JPH02237066A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02237066A
JPH02237066A JP5691289A JP5691289A JPH02237066A JP H02237066 A JPH02237066 A JP H02237066A JP 5691289 A JP5691289 A JP 5691289A JP 5691289 A JP5691289 A JP 5691289A JP H02237066 A JPH02237066 A JP H02237066A
Authority
JP
Japan
Prior art keywords
layer
thickness
groove
wafer
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5691289A
Other languages
Japanese (ja)
Other versions
JP2855639B2 (en
Inventor
Yoshihiro Arimoto
由弘 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1056912A priority Critical patent/JP2855639B2/en
Publication of JPH02237066A publication Critical patent/JPH02237066A/en
Application granted granted Critical
Publication of JP2855639B2 publication Critical patent/JP2855639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make a Si layer of an element forming layer uniform in thickness by a method wherein grooves are provided to optional parts of the surface of a laminated wafer, the bases of the grooves are covered with an SiO2 film of a specified thickness, and the Si layer is polished. CONSTITUTION:One side of a laminated wafer 1 is etched, and the thickness of a remaining Si layer 3 is larger than that of an Si layer which is to be left as an element forming layer. An SiO2 film 2 is thoroughly removed, and grooves 4 are provided so deep as to make the Si face of the wafer 1 exposed, an oxidation resistant mask as a nitride film is provided to the surface of the film 3, Si of the groove base is thermally oxidized to form a SiO2 layer 5, and the thickness of the layer 5 is so set as to make its upside level with that of an Si element forming layer. When the wafer 1 provided with grooves on whose bases the SiO2 layer 5 has been formed is ethced using an amine etching solution, the SiO2 layer 5 serves as stopper for a ethced process to prevent the Si layer from being etched further and the Si layer becomes flat. By this setup, even if an Si layer is not uniform in thickness at the start of etching, it becomes uniform in thickness through its whole face at the end of etching.

Description

【発明の詳細な説明】 〔概 要〕 本発明は絶縁基板上に素子形成層である半導体層を被着
した、いわゆるSOT基板の形成に関し、厚さの均一な
素子形成層が得られる貼り合わせ型SOI基板の製造方
法を提供することを目的とし、 通常の貼り合わせ型SOI基板の形成工程に従って、素
子形成層の所定の厚さ近くまでSi単結晶層を研磨し、
該研磨されたSi層に溝を掘り、?溝の底にSiO■層
を形成して研磨することにより、このSiO■層表面と
同じ高さまで前記SiHの厚さを減ずる工程を包含して
構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to the formation of a so-called SOT substrate in which a semiconductor layer, which is an element formation layer, is deposited on an insulating substrate. The purpose of this method is to provide a method for manufacturing a type SOI substrate, in which a Si single crystal layer is polished to a thickness close to a predetermined thickness of an element formation layer according to a normal process for forming a bonded type SOI substrate.
Dig a groove in the polished Si layer, ? The structure includes a step of forming a SiO2 layer at the bottom of the groove and polishing it to reduce the thickness of the SiH layer to the same height as the surface of the SiO2 layer.

SiJlの研磨が進んで溝底のSiO■層と同じ高さに
なると、S i O tがストツバとして働くため、こ
の部分ではSiの厚みの減少は殆ど進まなくなり、より
厚く残ったSi層の研磨だけが進むことになる。その結
果、最初の研磨で残されたSi層の厚さに不均一があっ
ても、最終的には素子形成層であるSi層の厚さはウェ
ハ全面にわたって均一となる。
When the polishing of SiJl progresses to the same height as the SiO layer at the bottom of the groove, SiOt acts as a stopper, so the thickness of Si hardly decreases in this area, and the remaining thicker Si layer is polished. only will proceed. As a result, even if the thickness of the Si layer left after the initial polishing is non-uniform, the thickness of the Si layer, which is the element forming layer, will eventually become uniform over the entire wafer.

