JPH04111444A - Manufacture of dielectric isolation substrate - Google Patents

Manufacture of dielectric isolation substrate

Info

Publication number
JPH04111444A
JPH04111444A JP22818790A JP22818790A JPH04111444A JP H04111444 A JPH04111444 A JP H04111444A JP 22818790 A JP22818790 A JP 22818790A JP 22818790 A JP22818790 A JP 22818790A JP H04111444 A JPH04111444 A JP H04111444A
Authority
JP
Japan
Prior art keywords
groove
substrate
crystal silicon
silicon substrate
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22818790A
Other languages
Japanese (ja)
Inventor
Susumu Matsuoka
進 松岡
Masahide Kayao
柏尾 真秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP22818790A priority Critical patent/JPH04111444A/en
Publication of JPH04111444A publication Critical patent/JPH04111444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To solve conventional defects caused by lamination and polishing of substrates, to make accuracy of groove formation unnecessary excepting on a depth of a groove and to enable remarkable improvement of operativity by making a groove of one single crystalline silicon substrate deeper than a groove of the other substrate. CONSTITUTION:A V-shaped groove 25 of a depth H1 is formed on a surface of a single crystalline silicon substrate 15 by anisotropic etching to make a region 40 remain which becomes a single crystalline silicon island region later, and an oxide film 35 is formed through thermal oxidation of a surface thereof. A groove 26 of a depth H2 which is shallower than the groove 25 is formed by anisotropic etching on a surface of a single crystalline silicon substrate 16 corresponding to the region 40 of the substrate 15 as a supportor layer. A thermal oxidation film 36 is formed by heat treatment and a land part is formed between grooves 26 of the substrate 16. Thereby, a clearance is produced, between the groove 25 and the land part between grooves 26 received thereby during lamination. The clearance part is removed later by polishing. Remaining bubbles can escape outside owing to the clearance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は絶縁膜上にシリコン等の半導体薄層を形成して
なる半導体基板の製造方法に関し、詳細には二枚の半導
体ウェハの貼り合せ接着技術を用いた誘電体分離基板の
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor substrate formed by forming a thin semiconductor layer of silicon or the like on an insulating film, and more specifically, a method of manufacturing a semiconductor substrate by forming a thin semiconductor layer of silicon or the like on an insulating film. This invention relates to a method of manufacturing a dielectric isolation substrate using adhesive technology.

[従来の技術] 一般にバイポーラ素子における素子間分離を誘電体で行
う誘電体分離基板の製造においては、溝を有し、全面に
誘電体膜を形成した単結晶シリコン支持体上にCVDに
よって多結晶シリコン薄膜を形成し、表面部分をカット
することが行われている。しかしながらこの方法では単
結晶シリコンと多結晶シリコンの熱膨脹係数の差により
、基板に大きなな反りが生じること、およびCVDに比
較的長時間を要すること等の欠点がある。
[Prior Art] In general, in the production of dielectric isolation substrates that use dielectrics to isolate elements in bipolar devices, polycrystalline silicon is deposited by CVD on a monocrystalline silicon support having grooves and a dielectric film formed on the entire surface. A method is to form a silicon thin film and cut the surface portion. However, this method has drawbacks such as large warping of the substrate due to the difference in coefficient of thermal expansion between single crystal silicon and polycrystalline silicon, and CVD requiring a relatively long time.

これら欠点を解決するための方法として最近シリコンウ
ェハ同志を直接または酸化膜を介在させて貼り合せてな
る貼り付は基板をつくり、これを一部削除する方法が提
案されており、その−例が特開平1−1113411号
公報に示されている。
Recently, as a method to solve these drawbacks, a method has been proposed in which silicon wafers are bonded together directly or with an oxide film interposed to form a substrate, and a portion of this is removed. This is disclosed in Japanese Patent Application Laid-Open No. 1-1113411.

