JPH098124A - Insulation separation substrate and its manufacture - Google Patents

Insulation separation substrate and its manufacture

Info

Publication number
JPH098124A
JPH098124A JP14884995A JP14884995A JPH098124A JP H098124 A JPH098124 A JP H098124A JP 14884995 A JP14884995 A JP 14884995A JP 14884995 A JP14884995 A JP 14884995A JP H098124 A JPH098124 A JP H098124A
Authority
JP
Japan
Prior art keywords
substrate
silicon
oxide film
silicon substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14884995A
Other languages
Japanese (ja)
Inventor
Masaki Matsui
正樹 松井
Hiromi Oba
浩美 大庭
Keimei Himi
啓明 氷見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14884995A priority Critical patent/JPH098124A/en
Publication of JPH098124A publication Critical patent/JPH098124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE: To easily control the amount of warpage of an insulation separation substrate to a desired value before forming an element. CONSTITUTION: A first silicon substrate 35 and a second silicon substrate 36 is heat-treated within oxidation environment to form oxide films 37 and 38 and 39 and 40 with a specific thickness each. Then, the first silicon substrate 35 and the second silicon substrate 36 are adhered and heat treatment is made in nitrogen atmosphere to manufacture a laminated substrate. Then, a surface at the side of the oxide film 37 of the first silicon substrate 35 is ground and the ground surface is polished to obtain SOI layer 41 with a desired thickness. Then, an insulation separation substrate 43 with a desired amount of warpage can be obtained from the film thickness difference between the film thickness of a buried oxide film 42 and that of an oxide film on the reverse surface being manufactured by the oxide films 38 and 39.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はウェハ貼り合わせ法で
作製する絶縁分離基板及びその製造方法に関し、より詳
細には基板の反りを容易に制御可能なウェハ貼り合わせ
法で作製する絶縁分離基板及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating separation substrate manufactured by a wafer bonding method and a method of manufacturing the same, and more specifically, an insulating separation substrate manufactured by a wafer bonding method capable of easily controlling the warp of the substrate. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、絶縁分離基板の製造方法として
は、図7に示されるような工程による製造方法が知られ
ている。すなわち、第1シリコン基板1と第2シリコン
基板2の2つのシリコン基板を酸化性雰囲気中で熱酸化
することで、第1シリコン基板1に酸化膜3、4を、第
2シリコン基板2に酸化膜5、6を、それぞれ形成する
(図7(a))。その後、第1シリコン基板1と第2シ
リコン基板2を貼り合わせ(図7(b))、一方の基板
側、この場合第1のシリコン基板1側から所定の厚さま
で研磨することによって、SOI(Silicon On Insulat
or)層7とする(図7(c))ものである。尚、図7に
於いて、8は酸化膜、9は絶縁分離基板である。
2. Description of the Related Art Conventionally, as a method of manufacturing an insulating separation substrate, a manufacturing method based on the steps shown in FIG. 7 is known. That is, two silicon substrates, the first silicon substrate 1 and the second silicon substrate 2, are thermally oxidized in an oxidizing atmosphere to oxidize the oxide films 3 and 4 on the first silicon substrate 1 and the second silicon substrate 2. The films 5 and 6 are formed (FIG. 7A). After that, the first silicon substrate 1 and the second silicon substrate 2 are bonded together (FIG. 7B), and polishing is performed from one substrate side, in this case, the first silicon substrate 1 side, to a predetermined thickness to obtain an SOI ( Silicon On Insulat
or) layer 7 (FIG. 7C). In FIG. 7, 8 is an oxide film and 9 is an insulating separation substrate.

【0003】しかしこの方法では、シリコンと酸化膜と
の間に熱収縮率の差が生じ、基板の反りが発生するとい
う課題を有していた。この基板の反りを低減する方法
が、例えば特開平1−181438号公報や特開平1−
302740号公報等に記載されている。
However, this method has a problem that a difference in thermal contraction rate occurs between the silicon and the oxide film, so that the substrate warps. A method for reducing the warp of the substrate is disclosed in, for example, JP-A-1-181438 or JP-A-1-181438.
No. 302740, etc.

【0004】上記特開平1−181438号公報による
技術は、シリコンと酸化膜との界面の差を利用して、反
りを低減(−5〜+5μmで平均0)することができる
というものである。
The technique disclosed in JP-A-1-181438 mentioned above is capable of reducing the warp (average of 0 at -5 to +5 μm) by utilizing the difference in the interface between the silicon and the oxide film.