〔産業上の利用分野〕[Industrial application field]

本発明はSOIと通称される集積回路形成用の基板に関
わり、均一な厚さの半導体層が得られるSOI基板の製
造方法に関わる。
The present invention relates to a substrate for forming an integrated circuit commonly referred to as SOI, and relates to a method for manufacturing an SOI substrate that allows a semiconductor layer of uniform thickness to be obtained.

集積回路をバルク状の半導体基板に作り込むのに比べて
、絶縁材料上に設けられた薄い半導体層に各種の素子を
形成する方が、素子特性や素子間分離の点で有利である
。このような見地から、第3図に示されるような集積回
路用基板が求められている。これがSol基板である。
Compared to fabricating an integrated circuit on a bulk semiconductor substrate, forming various elements on a thin semiconductor layer provided on an insulating material is more advantageous in terms of element characteristics and isolation between elements. From this point of view, an integrated circuit board as shown in FIG. 3 is desired. This is the Sol substrate.

該図面で、1はSi単結晶ウェハ、2はSing膜であ
り、3が素子形成のためのSi単結晶層である。1はS
 i O z膜2とSi単結晶層3を保持する支持台で
あるが、熱処理を受けた際の変形や応力発生を避けるた
めに素子形成層と同材料とするのが通常で、Si単結晶
が用いられる。
In the drawing, 1 is a Si single crystal wafer, 2 is a Sing film, and 3 is a Si single crystal layer for forming elements. 1 is S
The support base that holds the iOz film 2 and the Si single crystal layer 3 is usually made of the same material as the element forming layer in order to avoid deformation and stress generation during heat treatment. is used.

?従来の技術〕 上記の構造体の通常の製造方法は第4図(a)〜(C)
に示される通りである。以下、該図面を参照しながら製
造工程を説明する。
? Prior Art] The usual manufacturing method of the above structure is shown in Figs. 4(a) to (C).
As shown in The manufacturing process will be described below with reference to the drawings.

(a)図の如く、2枚の単結晶Siウェハの表面を熱酸
化してSiO■膜2を形成する。このSiOz膜どうし
を突き合わせた状態に保持し、加熱すると、ら)図の如
く2枚のウェハは固く接着される。続いて、貼り合わせ
た一方のSiウェハに化学・機械研磨を施し、素子形成
に適した厚さを残すと、(C)図の如<SOI基板とな
る。
(a) As shown in the figure, the surfaces of two single-crystal Si wafers are thermally oxidized to form an SiO2 film 2. When the SiOz films are held abutted against each other and heated, the two wafers are firmly bonded as shown in the figure. Subsequently, one of the bonded Si wafers is subjected to chemical/mechanical polishing to leave a thickness suitable for forming elements, resulting in an SOI substrate as shown in Figure (C).

このように形成されたSOI基板は素子形成層のSi層
がバルク結晶並みの良好な品質であることから高性能L
SI用の基板として注目されている。なお、上記化学・
機械研磨は、例えばアルカリ系のSiエッチング液を注
ぎながら研磨布でSi表面を擦過することによって減摩
する処理である。
The SOI substrate formed in this way has high performance L because the Si layer of the element formation layer has good quality comparable to that of bulk crystal.
It is attracting attention as a substrate for SI. In addition, the above chemistry
Mechanical polishing is a process of reducing friction by, for example, rubbing the Si surface with a polishing cloth while pouring an alkaline Si etching solution.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このように、貼り合わせウェハの一方を研磨する方法で
は、素子形成層として残す部分の厚さを均一にすること
が困難である。通常数百μmの厚さのあるウェハの大部
分を研磨除去し、1μm以下の層を残そうとするのであ
るから、研磨の進行がウェハ面内でばらついて残される
Si層の厚さが不均一になり易く、SO■基板の製造歩
留まりを低いものとしている。
As described above, in the method of polishing one side of the bonded wafer, it is difficult to make the thickness of the portion to be left as the element forming layer uniform. Since most of the wafer, which is usually several hundred micrometers thick, is removed by polishing and a layer of 1 micrometer or less is left behind, the progress of polishing varies within the wafer surface, and the thickness of the Si layer left behind becomes unstable. This tends to result in uniformity, which lowers the manufacturing yield of SO2 substrates.

