JP2568411B2 - Semiconductor porcelain composition - Google Patents

Semiconductor porcelain composition

Info

Publication number
JP2568411B2
JP2568411B2 JP62173781A JP17378187A JP2568411B2 JP 2568411 B2 JP2568411 B2 JP 2568411B2 JP 62173781 A JP62173781 A JP 62173781A JP 17378187 A JP17378187 A JP 17378187A JP 2568411 B2 JP2568411 B2 JP 2568411B2
Authority
JP
Japan
Prior art keywords
semiconductor
mol
capacitor
semiconductor porcelain
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62173781A
Other languages
Japanese (ja)
Other versions
JPS6418213A (en
Inventor
正博 矢作
諭 斉藤
秀一 小野
秋一 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62173781A priority Critical patent/JP2568411B2/en
Publication of JPS6418213A publication Critical patent/JPS6418213A/en
Application granted granted Critical
Publication of JP2568411B2 publication Critical patent/JP2568411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機械や機器中の受動電子部品としての半
導体磁器コンデンサ、特に粒界絶縁形半導体磁器コンデ
ンサに適した磁器組成物に関する。
Description: TECHNICAL FIELD The present invention relates to a ceramic composition suitable for a semiconductor ceramic capacitor as a passive electronic component in an electronic machine or an apparatus, particularly, a grain boundary insulating semiconductor ceramic capacitor.

〔従来の技術〕[Conventional technology]

受動電子部品としての半導体磁器コンデンサは表面層
形として還元再酸化型、堰層容量型があり、また粒界層
形として粒界絶縁形に大別される。
Semiconductor porcelain capacitors as passive electronic components are classified into surface layer types such as reduction / reoxidation type and dam layer capacitance type, and are roughly classified into grain boundary layer type as grain boundary layer type.

還元再酸化型半導体コンデンサは半導体化剤を添加し
たBaTiO3系またはSrTiO3系成形体を大気中で焼成して誘
電体セラミックを作り、これを還元性雰囲気中で熱処理
し半導体磁器を作る。こうして得られた半導体磁器を酸
素雰囲気中または大気中で熱処理するとその表面部から
酸素が拡散し酸素欠陥を満して表面層のみが誘電体層
(再酸化層)として、内部が半導体のままの複合セラミ
ックが形成され、その両面に焼付け形成すると、表面層
の厚みによって静電容量が設定されるし、また厚みを大
きくすることによって定格電圧を高くすることも可能な
小型・大容量の半導体コンデンサが得られる。
In the reduction-reoxidation type semiconductor capacitor, a BaTiO 3 -based or SrTiO 3 -based molded body to which a semiconducting agent is added is fired in the air to produce a dielectric ceramic, which is heat-treated in a reducing atmosphere to produce a semiconductor ceramic. When the semiconductor porcelain thus obtained is heat-treated in an oxygen atmosphere or air, oxygen diffuses from its surface to fill oxygen defects, and only the surface layer becomes a dielectric layer (re-oxidized layer), and the inside remains a semiconductor. When a composite ceramic is formed and formed by baking on both sides, the capacitance is set by the thickness of the surface layer, and a small, large-capacity semiconductor capacitor that can increase the rated voltage by increasing the thickness Is obtained.

堰層容量形半導体コンデンサは半導体化剤を含有する
主としてBaTiO3系の成形体を大気中で焼成しこれに銅等
の金属を蒸着させ、その上に銀等の電極(酸化物がp形
の半導体となり易い金属)を塗布し、これを大気中の雰
囲気で熱処理し、その表面に0.3〜3μm程度の堰層を
形成する。即ち表面は堰層絶縁体に外部電極を設け、内
部は半導体のままのコンデンサ素子ができる。この形の
コンデンサは堰層が極めて薄いため耐電圧は低いが静電
容量が大きく低電圧大容量コンデンサとして適してい
る。
Weir layer capacitor type semiconductor capacitors are mainly made of BaTiO 3 based compacts containing a semiconducting agent, baked in the air, and deposited with a metal such as copper. (A metal that easily becomes a semiconductor) is applied, and this is heat-treated in an atmosphere in the air to form a weir layer of about 0.3 to 3 μm on the surface thereof. That is, on the surface, an external electrode is provided on the weir layer insulator, and the inside of the capacitor element can be a semiconductor element. This type of capacitor has a low withstand voltage because the weir layer is extremely thin, but has a large capacitance and is suitable as a low-voltage large-capacity capacitor.