第2図(a)−(b)はそれに示される技術を要約する
ものである。すなわち、この技術においては第3図(a
)に示すように(100)面を有する単結晶シリコン基
板10に異方性エツチング技術により壁面が(111)
面となる溝20を形成し、次に溝20を含む単結晶シリ
コン基板の表面に熱酸化膜30を成長させて一方の基板
を形成する。次に第2図(b)に示すように他の単結晶
シリコン基板11の表面に、単結晶シリコン基板10の
表面の溝20間の部分の形状と整合する溝21を異方性
エツチングで形成してその表面に熱酸化膜31を形成し
て支持体層をつくる。
Figures 2(a)-(b) summarize the techniques shown therein. In other words, in this technology, as shown in Fig. 3 (a
), a single crystal silicon substrate 10 having a (100) plane has a (111) wall surface by anisotropic etching technique.
A groove 20 serving as a surface is formed, and then a thermal oxide film 30 is grown on the surface of the single crystal silicon substrate including the groove 20 to form one substrate. Next, as shown in FIG. 2(b), grooves 21 matching the shape of the portions between the grooves 20 on the surface of the single crystal silicon substrate 10 are formed on the surface of the other single crystal silicon substrate 11 by anisotropic etching. Then, a thermal oxide film 31 is formed on the surface to form a support layer.

次に第2図(C)に示すように基板10と11に親水性
処理を施こした後両者を重ね、700℃以上の温度で熱
処理し、酸化膜30と31を結合させ、貼り付けを行う
Next, as shown in FIG. 2(C), the substrates 10 and 11 are subjected to hydrophilic treatment, and then the two are stacked and heat treated at a temperature of 700° C. or higher to bond the oxide films 30 and 31 and bond them together. conduct.

次に第2図(d)に示すように、第2図(c)の線X−
Xで示す面まで研磨し、酸化膜30゜31で完全に分離
された単結晶シリコン島12を得る。かくして単結晶シ
リコン基板11を支持層とする誘電体分離体基板が得ら
れる。
Next, as shown in FIG. 2(d), the line X-
Polishing is performed to the plane indicated by X to obtain single crystal silicon islands 12 completely separated by oxide films 30.degree. 31. In this way, a dielectric separator substrate having the single crystal silicon substrate 11 as a support layer is obtained.

[発明が解決しようとする課題] 上記従来の貼り付は方法においては異方性エツチングに
よる溝20と21の形成において、それらの深さHlと
H2および幅W1とW2を正確にHl−H2,Wl−W
2とする必要がある。従って、異方性エツチングを高精
度のマスクを用いて高精度で行わねばならない。しかし
ながら、そのような精度で処理を行ったとしても加工の
バラツキを完全に排除することは実際上不可能である。
[Problems to be Solved by the Invention] In the conventional bonding method described above, in forming the grooves 20 and 21 by anisotropic etching, the depths Hl and H2 and the widths W1 and W2 are accurately set to Hl-H2, Wl-W
It is necessary to set it to 2. Therefore, anisotropic etching must be performed with high precision using a high precision mask. However, even if processing is performed with such precision, it is practically impossible to completely eliminate variations in processing.

特に、溝の深さがHl<H2となる場合には第3図に示
すように貼り合せ接着時に空隙が生じることになるが、
その状態で研磨を行えば単結晶シリコン島部分の脱落が
生じ、その結果周辺の他の基板の品質が損われ、品質お
よび歩留りして大きな問題を生じさせる。
In particular, if the depth of the groove is Hl<H2, gaps will be created during bonding as shown in Figure 3.
If polishing is performed in this state, the single-crystal silicon island portion will fall off, and as a result, the quality of other surrounding substrates will be impaired, causing a major problem in terms of quality and yield.