本発明の目的はSOI型基板の形成に於いて、素子形成
層である.SiQの厚さを均一に揃える処理法を提供す
ることであり、それによってSOI型IC基板の製造歩
留まりを向上させることである。
An object of the present invention is to provide an element formation layer in the formation of an SOI type substrate. The object of the present invention is to provide a processing method for making the thickness of SiQ uniform, thereby improving the manufacturing yield of SOI type IC substrates.

?課題を解決するための手段〕 上記目的を達成するため、本発明の第1には2枚の単結
晶Siウェハを酸化膜を介して貼り合わせる工程、 該貼り合わせたSiウェハの一方の厚さを減じ、素子形
成層に要求される厚さを下回ることのない厚さのSi単
結晶層を残す工程、 該厚さを減じたSi層の一部及び該一部Si層の底面に
隣接する前記酸化膜を選択的に除去し、その深さに比べ
てその幅が大である溝を形成する工程、 該溝の底面に露出したSiを熱酸化して二酸化珪素(S
iOz)Nを形成し、該SiO■層の厚さを前記絶縁材
料層の厚さよりも大とする工程、前記溝を形成したSi
単結晶層を研磨してその厚さを減じ、その表面の位置を
前記溝底面に堆積したS i O z層の上面と一致さ
せる工程とが包含される。
? Means for Solving the Problems] In order to achieve the above object, the present invention first includes a step of bonding two single crystal Si wafers with an oxide film interposed therebetween, and determining the thickness of one of the bonded Si wafers. a step of reducing the thickness and leaving a Si single crystal layer with a thickness not less than the thickness required for the element forming layer, a part of the Si layer whose thickness has been reduced and a part adjacent to the bottom surface of the Si layer; A step of selectively removing the oxide film and forming a trench whose width is larger than its depth; thermally oxidizing the Si exposed at the bottom of the trench to form silicon dioxide (S);
iOz)N and making the thickness of the SiO2 layer larger than the thickness of the insulating material layer;
polishing the single crystal layer to reduce its thickness and aligning its surface with the top surface of the S i O z layer deposited on the groove bottom surface.

?た本発明の第2では、前記第1の発明の処理に於いて
、 前記厚さを減じたSi層に形成される溝の深さは、前記
厚さを減じたSi層の該溝形成部の厚さを下回ることの
ない値であり、且つ 該溝の底面に形成されるSiO■層は堆積法によって形
成されることが特徴となっている。
? In the second aspect of the present invention, in the process of the first aspect, the depth of the groove formed in the Si layer with the reduced thickness is equal to the depth of the groove forming part of the Si layer with the reduced thickness. The SiO2 layer formed on the bottom surface of the groove is characterized by being formed by a deposition method.

?作 用〕 本発明の如《、貼り合わせウェハ表面の随所に溝を設け
、該溝の底面を所定の厚さを持つS i O z膜で覆
った状態でSi層の研磨を行うと、Si層の厚さが減少
してSiO■膜と同じ高さに揃ったところでSi層の研
磨は進まなくなる。これは化学・機械研磨のような処理
に於いて、Siのエッチング液を用いた場合にはSiO
■が殆ど研磨されないためである.即ち、厚さの調整さ
れたsto.JWが、研磨のストッパとして働くことに
なる。
? Effect] According to the present invention, grooves are provided at various places on the surface of the bonded wafer, and when the Si layer is polished with the bottom of the groove covered with a SiOz film having a predetermined thickness, the Si When the thickness of the layer decreases to the same height as the SiO2 film, polishing of the Si layer stops. This is because in treatments such as chemical and mechanical polishing, when Si etching solution is used, SiO
This is because ■ is hardly polished. That is, the thickness of sto. The JW will function as a polishing stopper.