【0005】また、上記特開平1−302740号公報
には、間に第1の絶縁膜を挟んで接着により一体化され
た第1の半導体層と、この第1の半導体層より厚い第2
の半導体層とから成る誘電体分離基板に於いて、上記第
2の半導体層の裏面に絶縁膜と、この絶縁膜を覆う保護
層を設けることにより、反りを低減する技術が記載され
ている。
Further, in the above-mentioned Japanese Patent Laid-Open No. 1-203740, a first semiconductor layer integrated by adhesion with a first insulating film sandwiched therebetween, and a second semiconductor layer thicker than the first semiconductor layer are provided.
In the dielectric isolation substrate including the semiconductor layer of 1), there is described a technique of reducing the warp by providing an insulating film on the back surface of the second semiconductor layer and a protective layer covering the insulating film.

【0006】[0006]

【発明が解決しようとする課題】しかし絶縁分離基板の
反り量は必ずしも0(反りのない状態)にすれば良いと
いうものではなく、後工程である素子形成工程に於いて
反りが問題とならない値にしておかなければならない。
つまり、素子形成工程では、基板の表側の面だけに、ま
たは裏側の面だけに、酸化膜、多結晶シリコン膜、或い
は窒化膜等の熱膨脹係数がシリコンとは異なる膜が、そ
の全面、或いは部分的に形成されることで残留応力が発
生し、工程毎に基板の反り量は逐次変化する。
However, it is not always necessary to set the amount of warpage of the insulating separation substrate to 0 (state without warpage), and a value at which warpage does not pose a problem in the device forming process which is a post process. Must be kept.
That is, in the device forming step, only the front side surface or the back side surface of the substrate is covered with a film such as an oxide film, a polycrystalline silicon film, or a nitride film having a coefficient of thermal expansion different from that of silicon over the entire surface or a part thereof. The residual stress is generated due to the periodical formation, and the warp amount of the substrate sequentially changes in each process.

【0007】例えば、図8に示されるように、SOI層
10の厚みが10μm、埋設された酸化シリコン膜11
の膜厚が1μm、基板12の裏面の酸化シリコン膜13
の膜厚が0.6μmの絶縁分離基板は、直径150m
m、厚さ620μmを有し、SOI層10側に凸状に3
4μmの反りであった(図8(a))。そして、この基
板に、素子を絶縁分離するための溝14及び溝側壁の酸
化膜15を形成後、多結晶シリコン16で溝14を埋設
し(図8(b))、SOI層10上の酸化膜、多結晶シ
リコンを除去し、溝部を平坦化した状態(図8(c))
で基板の反りの変化を調べたところ、SOI層10側に
凹状に160μmの反りとなった。この反りの変化は、
溝埋設のための多結晶シリコンが、LPCVDで堆積さ
れることによって裏面にも形成されるため、この裏面の
多結晶シリコン16′(膜厚4.5μm)が基板を大き
く反らすことによる。
For example, as shown in FIG. 8, the thickness of the SOI layer 10 is 10 μm, and the buried silicon oxide film 11 is formed.
Having a thickness of 1 μm, the silicon oxide film 13 on the back surface of the substrate 12
The insulation separation substrate with a thickness of 0.6 μm has a diameter of 150 m.
m, the thickness is 620 μm, and the convex shape is 3 toward the SOI layer 10 side.
The warp was 4 μm (FIG. 8 (a)). Then, on this substrate, after forming the trench 14 for insulating and isolating the element and the oxide film 15 on the sidewall of the trench, the trench 14 is filled with polycrystalline silicon 16 (FIG. 8B), and the oxidation on the SOI layer 10 is performed. The film and polycrystalline silicon are removed and the groove is flattened (FIG. 8C).
When the change of the warp of the substrate was examined by, the warp was 160 μm in a concave shape on the SOI layer 10 side. This warp change is
Polycrystalline silicon for burying the trench is also formed on the back surface by being deposited by LPCVD, so that the polycrystalline silicon 16 ′ (film thickness 4.5 μm) on the back surface largely warps the substrate.

【0008】このように反りが大きくなると、真空吸着
でも基板を矯正することができなくなる。すると、フォ
ト工程の露光(転写)等で問題となり、微細加工ができ
なくなるという問題が生じる。
If the warp becomes large in this way, the substrate cannot be straightened even by vacuum suction. Then, there arises a problem in exposure (transfer) in the photo process, which causes a problem that fine processing cannot be performed.