粒界絶縁型磁器コンデンサは、半導体化剤を添加した
BaTiO3またはSrTiO3系成形体を還元性雰囲気中で焼成し
得られた磁器の表面に金属酸化物、例えばBi2Oを塗布し
大気中で熱処理を行なう。この熱処理によって金属イオ
ンが磁器の内部に浸透して粒界にこれらの金属イオンを
間溶した絶縁層を形成する。結晶粒子内部はすでに半導
体化剤元素をドープした原子価制御形の半導体として残
る。このようにして粒界層内部だけが絶縁層に変わり、
これが半導体磁器内部でこれ等の半導体を内包した絶縁
性粒界層が上下縦横左右にマトリックス状に連結され一
種の海綿状の誘電体が形成され、銀電極を焼付してコン
デンサとなる。
Grain boundary insulated porcelain capacitor added semiconducting agent
A BaTiO 3 or SrTiO 3 -based molded body is fired in a reducing atmosphere, and a metal oxide, for example, Bi 2 O is applied to the surface of the obtained porcelain, and a heat treatment is performed in the air. This heat treatment allows the metal ions to penetrate into the porcelain and form an insulating layer in which the metal ions are interspersed at the grain boundaries. The inside of the crystal grain remains as a valence-controlled semiconductor doped with a semiconducting agent element. In this way, only the inside of the grain boundary layer turns into an insulating layer,
This forms a kind of sponge-like dielectric by connecting insulating grain boundary layers containing these semiconductors in a matrix in the vertical, horizontal, and horizontal directions inside the semiconductor porcelain.

これらの各種半導体磁器コンデンサは小型大容量が得
られることのほかに電圧特性、誘電体損失、周波数特性
においてバイパス用にしか使用出来なかったが、最近の
製造技術の進歩、特性改善に伴ってSrTiO3系を主成分と
いる半導体磁器コンデンサはカップリングを始め種々の
信号回路、パルス回路か半導体の雑音防止にいたるいろ
いろな用途に使用面が拡大されている。
These various types of semiconductor porcelain capacitors can be used only for bypass in terms of voltage characteristics, dielectric loss, and frequency characteristics, in addition to being able to obtain a small and large capacity.However, with recent advances in manufacturing technology and improved characteristics, SrTiO The use of semiconductor ceramic capacitors mainly composed of three systems has been expanded to various applications such as coupling, various signal circuits, pulse circuits, and noise prevention of semiconductors.

しかし、これら各種半導体磁器コンデンサは第1表に
示してあるように、表面層形の中で還元再酸化型は絶縁
抵抗が粒界絶縁形に比べて小さく、誘電体損失が大で周
波数特性が悪い上、BaTiO3系特有の歪率が大きいという
欠点がある。歪率は特に音響回路では増幅回路において
使用出来ず、この分野はフィルムコンデンサの領域であ
った。また堰層容量形は絶縁破壊電圧が12V程度と小さ
く絶縁抵抗が小さく、誘電体損失が大きく従って周波数
特性が悪く、歪率が大であり前述の還元再酸化形と同様
に用途範囲が限定されている。
However, as shown in Table 1, these various semiconductor porcelain capacitors have a reduced re-oxidation type among the surface layer type, which has a smaller insulation resistance than the grain boundary insulation type, a large dielectric loss and a high frequency characteristic. In addition, there is a disadvantage that the strain rate specific to the BaTiO 3 system is large. Distortion factors cannot be used in amplifier circuits, especially in audio circuits, and this field has been in the area of film capacitors. In addition, the weir layer capacity type has a small dielectric breakdown voltage of about 12 V, low insulation resistance, large dielectric loss, so the frequency characteristics are poor, the distortion rate is large, and the application range is limited similarly to the above-mentioned reductive reoxidation type. ing.