他方、Si層の厚さがより大で、Siow膜がSi層中
に沈んだままの部分ではSiの研磨が進行し、ストッパ
が働くまでSi層の厚さは更に減少し続ける。そのため
素子形成層として残さるべきSi層の厚さは、研Ig開
始時に不均一であっても、終了時にはウェハ全面にわた
って均一となっている。
On the other hand, in areas where the Si layer is thicker and the Siow film remains submerged in the Si layer, polishing of the Si progresses and the thickness of the Si layer continues to decrease further until the stopper is activated. Therefore, even if the thickness of the Si layer to be left as an element forming layer is non-uniform at the start of polishing Ig, it becomes uniform over the entire wafer surface at the end.

〔実施例〕〔Example〕

第1図(a)〜(e)は本発明の第1の実施例の工程を
示す断面模式図であり、以下、該図面を参照しながら第
1の実施例の工程を説明する。該実施例は請求項(1)
の発明に相当する。
FIGS. 1(a) to 1(e) are schematic cross-sectional views showing the steps of the first embodiment of the present invention, and the steps of the first embodiment will be explained below with reference to the drawings. The embodiment is claimed in claim (1).
This corresponds to the invention of

(a)図は公知の工程によって貼り合わせたSiウェハ
の一方を研磨してその厚さを減じた状態を示す。この時
点で、残されたSiN3の厚さは、素子形成層として残
すべきSi層の厚さ以上となっている。特に、研磨面の
傾きに因る厚さの不均一がある場合には、最も薄い部分
でも、素子形成層の厚さを下回らないことが要求される
。図の1は支持側のSiウェハ、2はSiO2膜で通常
は熱酸化膜である。
The figure (a) shows a state in which one side of the Si wafers bonded together is polished to reduce its thickness by a known process. At this point, the thickness of the remaining SiN3 is greater than the thickness of the Si layer to be left as an element forming layer. In particular, when there is non-uniformity in thickness due to the inclination of the polishing surface, even the thinnest part is required to be no less than the thickness of the element forming layer. In the figure, 1 is a Si wafer on the supporting side, and 2 is a SiO2 film, which is usually a thermally oxidized film.

?れに(b)図の如く溝4を形成する。処理法はRIE
のような常用の方法でよく、その深さは、SiO■膜2
を完全に除去してウェハ1のSi面が露出する程度とす
る。また、本実施例では溝の幅は数十μmに設定されて
おり、一方、溝の深さは素子形成層が厚い場合でも10
μmより大となることはない。以下の説明から明らかに
なるように、本発明で所期の効果をあげるためには、溝
の幅Wは深さDに比べて十分に大であることが必要であ
り、数倍或いはそれ以上に設定すべきである。これは後
出の第2の実施例でも同様である。
? In this, grooves 4 are formed as shown in (b). Processing method is RIE
A commonly used method such as
is completely removed to the extent that the Si surface of the wafer 1 is exposed. Furthermore, in this example, the width of the groove is set to several tens of μm, while the depth of the groove is set to 10 μm even when the element forming layer is thick.
It cannot be larger than μm. As will become clear from the following description, in order to achieve the desired effect in the present invention, the width W of the groove needs to be sufficiently larger than the depth D, several times or more. Should be set to . This also applies to the second embodiment described later.

続いて(C)図の如く溝底のSiを熱酸化してSiOz
層5を形成する。該層の厚さは、その上面がSi素子形
成層の上面と一致する値に設定される。この熱酸化で形
成されるS i O zの厚さはウェハ全面にわたって
均一であり、Si層3の厚さには影響されない。また、
図示されてはいないが、Si層3の表面には窒化膜のよ
うな耐酸化マスクが設けられ、Si層3の表面は酸化さ
れないが、溝の側壁に露出したSi面にはS i O 
z層が成長す?。
Next, as shown in (C), the Si at the groove bottom is thermally oxidized to form SiOz.
Form layer 5. The thickness of the layer is set to such a value that its upper surface coincides with the upper surface of the Si element forming layer. The thickness of S i O z formed by this thermal oxidation is uniform over the entire surface of the wafer and is not affected by the thickness of the Si layer 3 . Also,
Although not shown, an oxidation-resistant mask such as a nitride film is provided on the surface of the Si layer 3, so that the surface of the Si layer 3 is not oxidized, but the Si surface exposed on the sidewall of the trench is covered with SiO.
Will the Z layer grow? .

