramic capacitor is formed by applying a grain boundary diffusion substance containing Bi_2O_3 to the surface of the capacitor and heat-treating the surface at 850 to 1200°C in an oxidizing atmosphere to form electrodes.
(4)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Mn_2_/_3W_1_/_3)O_3(ただし
、x≦0.3、y≦0.3、0≦x+y≦0.6)より
なる粒界空乏層形成剤を0.1〜5.0wt%添加し、
混合・加圧成型したのち、予め大気中1250〜150
0℃にて焼成し、次に水素を含む還元雰囲気中850〜
1400℃にて還元したあと焼結体の表面にBi_2O
_3を含む粒界拡散物質を塗布し、酸化雰囲気中850
〜1200℃にて熱処理を施し電極を形成してなる粒界
絶縁型半導体セラミックコンデンサ。
(4) Add 0.1 to 5.0 wt% of the sintering accelerator additive and 0.05 to 2.0 w of the semiconducting accelerator Nb_2O_5 to the perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Mn_2_/_3W_1_/_3)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) death,
After mixing and pressure molding, 1250 to 150
Calcined at 0°C, then heated to 850°C in a reducing atmosphere containing hydrogen.
After reduction at 1400℃, Bi_2O is deposited on the surface of the sintered body.
A grain boundary diffusion substance containing _3 is applied, and 850
A grain boundary insulated semiconductor ceramic capacitor whose electrodes are formed by heat treatment at ~1200°C.
(5)SrTiO_3を主成分とするペロブスカイト型
酸化物に、焼結促進添加剤を0.1〜5.0wt%、半
導体化促進添加剤Nb_2O_5を0.05〜2.0w
t%、およびSr_1_−_x_−_yBa_xCa_
y(Mn_2_/_3W_1_/_3)O_3(ただし
、x≦0.3、y≦0.3、0≦x+y≦0.6)より
なる粒界空乏層形成剤を0.1〜5.0wt%添加し、
混合・ペースト化し、電極用ペーストと交互に印刷・成
型したのち、予め大気中1250〜1500℃にて焼成
し、次に水素を含む還元雰囲気中850〜1400℃に
て還元したあと焼結体の表面にBi_2O_3を含む粒
界拡散物質を塗布し、酸化雰囲気中850〜1200℃
にて熱処理を施してなる粒界絶縁型半導体セラミックコ
ンデンサ。
(5) Add 0.1 to 5.0 wt % of a sintering accelerator additive and 0.05 to 2.0 w of a semiconductor accelerator additive Nb_2O_5 to a perovskite oxide whose main component is SrTiO_3.
t%, and Sr_1_−_x_−_yBa_xCa_
0.1 to 5.0 wt% addition of grain boundary depletion layer forming agent consisting of y(Mn_2_/_3W_1_/_3)O_3 (x≦0.3, y≦0.3, 0≦x+y≦0.6) death,
After mixing and forming a paste, printing and molding it alternately with the electrode paste, it is fired in advance at 1250 to 1500°C in the air, then reduced at 850 to 1400°C in a reducing atmosphere containing hydrogen, and then the sintered body is A grain boundary diffusion substance containing Bi_2O_3 is applied to the surface and heated at 850 to 1200°C in an oxidizing atmosphere.
A grain boundary insulated semiconductor ceramic capacitor that is heat treated.
JP2231725A 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type Pending JPH04112512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231725A JPH04112512A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231725A JPH04112512A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Publications (1)

Publication Number Publication Date
JPH04112512A true JPH04112512A (en) 1992-04-14

Family

ID=16928050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231725A Pending JPH04112512A (en) 1990-08-31 1990-08-31 Semiconductor ceramic capacitor of grain-boundary insulation type

Country Status (1)

Country Link
JP (1) JPH04112512A (en)

Similar Documents

Publication Publication Date Title
US4761711A (en) Barrier layer ceramic dielectric capacitor containing barium plumbate
Zhou et al. Electrical properties of Sr0. 7Ba0. 3TiO3 ceramics doped with Nb2O5, 3Li2O· 2SiO2, and Bi2O3
US4749668A (en) Dielectric ceramic composition
JPH04112512A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112517A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPS623569B2 (en)
JPH04112518A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JP2934387B2 (en) Manufacturing method of semiconductor porcelain
JPH04112513A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPH04112516A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
Masuno et al. Dielectric ceramics with boundary-layer structure for high frequency application
JPH04112514A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH04112515A (en) Semiconductor ceramic capacitor of grain-boundary insulation type
JPH042105A (en) Grain-boundary insulation type semiconductor ceramic capacitor
JPH03165018A (en) Manufacture of ceramic capacitor having varistor characteristic
JPH0785459B2 (en) Grain boundary insulation type semiconductor ceramic capacitor
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same
JPH02213101A (en) Manufacture of grain-boundary barrier type high capacitance ceramic varistor
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JPH03211703A (en) Manufacture of grain boundary barrier type high electrostatic capacitance ceramic varistor
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JPH02303106A (en) Manufacture of ceramic capacitor having varistor characteristic
JP3124896B2 (en) Manufacturing method of semiconductor porcelain
JPH0374818A (en) Ceramic capacitor having varistor characteristics and its manufacture