また、原子価保償形も前記のものと同様であって、こ
れらの表面層形はBaTiO3系を主成分とており、コンデン
サのメカニズム上素地の厚み分だけCs≧4nF/mm2の大容
量はいずれも得られない。
The valence-compensated form is also the same as that described above. These surface layer forms are mainly composed of BaTiO 3 and have a large Cs ≧ 4 nF / mm 2 by the thickness of the substrate due to the mechanism of the capacitor. No capacity is available.

また、粒界絶縁形では、表面層形のBaTiO3系よりもSi
TiO3系は絶縁抵抗が大きく、誘電体損失が小さく周波数
特性も良好であるが、Csは2.5nF/mm2程度で、Cs≧4nF/m
m2の大容量品は得られず歪率が大きい欠点がある。
In addition, the grain boundary insulation type is more Si than the surface layer type BaTiO 3 system.
TiO 3 system has a large insulation resistance, but the dielectric loss is also satisfactory small frequency characteristics, Cs is about 2.5nF / mm 2, Cs ≧ 4nF / m
There is a disadvantage that a large capacity product of m 2 cannot be obtained and the strain rate is large.

表面層形半導体磁器コンデンサはCが厚みの大きさt
に逆比例しないめεを求められないが以下の関係式に
よって求めることができる。
In the surface layer type semiconductor ceramic capacitor, C is the thickness t.
Ε s can not be determined because it is not inversely proportional to, but can be determined by the following relational expression.

Vb〔Volt〕=Eb・t …(2) (1),(2)より ε・Eb〔Volt/mm〕=1.13×105Cs・Vb 第1表のε・Eb積は上式により計算したものであ
る。
Vb [Volt] = Eb · t (2) From (1) and (2), ε S · Eb [Volt / mm] = 1.13 × 10 5 Cs · Vb The ε s · Eb product in Table 1 is calculated by the above equation. It is calculated.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のような従来の各種半導体磁器コンデンサでは絶
縁性が悪いためバイパス回路に制限があるとか周波数特
性が悪いため高周波のバイパス効果が悪くなる、歪率が
大きいため増幅回路に使用制限がある等の欠点があっ
た。
In conventional various types of semiconductor ceramic capacitors as described above, there is a limitation in a bypass circuit due to poor insulation properties, a poor high-frequency bypass effect due to poor frequency characteristics, and a limitation in use of an amplifier circuit due to a large distortion factor. There were drawbacks.

本発明は、半導体磁器コンデンサでも特に粒界絶縁形
半導体磁器コンデンサにおいて、大きな誘電率をもち、
絶縁破壊電圧および絶縁抵抗が大きく、周波数特性が良
好で、歪率の小さな優れた半導体磁器組成物を得ようと
するものである。
The present invention has a large dielectric constant in semiconductor ceramic capacitors, especially in grain boundary insulated semiconductor ceramic capacitors,
An object of the present invention is to obtain an excellent semiconductor ceramic composition having a large dielectric breakdown voltage and insulation resistance, good frequency characteristics, and a small distortion factor.