溝の幅が狭すぎる場合は、この処理でSi層3に歪みや
欠陥が生じることになり、溝底のS i O f層の厚
さが不均一になることも起こる。そのために上記の如く
、溝の幅を十分大にすることが要求される。
If the width of the groove is too narrow, this process will cause distortions and defects in the Si layer 3, and the thickness of the SiOf layer at the bottom of the groove may become non-uniform. Therefore, as mentioned above, it is necessary to make the width of the groove sufficiently large.

溝底にS i O z層が形成されたウェハを、アミン
系のエッチング液を用いて研磨する。この処理ではSi
とS i O zの研磨速度が大幅に異なるので、Si
の研磨が進行し、(d)図左半のようにSi層3の表面
とSiO■層5の表面が同じ高さになった部分では、S
iO■層5が研磨処理に対しストツパとして働き、それ
以上Si層が研磨されることはない。一方、同図右半の
ようにSi層がより厚く残る部分では研磨が進行し続け
る。
The wafer with the S i O z layer formed on the groove bottom is polished using an amine-based etching solution. In this process, Si
Since the polishing rates of Si and S i O z are significantly different,
As the polishing progresses, the S
The iO2 layer 5 acts as a stopper for the polishing process, and the Si layer is no longer polished. On the other hand, polishing continues in a portion where the Si layer remains thicker, as shown in the right half of the figure.

(e)図に示されるように、ウェハ全域にわたってSi
NとS i 0 2層の表面が同じ高さに揃うと、それ
以上は研磨が進行しなくなるので研磨を終了させる。以
上の処理によってSO■基板が得られる。
(e) As shown in the figure, Si
When the surfaces of the two N and S i 0 layers are aligned at the same height, polishing will no longer proceed and the polishing is terminated. Through the above processing, an SO₂ substrate is obtained.

上記研磨の処理条件は、通常のSol基板形成に於ける
と同じでよく、また溝側面に形成されるSin,層は、
該研磨処理にとって好ましいものではないが、研磨面に
露出する面積は小であるから、Si面の研磨を著しく妨
げることはない。
The processing conditions for the above polishing may be the same as those for forming a normal Sol substrate, and the Sin layer formed on the side surface of the groove is
Although this is not preferable for the polishing process, since the area exposed to the polishing surface is small, it does not significantly impede the polishing of the Si surface.

研磨ストッパを形成する溝は、ウェハ面に均等に分散さ
せるべきであるが、形成した集積回路をチップに切断す
るための分離領域に設ければ、素子形成領域の面積を減
ずることなく、ウェハ全面に均等に配置されることにな
り、好都合であると言える。
The grooves forming the polishing stopper should be evenly distributed over the wafer surface, but if they are provided in the separation area for cutting the formed integrated circuit into chips, they can be distributed over the entire wafer surface without reducing the area of the element forming area. This can be said to be convenient as it will be evenly distributed.

次に、請求項(2)に対応する第2の実施例を説明する
。該実施例の工程は第2図(a)〜(C)に示されてお
り、以下の説明で参照される図面は第2図である。
Next, a second embodiment corresponding to claim (2) will be described. The steps of this embodiment are shown in FIGS. 2(a) to 2(C), and it is FIG. 2 that will be referred to in the following description.