また、接着においてはウェハの反りが問題である。その
ような反りがあると接着時にはその初期段階において局
部的接着が行われ、他は未接着となるため、接着終了後
に気泡が残留することがある。これは溝の深さに差があ
る場合も同様であるそのような気泡を回避するために、
接着を真空中で行う方法、あるいは特開昭81−145
839号公報に示されているようにウェハの中央部を凸
形となるようにたわませ、中央部から周辺へと接着が行
われるようにする方法が提案されているが、前者では大
規模な真空装置が必要となり、後者では特別の接着用治
具が必要である等、経済的に不利である。
Furthermore, warping of the wafer is a problem in bonding. If such warpage occurs, local adhesion occurs in the initial stage of adhesion, while other parts remain unadhered, which may result in air bubbles remaining after adhesion is completed. This is also true if there is a difference in the depth of the grooves to avoid such bubbles.
A method of bonding in a vacuum, or Japanese Patent Application Laid-Open No. 81-145
As shown in Publication No. 839, a method has been proposed in which the center of the wafer is bent to form a convex shape so that bonding is performed from the center to the periphery, but the former method requires large-scale The latter requires a special vacuum device, and the latter requires a special bonding jig, which is economically disadvantageous.

本発明の目的は溝の形成時に深さにバラツキが生じても
空隙が生じないようにした半導体基板貼り合せ技術を提
供することである。
An object of the present invention is to provide a semiconductor substrate bonding technique that prevents the formation of voids even if the depth varies when grooves are formed.

本発明の他の目的は貼り合されるべき基板の表面に空隙
を積極的に形成しておき、接着時に取り残される気泡を
外部に逃がすことの出来る半導体基板貼り合せ技術を提
供することである。
Another object of the present invention is to provide a semiconductor substrate bonding technique in which voids are actively formed on the surfaces of substrates to be bonded, and air bubbles left behind during bonding can escape to the outside.

これら技術により高品質の誘電体分離半導体装置を歩留
りよく製造することが出来る。
These techniques allow high-quality dielectrically isolated semiconductor devices to be manufactured with good yield.

[課題を解決するための手段] 支持体用第1単結晶シリコン基板の表面と単結晶シリコ
ン島形成用の¥s2単結晶シリコン基板の表面に互いに
係合密着すべき溝を形成する際に、第2単結晶シリコン
基板の溝の深さを第1単結晶シリコン基板の溝の深さよ
り大きくする。
[Means for Solving the Problems] When forming grooves to be brought into close contact with each other on the surface of the first single-crystal silicon substrate for support and the surface of the \s2 single-crystal silicon substrate for forming single-crystal silicon islands, The depth of the groove in the second single-crystal silicon substrate is made larger than the depth of the groove in the first single-crystal silicon substrate.

[作用] 第1および第2単結晶シリコン基板の夫々の溝の深さに
このような差を設けることにより、貼合せ時には第2単
結晶シリコンの溝とそれに受は入れられる、第1単結晶
シリコン基板の溝間ランド部の間に空隙が生じる。この
空隙部分は後の研磨により除去される部分となる。この
空隙により、残留気泡は外部に逃げることが出来る。
[Function] By providing such a difference in the depth of the respective grooves of the first and second single crystal silicon substrates, when bonding, the grooves of the second single crystal silicon and the first single crystal which are received therein are A gap is created between the land portions between the grooves of the silicon substrate. This void portion will be removed by subsequent polishing. This gap allows residual air bubbles to escape to the outside.

[実施例] 本発明の一実施例を第1図(a)−(d)にもとづき説
明する。
[Example] An example of the present invention will be described based on FIGS. 1(a) to 1(d).

まず第1図(a)に示すように(100)面を有する単
結晶シリコン基板15の表面に、後に単結晶シリコン基
板域となる領域40を残すようにに、異方性エツチング
により深さHlのV字溝25を形成し、その表面を熱酸
化して酸化膜35を形成する。
First, as shown in FIG. 1(a), the surface of a single crystal silicon substrate 15 having a (100) plane is etched to a depth Hl by anisotropic etching so as to leave a region 40 that will later become a single crystal silicon substrate region. A V-shaped groove 25 is formed, and the surface thereof is thermally oxidized to form an oxide film 35.