〔問題点を解決するための手段〕[Means for solving the problem]

このような問題点を改善し、その目的を達成するため
の手段として、本発明ではSrO18.0〜31.4mol、BaO13.5
〜26.9mol、CaO1.5〜8.5mol、TiO249.4〜50.4molの組成
比率を有する主成分と、マンガンと、Y,Ce,La,Dy,Nb,T
a,W,Sb等の3価,5価,6価の元素から選ばれた一種または
二種以上の半導体化剤と、SiO2とからなり、マンガンは
MnOに換算して0.005〜0.3mol、SiO2は0.005〜0.03molの
比率でそれぞれ含有していることを特徴とする半導体磁
器組成物を用いるものである。
As a means for improving such problems and achieving the object, in the present invention, SrO 18.0 to 31.4 mol, BaO 13.5
~ 26.9 mol, CaO 1.5 ~ 8.5 mol, TiO 2 49.4 ~ 50.4 mol Main component having a composition ratio, manganese, Y, Ce, La, Dy, Nb, T
a, W, Sb and other trivalent, pentavalent, hexavalent elements selected from one or two or more semiconducting agents and SiO 2 , manganese is
0.005~0.3mol in terms of MnO, SiO 2 is to use a semiconductor ceramic composition characterized by containing each at a ratio of 0.005~0.03Mol.

〔実施例〕〔Example〕

(半導体磁器の作成) 本発明を実施例によって詳述する。まず純度98%以上
の工業用原料のSrCO3,BaCO3,CaCO3,TiO2,MnCO3,SiO2
よび高純度の半導体化剤としてY2O3,Ce2O3,La2O3,Dy
2O3,Nb2O5,Ta2O5,Sb2O3,WO3等のうち一種又は二種以上
を準備し、第2表に示した配合組成比になるように秤量
し、これらをボールミルで20時間回転撹拌する。その後
脱水乾燥し、1200℃で仮焼成し粗粉砕後、更にボールミ
ルで16時間回転粉砕混合する。これを脱水乾燥して2重
量%の有機結合剤を添加し、造粒整粒を行ない顆粒粉末
と、この粉末を約3トン/cm2の成形圧力で円板状に成形
する。この試料を還元気流中(H2+N2雰囲気)において
1480℃で約2時間焼成して半導体化する。
(Preparation of Semiconductor Porcelain) The present invention will be described in detail with reference to examples. First, SrCO 3 , BaCO 3 , CaCO 3 , TiO 2 , MnCO 3 , SiO 2 as industrial raw materials having a purity of 98% or more and Y 2 O 3 , Ce 2 O 3 , La 2 O 3 , Dy
One or two or more of 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , Sb 2 O 3 , WO 3 and the like are prepared, weighed so as to have a composition ratio shown in Table 2, and Is rotationally stirred in a ball mill for 20 hours. Thereafter, it is dehydrated and dried, temporarily calcined at 1200 ° C., coarsely pulverized, and further rotationally pulverized and mixed by a ball mill for 16 hours. This is dehydrated and dried, 2% by weight of an organic binder is added, granulation and sizing are performed, and the powder is molded into a disk at a molding pressure of about 3 tons / cm 2 . In a reducing air stream (H 2 + N 2 atmosphere)
It is baked at 1480 ° C. for about 2 hours to form a semiconductor.

こうして得られた半導体磁器素子は直径9mm、厚さ0.5
mmでこの磁器素子の両面に拡散物質としてBi2O3−CuO系
フリットペースを3.5mgスクリーン印刷で塗布し、これ
を空気中で1050℃の温度で2時間焼成して結晶粒界に絶
縁層の形成された半導体磁器とする。この磁器素子の両
面にAgペーストまたはNi,Cu,Zn等の卑金属ペーストを80
0℃程度で焼付けて電極が形成された粒界絶縁形半導体
磁器コンデンサを得た。
The semiconductor porcelain element thus obtained has a diameter of 9 mm and a thickness of 0.5
The Bi 2 O 3 -CuO system frit paste was applied by 3.5mg screen printing as a double-sided diffusion material of the ceramic element in mm, the insulating layer in the grain boundaries which was calcined for 2 hours at a temperature of 1050 ° C. in air Semiconductor porcelain on which is formed. Ag paste or base metal paste such as Ni, Cu, Zn etc.
By baking at about 0 ° C., a grain boundary insulated semiconductor ceramic capacitor having electrodes formed thereon was obtained.