本実施例でも、通常のSol基板形成と同様に貼り合わ
せたSiウェハの一方を研磨し、第1の実施例と同じよ
うに溝を形成する。この状態が(a)図に模式的に示さ
れている。第1の実施例と異なる点は、本実施例ではS
i層を溝底に残さないことが要求されるが、溝底にウェ
ハ1のSi面を露?する必要はない点である。溝を掘る
ためのエッチング処理では、SiとSingでエッチン
グ速度が大幅に異なるのが通常であるから、Si層の除
去が完了したところでエッチング処理を停止すれば、(
a)図の状態となる。
In this embodiment as well, one side of the bonded Si wafers is polished in the same manner as in the formation of a normal Sol substrate, and grooves are formed in the same manner as in the first embodiment. This state is schematically shown in figure (a). The difference from the first embodiment is that in this embodiment, S
Although it is required that the i-layer not be left on the groove bottom, is it possible to expose the Si surface of wafer 1 on the groove bottom? There is no need to do so. In the etching process for digging trenches, the etching speed for Si and Sing is usually significantly different, so if the etching process is stopped when the Si layer is completely removed, (
a) The state shown in the figure will occur.

次いで減圧CVD法により、(b)図の如く、溝底にS
iO■N6を堆積する。処理条件は基板温度500゜C
、原料はSiH.+O■であり、堆積層の厚さはSi素
子形成層と同じにする。これは本質的にはSing層の
表面とSi素子形成層の表面を同じにするのであるが、
前工程でS i O 2層2が殆どエッチングされない
ことから、堆積層の厚さがこのように設定されるもので
ある。
Next, by low pressure CVD method, S is deposited on the groove bottom as shown in (b).
Deposit iO■N6. Processing conditions are substrate temperature 500°C.
, the raw material is SiH. +O■, and the thickness of the deposited layer is the same as that of the Si element forming layer. This essentially makes the surface of the Sing layer and the surface of the Si element forming layer the same, but
The thickness of the deposited layer is set in this way because the S i O 2 layer 2 is hardly etched in the previous step.

減圧CVD法は被覆性が良いので、この処理でも溝の側
面に、ほ!゛同じ厚さのS i O t層が被着する。
The low pressure CVD method has good coating properties, so even with this process, the sides of the grooves can be coated with porridge. ``A SiOt layer of the same thickness is deposited.

既述したように、これは好ましいことではないが、以後
の処理に障害となる程ではなく、厚さの制御精度の良い
点が評価されることになる。
As mentioned above, this is not preferable, but it does not interfere with subsequent processing, and the good thickness control accuracy is appreciated.

側面にSingの被着を無くしたい場合は、スパッタリ
ングのように被覆性の悪い堆積法に依ればよい。
If it is desired to eliminate Sing from adhering to the side surfaces, a deposition method with poor coverage such as sputtering may be used.

以下第1の実施例と同様、研磨により(C)図のSOI
基板を得る。この研磨でも溝底のSiOzJmがストツ
パとして働くことは、第1の実施例に於けると同様であ
り、それによって素子形成層の厚さがウェハ全面にわた
って均一となる。
Hereinafter, as in the first embodiment, by polishing, the SOI in figure (C) is
Get the board. In this polishing, the SiOzJm at the bottom of the groove acts as a stopper, as in the first embodiment, so that the thickness of the element forming layer becomes uniform over the entire wafer.

第2の実施例では、溝の幅は第1の実施例より若干小で
あってもよいが、溝底に形成するS i O z層をス
トツパとして有効に機能させるには、その厚さをウェハ
全面で均一にすることが必要であり、そのためには溝の
幅が狭すぎることは避けるべきであって、第1の実施例
と同じように、幅を深さの数倍とすることが望ましい。
In the second embodiment, the width of the groove may be slightly smaller than that in the first embodiment, but in order for the S i O z layer formed at the bottom of the groove to function effectively as a stopper, the thickness must be increased. It is necessary to make the groove uniform over the entire surface of the wafer, and for this purpose, the width of the groove should not be too narrow, and as in the first embodiment, the width should be several times the depth. desirable.