次に第1図(b)に示すように支持体層として、(10
0)面を有する単結晶シリコン基板16の表面に、基板
15の領域40に対応し、溝25の深さより小さい、深
さH2の満26を異方性エツチングにより形成し、熱処
理により熱酸化膜36を形成し、基板16の溝26間に
ランド部を形成する。ここにおいて基板16の溝25の
深さH2は結果として得られるべき単結晶シリコン島の
厚さに相当するものとする。基板15の溝25の開に幅
W1は基板16の溝26間のランド部の基底の幅W2に
等しい。
Next, as shown in FIG. 1(b), (10
0) On the surface of the single crystal silicon substrate 16 having a surface, a groove 26 corresponding to the region 40 of the substrate 15 and having a depth H2 smaller than the depth of the groove 25 is formed by anisotropic etching, and a thermal oxide film is formed by heat treatment. 36 are formed, and land portions are formed between the grooves 26 of the substrate 16. Here, it is assumed that the depth H2 of the groove 25 in the substrate 16 corresponds to the thickness of the single crystal silicon island to be obtained as a result. The opening width W1 of the grooves 25 of the substrate 15 is equal to the width W2 of the base of the land portion between the grooves 26 of the substrate 16.

次に第1図(C)に示すように、単結晶シリコン基板1
5と16に親水性処理を施こし、両者を溝とランド部が
重なるように貼り合わせた後、700℃以上の温度で水
蒸気またはドライ酸素雰囲気中で熱処理する。これによ
り酸化膜35と36が結合し、基板15と16が接着す
る。
Next, as shown in FIG. 1(C), a single crystal silicon substrate 1
After applying hydrophilic treatment to No. 5 and No. 16 and pasting them together so that the grooves and land portions overlap, heat treatment is performed at a temperature of 700° C. or higher in a steam or dry oxygen atmosphere. As a result, the oxide films 35 and 36 are combined, and the substrates 15 and 16 are bonded together.

この段階において、基板の反り等による気泡の残留は基
板15の溝25と基板16の溝26間のランド部との間
の空隙を通じて移動出来る。従ってこれらの満25は基
板15全体に伸びるように形成しておくことにより気泡
を外部に逃がすことが出来る。
At this stage, residual air bubbles due to warping of the substrate can move through the gap between the groove 25 of the substrate 15 and the land between the groove 26 of the substrate 16. Therefore, by forming these holes 25 so as to extend over the entire substrate 15, air bubbles can escape to the outside.

次に第1図(d)に示すように、第1図(c)の線x−
x’で示す位置まで研磨することにより、単結晶シリコ
ン島17が得られる。この島17は結合した酸化膜35
.36により完全に分離されている。
Next, as shown in FIG. 1(d), the line x- in FIG. 1(c)
By polishing to the position indicated by x', a single crystal silicon island 17 is obtained. This island 17 is a bonded oxide film 35
.. completely separated by 36.

本発明においては基板15の溝25の深さHlが基板1
6の溝26間のランド部の高さH2に対し、Hl>H2
である。この条件を満足すれば溝25の開口幅W1と溝
26間のランド部の基底幅W2に差があっても実際上大
きな問題は生じない。
In the present invention, the depth Hl of the groove 25 of the substrate 15 is
For the height H2 of the land portion between the grooves 26 of No. 6, Hl>H2
It is. If this condition is satisfied, even if there is a difference between the opening width W1 of the groove 25 and the base width W2 of the land portion between the grooves 26, no major problem will actually occur.