このようにして得られた各試料の電気的諸特性を第2
表に示す。第2表において試料No.1,2,6,11,13,14,19,2
5,29,30,35は本発明範囲外のものであって、比較のため
に示した。第2表より明らかなように本発明範囲内のも
のは、いずれも誘電体損失(tanδ)が小さくかつ絶縁
抵抗(IR)が大きく、直流破壊電圧(Eb)が大きい。さ
らに直流電圧印加時における静電容量変化率(ΔC)が
小さく周波数特性が良好で歪率の小さな素子が得られて
いる。
The electrical characteristics of each sample obtained in this way were
It is shown in the table. In Table 2, sample Nos. 1, 2, 6, 11, 13, 14, 19, 2
5, 29, 30, and 35 are outside the scope of the present invention and are shown for comparison. As is evident from Table 2, those within the scope of the present invention have low dielectric loss (tan δ), high insulation resistance (IR), and high DC breakdown voltage (Eb). Further, an element having a small capacitance change rate (ΔC) when a DC voltage is applied, a good frequency characteristic and a small distortion rate is obtained.

次に本発明における成分組成比の限定理由を述べる。 Next, the reasons for limiting the component composition ratio in the present invention will be described.

SrO,BaO,CaO及びTiO2からなる主成分においてSrOが1
8.0モル%未満では誘電体損失が大となり、31.4モル%
を超えると直流破壊電圧が小さくなり実用的でない。Ba
Oが13.5モル%未満では直流破壊電圧が小、26.9モル%
を超えると誘電体損失が大となり実用的でなくなる。
SrO, BaO, is SrO in a principal component composed of CaO and TiO 2 1
If it is less than 8.0 mol%, the dielectric loss becomes large, and 31.4 mol%
If it exceeds, the DC breakdown voltage becomes too small to be practical. Ba
DC breakdown voltage is small when O is less than 13.5 mol%, 26.9 mol%
If it exceeds, the dielectric loss becomes large and is not practical.

CaOが1.5〜8.5モル%の範囲を外れると絶縁抵抗又は
誘電率が劣ったものとなる。すなわち第1図はCaOの含
有量による絶縁抵抗と誘電率の変化を示しており、矢印
の部分が本発明の範囲である。これにより明らかな如
く、CaOが1.5モル%未満だと絶縁抵抗の劣化が大きくな
り、信頼性(高温負荷)が悪くなり実用的でない。また
一方、8.5モル%を超えると誘電率が小さくなり実用的
でない。
If CaO is out of the range of 1.5 to 8.5 mol%, the insulation resistance or the dielectric constant becomes poor. That is, FIG. 1 shows the change of the insulation resistance and the dielectric constant depending on the content of CaO, and the part indicated by the arrow is the scope of the present invention. As is evident from this, if CaO is less than 1.5 mol%, the insulation resistance is greatly deteriorated, and the reliability (high-temperature load) deteriorates, which is not practical. On the other hand, if it exceeds 8.5 mol%, the dielectric constant becomes small, which is not practical.

MnOが0.005モル%以上では絶縁抵抗が格段に向上し、
実用的である。またMnOが0.3モル%を超えると誘電率が
小さくなり実用的でない。
When MnO is 0.005 mol% or more, the insulation resistance is significantly improved,
It is practical. On the other hand, when MnO exceeds 0.3 mol%, the dielectric constant becomes small, which is not practical.

SiO2が0.005モル%未満では絶縁抵抗、直流破壊電圧
ともに小さくなり、0.003モル%を超えると誘電率が小
さくなり実用的でない。
If the content of SiO 2 is less than 0.005 mol%, both the insulation resistance and the DC breakdown voltage will be low, and if it exceeds 0.003 mol%, the dielectric constant will be low, making it impractical.