研磨処理のストツバを堆積によって形成すれば、熱酸化
に依る場合のような、素子形成層に歪みや欠陥が発生す
るおそれが解消され、結晶性の良好な素子形成層を得る
ことができる。
If the polishing stopper is formed by deposition, the risk of distortion or defects occurring in the element forming layer, as would be the case when thermal oxidation is used, is eliminated, and an element forming layer with good crystallinity can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば素子形成層の厚さ
がウェハ全域に渡って均一であり、結晶性も良好なSO
I基板を確実に形成することが出来る。
As explained above, according to the present invention, the thickness of the element formation layer is uniform over the entire wafer, and the SO layer has good crystallinity.
An I-substrate can be reliably formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例の工程を示す断面模式図、第2図
は第2の実施例の工程を示す断面模式図、第3図は公知
のSOI基板の構造を示す断面模式図、 第4図は従来のSOI基板の形成工程を示す模式図であ
って、 図に於いて 1はSiウェハ、 2はSiO■膜、 3は単結晶Si層、 4は溝、 5は熱酸化SiOzN、 6 ハC V D S i O t層、第1の実施例の
工程を示す断面模式図 第1図 第2の実施例の工程を示す断面模式図 第2図 公知のSOI基板を示す断面模式図 第3図
FIG. 1 is a schematic cross-sectional diagram showing the steps of the first embodiment, FIG. 2 is a schematic cross-sectional diagram showing the steps of the second embodiment, and FIG. 3 is a schematic cross-sectional diagram showing the structure of a known SOI substrate. FIG. 4 is a schematic diagram showing the process of forming a conventional SOI substrate, in which 1 is a Si wafer, 2 is an SiO film, 3 is a single crystal Si layer, 4 is a groove, and 5 is a thermally oxidized SiOzN layer. , 6 C V D S i O t layer, schematic cross-sectional diagram showing the process of the first embodiment Figure 1 Schematic cross-sectional diagram showing the process of the second embodiment Figure 2 Schematic cross-sectional diagram showing the process of the second embodiment Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)2枚の単結晶Siウェハを絶縁材料膜を介して貼
り合わせる工程、 該貼り合わせたSiウェハの一方の厚さを減じ、素子形
成層に要求される厚さを下回ることのない厚さのSi単
結晶層を残す工程、 該厚さを減じたSi層の一部及び該一部Si層の底面に
隣接する前記絶縁材料膜を選択的に除去し、その深さに
比べてその幅が大である溝を形成する工程、 該溝の底面に露出したSiを熱酸化して二酸化珪素(S
iO_2)層を形成し、該SiO_2層の厚さを前記絶
縁材料層の厚さよりも大とする工程、 前記溝を形成したSi単結晶層の厚さを減じ、その表面
の位置を前記溝底面に堆積したSiO_2層の上面と一
致させる工程 とを包含することを特徴とする半導体装置の製造方法。
(1) A step of bonding two single-crystal Si wafers via an insulating material film, reducing the thickness of one of the bonded Si wafers so that the thickness does not fall below the thickness required for the element formation layer. selectively removing a portion of the Si layer whose thickness has been reduced and the insulating material film adjacent to the bottom surface of the portion of the Si layer, leaving a Si single crystal layer with a thickness smaller than that of the Si single crystal layer; The step of forming a groove with a large width is to thermally oxidize the Si exposed at the bottom of the groove to form silicon dioxide (S).
iO_2) layer and making the thickness of the SiO_2 layer larger than the thickness of the insulating material layer, reducing the thickness of the Si single crystal layer in which the groove is formed, and changing the position of its surface to the bottom surface of the groove. A method for manufacturing a semiconductor device, comprising the step of aligning the top surface of a SiO_2 layer deposited on the top surface of the SiO_2 layer.
(2)請求項(1)の半導体装置の製造方法に於いて、
前記厚さを減じたSi層に形成される溝の深さは、前記
厚さを減じたSi層の該溝形成部の厚さを下回ることの
ない値であり、且つ 該溝の底面に形成されるSiO_2層は堆積法によって
形成される ことを特徴とする半導体装置の製造方法。
(2) In the method for manufacturing a semiconductor device according to claim (1),
The depth of the groove formed in the Si layer with the reduced thickness is a value that is not less than the thickness of the groove forming part of the Si layer with the reduced thickness, and the groove is formed on the bottom surface of the groove. A method for manufacturing a semiconductor device, characterized in that the SiO_2 layer is formed by a deposition method.
JP1056912A 1989-03-09 1989-03-09 Method for manufacturing semiconductor device Expired - Lifetime JP2855639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056912A JP2855639B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056912A JP2855639B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH02237066A true JPH02237066A (en) 1990-09-19
JP2855639B2 JP2855639B2 (en) 1999-02-10