【0009】また、反りが真空吸着による矯正ができた
としても、矯正しているときには大きな応力が基板にか
かっていることになり、これにより結晶欠陥の発生、ま
たは基板が割れる危険性がある。したがって、最大に基
板が反った場合でも、上記のような問題が生じないよう
に、図8(a)に示されるような、貼り合わせ、研磨工
程後の時点で基板の反り量を予め所定値に制御しておく
こと、上記の例では研磨工程後の時点で、基板の反り量
をSOI層側に更に凸状態にしておくことが望ましい。
Even if the warp can be corrected by vacuum suction, a large stress is applied to the substrate during the correction, which may cause crystal defects or break the substrate. Therefore, even if the substrate is warped to the maximum, the amount of warp of the substrate is set to a predetermined value after the bonding and polishing steps as shown in FIG. 8A so that the above problem does not occur. It is desirable that the warp amount of the substrate be further convex toward the SOI layer side after the polishing step in the above example.

【0010】この発明は以上のような課題に着目してな
されたもので、素子形成前の絶縁分離基板の反り量を所
望の値に容易に制御可能な絶縁分離基板及びその製造方
法を提供することを目的とする。
The present invention has been made in view of the above problems, and provides an insulating separation substrate capable of easily controlling the amount of warpage of the insulating separation substrate before element formation to a desired value, and a manufacturing method thereof. The purpose is to

【0011】[0011]

【課題を解決するための手段】すなわち、この発明によ
る絶縁分離基板は、少なくとも一方の面に酸化シリコン
膜が形成された第1シリコン基板と、上記酸化シリコン
膜が形成された面で上記第1シリコン基板と貼り合わさ
れるもので、その一方の面及び他方の面に酸化シリコン
膜が形成された第2シリコン基板とを有し、上記第1シ
リコン基板を所定の厚みまで研削、研磨して形成される
絶縁分離基板に於いて、上記第1及び第2シリコン基板
間に埋設された上記酸化シリコン膜の膜厚と、上記第2
のシリコン基板の他方の面に形成された酸化シリコン膜
との膜厚差に基いて、該基板の反り量を制御することを
特徴とする。
That is, an insulating separation substrate according to the present invention has a first silicon substrate having a silicon oxide film formed on at least one surface and a first silicon substrate having the silicon oxide film formed thereon. It is bonded to a silicon substrate and has a second silicon substrate having a silicon oxide film formed on one surface and the other surface thereof, and is formed by grinding and polishing the first silicon substrate to a predetermined thickness. In the insulating separation substrate, the film thickness of the silicon oxide film embedded between the first and second silicon substrates and the second
The amount of warpage of the silicon substrate is controlled based on the film thickness difference from the silicon oxide film formed on the other surface of the silicon substrate.

【0012】またこの発明による絶縁分離基板の製造方
法にあっては、第1シリコン基板の少なくとも一方の面
に、研磨後の基板が所望の反り量となるべく膜厚の酸化
シリコン膜を形成する第1工程と、上記第1シリコン基
板に貼り合わされる第2シリコン基板の一方及び他方の
面に酸化シリコン膜を酸化性雰囲気中で熱処理を施して
形成する第2工程と、上記第1シリコン基板の酸化シリ
コン膜を形成した面と、上記第2シリコン基板の酸化シ
リコン膜が形成された面を洗浄、乾燥した後に密着させ
る第3工程と、上記密着された第1及び第2シリコン基
板を不活性ガス雰囲気中で熱処理を施して貼り合わせ基
板を形成する第4工程と、上記貼り合わせ基板のうち上
記第1シリコン基板の他方の面を研削、研磨する第5工
程とを具備し、上記第1工程は、上記第1シリコン基板
に形成する酸化シリコン膜の膜厚を制御して、該基板の
反り量を制御することを特徴とする。
Further, in the method for manufacturing an insulating separation substrate according to the present invention, a silicon oxide film having a film thickness is formed on at least one surface of the first silicon substrate so that the substrate after polishing has a desired warp amount. 1 step, a second step of forming a silicon oxide film on one and the other surface of the second silicon substrate bonded to the first silicon substrate by heat treatment in an oxidizing atmosphere, and the second step of forming the first silicon substrate. A third step of cleaning and drying the surface on which the silicon oxide film is formed and the surface of the second silicon substrate on which the silicon oxide film is formed, and adhering the adhered first and second silicon substrates to each other. The method comprises a fourth step of forming a bonded substrate by performing heat treatment in a gas atmosphere, and a fifth step of grinding and polishing the other surface of the bonded silicon substrate of the first silicon substrate. The first step is to control the film thickness of the silicon oxide film formed on the first silicon substrate, and controlling the amount of warp of the substrate.