次に、第2図は周波数特性の静電容量変化率(ΔC)
を比較したものであって、Aは本発明のもの、Bはマイ
ラーコンデンサ、Cは再酸化コンデンサ、Dは堰層型コ
ンデンサであり、本発明のものは他の半導体磁器コンデ
ンサ、マイラーコンデンサに比べて変化率が小さい。今
後のディジタル回路に伴なう高周波帯域においてマイラ
ーコンデンサの巻回型であるのでLが介在して来るか
ら、本発明の材料を用いたコンデンサは高周波帯域にお
いて特に有用である。
Next, FIG. 2 shows the capacitance change rate (ΔC) of the frequency characteristic.
A is the one of the present invention, B is a Mylar capacitor, C is a reoxidation capacitor, D is a weir layer type capacitor, and the present invention is compared with other semiconductor ceramic capacitors and Mylar capacitors. And the rate of change is small. Since a mylar capacitor is wound in a high frequency band accompanying a digital circuit in the future and L is interposed, a capacitor using the material of the present invention is particularly useful in a high frequency band.

第3図は電圧と歪率との関係を示すもので、Aは本発
明のものであり、Bはマイラーコンデンサのものであ
る、この図から明らかなように本発明のものは、マイラ
ーコンデンサよりも歪率が小さいため、今まで使用制限
のあった増幅回路等のマイラーコンデンサの置換が可能
となった。
FIG. 3 shows the relationship between the voltage and the distortion factor, where A is that of the present invention and B is that of a Mylar capacitor. As apparent from FIG. Since the distortion rate is small, it is possible to replace a Mylar capacitor in an amplifier circuit or the like which has been limited in use until now.

なお、本発明においてSrO,BaO,CaO及のモル数の合計
値とTiO2のモル数との比; が0.980未満では直流破壊電圧が小さくなり、1.020を超
えると誘電率が小さくなり実用的でない。
In the present invention, the ratio of the total number of moles of SrO, BaO, CaO and the like to the number of moles of TiO 2 ; If it is less than 0.980, the DC breakdown voltage will be low, and if it exceeds 1.020, the dielectric constant will be small, making it impractical.

また、半導体化剤としてLaの酸化物を使用した場合の
磁器組成物の電気的諸特性はCe2O3を使用した場合と近
似しており、Sbの酸化物を使用した場合はWO3の場合と
近似したものとなる。
In addition, the electrical properties of the porcelain composition when using La oxide as a semiconducting agent are similar to those using Ce 2 O 3, and when using Sb oxide, WO 3 It is similar to the case.

〔発明の効果〕〔The invention's effect〕

以上のように本発明の半導体磁器組成物は小型大容
量、誘電体損失が小、絶縁抵抗が大であるうえ直流破壊
電圧が高く、周波数特性が良好で静電容量変化率が小さ
く、しかも歪率の小さなきわめて優れた特性を持つもの
である。
As described above, the semiconductor porcelain composition of the present invention has a small size, a large capacity, a small dielectric loss, a large insulation resistance, a high DC breakdown voltage, a good frequency characteristic, a small capacitance change rate, and a strain. It has very good characteristics with a small rate.