Family

ID=13040674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056912A Expired - Lifetime JP2855639B2 (en) 1989-03-09 1989-03-09 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2855639B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399233A (en) * 1991-12-05 1995-03-21 Fujitsu Limited Method of and apparatus for manufacturing a semiconductor substrate
US5643837A (en) * 1992-04-15 1997-07-01 Nec Corporation Method of flattening the surface of a semiconductor device by polishing
US11536230B1 (en) * 2021-10-26 2022-12-27 Ford Global Technologies, Llc Charge-air cooler and water distribution device to evenly proved water to engine cylinders
CN117364235A (en) * 2023-12-07 2024-01-09 度亘核芯光电技术(苏州)有限公司 Selective epitaxial growth method and mask structure used in selective epitaxial growth method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136328A (en) * 1987-11-20 1989-05-29 Sony Corp Manufacture of semiconductor substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136328A (en) * 1987-11-20 1989-05-29 Sony Corp Manufacture of semiconductor substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399233A (en) * 1991-12-05 1995-03-21 Fujitsu Limited Method of and apparatus for manufacturing a semiconductor substrate
US5643837A (en) * 1992-04-15 1997-07-01 Nec Corporation Method of flattening the surface of a semiconductor device by polishing
US11536230B1 (en) * 2021-10-26 2022-12-27 Ford Global Technologies, Llc Charge-air cooler and water distribution device to evenly proved water to engine cylinders
CN117364235A (en) * 2023-12-07 2024-01-09 度亘核芯光电技术(苏州)有限公司 Selective epitaxial growth method and mask structure used in selective epitaxial growth method
CN117364235B (en) * 2023-12-07 2024-03-26 度亘核芯光电技术(苏州)有限公司 Selective epitaxial growth method and mask structure used in selective epitaxial growth method

Also Published As

Publication number Publication date
JP2855639B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JPH0636414B2 (en) Manufacturing method of semiconductor element forming substrate
JP3934170B2 (en) Manufacturing method of SOI substrate
JPH098124A (en) Insulation separation substrate and its manufacture
EP0455087B1 (en) Method of forming a silicon wafer with a chip separating structure and single crystal layer sections
JPH02237066A (en) Manufacture of semiconductor device
JPS61120424A (en) Method of polishing dielectric isolated substrate
JPH0437020A (en) Preparation of thermocompression bonding wafer
JPH0945882A (en) Semiconductor substrate and manufacture thereof
JPH01302837A (en) Manufacture of semiconductor substrate
JPH01305534A (en) Manufacture of semiconductor substrate
JPH03270254A (en) Manufacture of semiconductor device
JPH0555358A (en) Manufacture of semiconductor device
JPH03136346A (en) Manufacture of soi substrate
JPH03188648A (en) Manufacture of semiconductor device
JPH05291219A (en) Manufacture of semiconductor device
JPH098126A (en) Method for manufacturing semiconductor substrate
JPS61159738A (en) Polishing method for dielectric isolating substrate
JPH0661340A (en) Manufacture of clad semiconductor substrate
JPH06132264A (en) Manufacture of semiconductor substrate by polishing
JPH0346315A (en) Manufacture of semiconductor substrate
JPH04307735A (en) Manufacture of semiconductor device
KR940000984B1 (en) Silicon substrate using mono-crystal and manufacturing method thereof
JPH098125A (en) Insulation separation substrate and its manufacturing method
JPH0254553A (en) Manufacture of dielectric isolation substrate
JPH03286551A (en) Manufacture of semiconductor device