例えばWl>W2となった場合には接着後に基板15の
溝25と基板16の溝26間のランド部との間に空隙が
生じるが、溝26と基板15の溝25間ランド部とは密
着するため、研磨の結果としての単結晶シリコン島17
の脱落はなく、またWl <W2となった場合には溝2
6と溝25間ランド部との間に空隙が生じるが、結果と
してのシリコン島は溝26の側壁に密着しており、同じ
く脱落は生じない。
For example, when Wl>W2, a gap is created between the groove 25 of the substrate 15 and the land between the groove 26 of the substrate 16 after bonding, but the groove 26 and the land between the groove 25 of the substrate 15 are in close contact. Therefore, the monocrystalline silicon island 17 as a result of polishing
does not fall off, and if Wl < W2, groove 2
Although a gap is formed between the groove 26 and the land between the grooves 25, the resulting silicon islands are in close contact with the side walls of the grooves 26 and do not fall off.

[発明の効果コ 本発明によれば、一方の単結晶シリコン基板の溝の深さ
を他方の基板の溝の深さより人とするのみで、両者の貼
り合せと研磨による従来の欠点はすべて解決される。ま
た、従来必要であった溝形成上の精度は溝の深さに関す
るものを除き不要となり、作業性が著しく向上する。な
お、本発明は1[体分離基板のみならずウェハ接着技術
を用いる、例えばSo1基板の製造にも通用出来るもの
である。
[Effects of the Invention] According to the present invention, the depth of the grooves in one single-crystal silicon substrate is made greater than the depth of the grooves in the other substrate, and all the conventional drawbacks caused by bonding and polishing the two substrates are solved. be done. Further, the precision required in the conventional groove formation process is no longer necessary except for the groove depth, and work efficiency is significantly improved. Note that the present invention is applicable not only to the production of 1[body-separated substrates but also to the production of So1 substrates using wafer bonding technology, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) −(d)は本発明の方法の一実施例を示
す図、第2図(a) −(d)は従来の方法を示す図、
第3図は従来の方法における欠点の一つを例示する図で
ある。 15.16・・・単結晶シリコン基体、17・・・単結
晶シリコン島、25.26・・・溝、35.36・・・
熱酸化膜。 本発明の大廁イ列エカ」升面図 第1図 第 図
FIGS. 1(a)-(d) are diagrams showing an embodiment of the method of the present invention, FIGS. 2(a)-(d) are diagrams showing a conventional method,
FIG. 3 is a diagram illustrating one of the drawbacks in the conventional method. 15.16... Single crystal silicon substrate, 17... Single crystal silicon island, 25.26... Groove, 35.36...
Thermal oxide film. Figure 1 of the diagram of the present invention

Claims (3)