従って、今までのバイパス以外のカップリング、種々
の信号回路、パルス回路から雑音防止にいたるまでの用
途に制限が広がったので、本発明の工業上の利益は多大
なものがある。
Accordingly, the present invention has enormous industrial benefits because the range of applications from coupling other than the conventional bypass, various signal circuits and pulse circuits to noise prevention has been widened.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例におけるCaOの含有量別の絶縁
抵抗と誘電率を示し、第2図は本発明組成物を適用した
コンデンサと従来のコンデンサにおける周波数特性の静
電容量変化率を示し、第3図は同じく歪率を示す。
FIG. 1 shows the insulation resistance and dielectric constant according to the content of CaO in the embodiment of the present invention, and FIG. 2 shows the capacitance change rate of the frequency characteristics of the capacitor to which the composition of the present invention is applied and the conventional capacitor. FIG. 3 also shows the distortion factor.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SrO18.0〜31.4mol、BaO13.5〜26.9mol、Ca
O1.5〜8.5mol、TiO249.4〜50.4molの組成比率を有する
主成分と、マンガンと、Y,Ce,La,Dy,Nb,Ta,W,Sb等の3
価,5価,6価の元素から選ばれた一種または二種以上の半
導体化剤と、SiO2とからなり、マンガンはMnOに換算し
て0.005〜0.3mol、SiO2は0.005〜0.03molの比率でそれ
ぞれ含有していることを特徴とする半導体磁器組成物。
(1) 18.0-31.4 mol of SrO, 13.5-26.9 mol of BaO, Ca
O1.5~8.5Mol, the main component having a composition ratio of TiO 2 49.4~50.4mol, manganese, Y, Ce, La, Dy , Nb, Ta, W, 3 such as Sb
Valence, pentavalent, and hexavalent one selected from the elements or two or more semiconductor-forming agent, made of SiO 2 Prefecture, manganese in terms of MnO 0.005~0.3Mol, SiO 2 is the 0.005~0.03mol A semiconductor porcelain composition characterized by being contained in proportions.
【請求項2】前記主成分は、SrO,BaO及びCaOのmol数の
合計値とTiO2のmol数との比;(SrO+BaO+CaO)/TiO2
が0.980〜1.020の範囲にあることを特徴とする特許請求
の範囲第1項記載の半導体磁器組成物。
2. The main component is a ratio of the total number of moles of SrO, BaO and CaO to the number of moles of TiO 2 ; (SrO + BaO + CaO) / TiO 2
2. The semiconductor porcelain composition according to claim 1, wherein is in the range of 0.980 to 1.020.
【請求項3】前記主成分からなる組成物を成形焼結して
なる半導体磁器の結晶粒界にBiが偏在していることを特
徴とする特許請求の範囲第1項又は第2項記載の半導体
磁器組成物。
3. The semiconductor device according to claim 1, wherein Bi is unevenly distributed in a crystal grain boundary of a semiconductor porcelain obtained by molding and sintering the composition comprising the main component. Semiconductor porcelain composition.
JP62173781A 1987-07-14 1987-07-14 Semiconductor porcelain composition Expired - Lifetime JP2568411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62173781A JP2568411B2 (en) 1987-07-14 1987-07-14 Semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62173781A JP2568411B2 (en) 1987-07-14 1987-07-14 Semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS6418213A JPS6418213A (en) 1989-01-23
JP2568411B2 true JP2568411B2 (en) 1997-01-08

Family

ID=15967031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62173781A Expired - Lifetime JP2568411B2 (en) 1987-07-14 1987-07-14 Semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP2568411B2 (en)

Also Published As

Publication number Publication date
JPS6418213A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JP3746763B2 (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof
US5790367A (en) Multilayer capacitor comprising a dielectric of modified barium strontium titanate
US6721167B2 (en) Multilayer ceramic capacitor and method for the manufacture thereof
KR100271099B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
US4535064A (en) Ceramic compositions for a reduction-reoxidation type semiconducting capacitor
KR19980070404A (en) Monolithic ceramic capacitors
US6849567B2 (en) Low temperature sinterable dielectric ceramic composition and multilayer ceramic chip capacitor using the same
JP3471839B2 (en) Dielectric porcelain composition
KR920007019B1 (en) Dielectric ceramic composition
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP3323801B2 (en) Porcelain capacitors
TWI796464B (en) Dielectric ceramic composition and ceramic electronic part
JPS62256422A (en) Laminated type porcelain capacitor
JP4487371B2 (en) Dielectric composition and ceramic capacitor using the same
JP2568411B2 (en) Semiconductor porcelain composition
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JPH0582047B2 (en)
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2531548B2 (en) Porcelain composition for temperature compensation
JP2870511B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JPH11134941A (en) Dielectric ceramic and laminated ceramic capacitor
JP2531547B2 (en) Porcelain composition for temperature compensation
JP2870512B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JPH056710A (en) Dielectric porcelain composition