【特許請求の範囲】[Claims] (1)下記段階からなる誘電体分離基板の製造方法。 (イ)第1の単結晶シリコン基板の一方の主面に複数の
第1の溝を異方性エッチングにより形成する段階。 (ロ)第2単結晶シリコン基板の一方の主面に、上記第
1の溝間に形成されるランド部に対応し、上記第1の溝
の深さより小さい深さを有する第2の溝を異方性エッチ
ングにより形成する段階。 (ハ)上記第1および第2単結晶シリコン基板の上に一
方の主面を熱処理して熱酸化シリコン膜を形成する段階
。 (ニ)上記第1および第2単結晶シリコン基板に親水性
処理を施こす段階。 (ホ)上記第1および第2単結晶シリコン基板を、上記
熱酸化シリコン膜が重なるように貼り合せる段階。 (ヘ)貼り合された単結晶シリコン基板を熱処理して上
記熱酸化シリコン膜を互いに結合させる段階。 (ト)上記貼り合された単結晶シリコン基板をを上記第
1単結晶シリコン基板側から研磨して上記第2単結晶シ
リコン基板の上記第2の溝内に単結晶シリコン島部を形
成する段階。
(1) A method for manufacturing a dielectric isolation substrate comprising the following steps. (a) Forming a plurality of first grooves on one main surface of the first single crystal silicon substrate by anisotropic etching. (b) A second groove having a depth smaller than the depth of the first groove corresponds to the land portion formed between the first grooves on one main surface of the second single crystal silicon substrate. A step of forming by anisotropic etching. (c) forming a thermally oxidized silicon film by heat-treating one main surface of the first and second single-crystal silicon substrates; (d) Performing hydrophilic treatment on the first and second single crystal silicon substrates. (E) A step of bonding the first and second single crystal silicon substrates so that the thermally oxidized silicon films overlap. (f) A step of heat-treating the bonded single crystal silicon substrate to bond the thermally oxidized silicon films to each other. (G) Polishing the bonded single-crystal silicon substrates from the first single-crystal silicon substrate side to form a single-crystal silicon island in the second groove of the second single-crystal silicon substrate. .
(2)前記段階(イ)における前記第1単結晶シリコン
基板の前記第1の溝はその基板全体に伸びるように形成
されていることを特徴とする請求項1記載の誘電体分離
基板の製造方法。
(2) Manufacturing the dielectric isolation substrate according to claim 1, wherein the first groove of the first single crystal silicon substrate in the step (a) is formed so as to extend over the entire substrate. Method.
(3)前記段階(ヘ)における熱処理は700℃以上の
温度で水蒸気またはドライ、酸素雰囲気中で行われるこ
とを特徴とする請求項1または2記載の誘電体分離基板
の製造方法。
(3) The method for manufacturing a dielectrically separated substrate according to claim 1 or 2, wherein the heat treatment in step (f) is performed at a temperature of 700° C. or higher in a steam or dry oxygen atmosphere.
JP22818790A 1990-08-31 1990-08-31 Manufacture of dielectric isolation substrate Pending JPH04111444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22818790A JPH04111444A (en) 1990-08-31 1990-08-31 Manufacture of dielectric isolation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22818790A JPH04111444A (en) 1990-08-31 1990-08-31 Manufacture of dielectric isolation substrate

Publications (1)

Publication Number Publication Date
JPH04111444A true JPH04111444A (en) 1992-04-13

Family

ID=16872574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22818790A Pending JPH04111444A (en) 1990-08-31 1990-08-31 Manufacture of dielectric isolation substrate

Country Status (1)

Country Link
JP (1) JPH04111444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681775A (en) * 1995-11-15 1997-10-28 International Business Machines Corporation Soi fabrication process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681775A (en) * 1995-11-15 1997-10-28 International Business Machines Corporation Soi fabrication process

Similar Documents

Publication Publication Date Title
JP3037934B2 (en) Improved smart cut process for the production of semiconductor material thin films
US5466631A (en) Method for producing semiconductor articles
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JP2976929B2 (en) Method for manufacturing semiconductor device
JPH1174209A (en) Manufacture of semiconductor substrate
JPH0963912A (en) Manufacture of joined substrate
JPH1174208A (en) Manufacture of semiconductor substrate
JPS6155252B2 (en)
JPH04111444A (en) Manufacture of dielectric isolation substrate
JP2857456B2 (en) Method for manufacturing semiconductor film
JPH05226464A (en) Manufacture of joined dielectric isolation wafer
JPH11214368A (en) Wafer planarizing method and its device
JPH02237066A (en) Manufacture of semiconductor device
JPH04307735A (en) Manufacture of semiconductor device
JP3539102B2 (en) Method for manufacturing trench-isolated semiconductor substrate
JPS62104062A (en) Manufacture of semiconductor substrate
JP2775845B2 (en) Method for manufacturing semiconductor device
JPS6252923A (en) Method for insulating isolation of semiconductor layer by dielectric
JPS6293954A (en) Manufacture of dielectric isolation substrate
JPH05226463A (en) Manufacture of joined dielectric isolation wafer
RU2207659C2 (en) Method for producing structures for integrated circuits with insulated components
JP2981673B2 (en) Semiconductor substrate manufacturing method
JPH02228061A (en) Manufacture of soi substrate
JPH04196340A (en) Dielectrics isolation substrate and manufacture thereof
JPH05109592A (en) Wafer for compound semiconductor device and manufacture thereof