【0013】更にこの発明による絶縁分離基板の製造方
法では、第1シリコン基板の少なくとも一方の面及びこ
の第1シリコン基板に貼り合わされるべく第2シリコン
基板の一方及び他方の面に、酸化シリコン膜を形成する
第1工程と、上記第1シリコン基板の酸化シリコン膜を
形成した面と、上記第2シリコン基板の酸化シリコン膜
が形成された面を洗浄、乾燥した後に密着させる第2工
程と、上記密着された第1及び第2シリコン基板を酸化
性雰囲気中で熱処理を施して貼り合わせ基板を形成する
第3工程と、上記貼り合わせ基板のうち上記第1シリコ
ン基板の他方の面を研削、研磨する第4工程とを具備
し、上記第3工程は、絶縁分離基板の裏面となるべく第
2シリコン基板の他方の面に形成された酸化シリコン膜
の膜厚を制御して該基板の反り量を制御することを特徴
とする。
Further, in the method for manufacturing an insulating separation substrate according to the present invention, a silicon oxide film is formed on at least one surface of the first silicon substrate and one and the other surfaces of the second silicon substrate to be bonded to the first silicon substrate. A first step of forming, a second step of adhering the surface of the first silicon substrate on which the silicon oxide film is formed and the surface of the second silicon substrate on which the silicon oxide film is formed, after cleaning and drying. A third step of forming a bonded substrate by heat-treating the adhered first and second silicon substrates in an oxidizing atmosphere, and grinding the other surface of the bonded silicon substrate of the first silicon substrate, A fourth step of polishing, the third step controlling the film thickness of the silicon oxide film formed on the other surface of the second silicon substrate as much as the back surface of the insulating separation substrate, And controlling the amount of warping of the plate.

【0014】[0014]

【作用】この発明の絶縁分離基板にあっては、第1シリ
コン基板と第2シリコン基板を酸化シリコン膜を介して
貼り合わせた後、上記第1シリコン基板を所定の厚みま
で研磨することで形成される絶縁分離基板に於いて、こ
の絶縁分離基板に埋設された酸化シリコン膜の膜厚と該
基板裏面の酸化シリコン膜の膜厚差によって、基板のそ
り量を制御することができる。
In the insulating separation substrate of the present invention, the first silicon substrate and the second silicon substrate are bonded together via the silicon oxide film, and then the first silicon substrate is polished to a predetermined thickness. In the insulating separation substrate, the amount of warpage of the substrate can be controlled by the difference in the film thickness of the silicon oxide film embedded in the insulating separation substrate and the film thickness of the silicon oxide film on the back surface of the substrate.

【0015】またこの発明の絶縁分離基板の製造方法に
あっては、絶縁分離基板に埋設された酸化シリコン膜の
膜厚とこの絶縁分離基板裏面の酸化シリコン膜の膜厚差
によって基板のそり量を制御する。そして、この基板の
反り量は、貼り合わせ前に第1シリコン基板に形成する
酸化シリコン膜の膜厚を制御することによって制御する
ことができる。
In the method for manufacturing an insulating separation substrate according to the present invention, the amount of warpage of the substrate is determined by the difference in the film thickness of the silicon oxide film embedded in the insulating separation substrate and the film thickness of the silicon oxide film on the back surface of the insulating separation substrate. To control. The warp amount of this substrate can be controlled by controlling the film thickness of the silicon oxide film formed on the first silicon substrate before bonding.

【0016】更に、この発明の絶縁分離基板の製造方法
にあっては、絶縁分離基板に埋設された酸化シリコン膜
の膜厚とこの絶縁分離基板裏面の酸化シリコン膜の膜厚
差によって基板のそり量を制御する。そして、第1シリ
コン基板と第2シリコン基板を貼り合わせるための熱処
理工程を酸化性雰囲気で行い、貼り合わせ基板の第2シ
リコン基板側の面に形成する酸化シリコン膜の膜厚を制
御することによって、基板のそり量を制御することがで
きる。
Further, in the method for manufacturing an insulating separation substrate of the present invention, the warpage of the substrate is caused by the difference in the film thickness of the silicon oxide film embedded in the insulating separation substrate and the film thickness of the silicon oxide film on the back surface of the insulating separation substrate. Control the amount. Then, a heat treatment process for bonding the first silicon substrate and the second silicon substrate is performed in an oxidizing atmosphere to control the film thickness of the silicon oxide film formed on the surface of the bonded substrate on the second silicon substrate side. The amount of warpage of the substrate can be controlled.

【0017】[0017]

【実施例】以下、図面を参照してこの発明の実施例を説
明する。基板の反りは、第1基板と第2基板を酸化膜を
介して貼り合わせた後に該第1基板を所定の厚さまで研
磨して得られる基板に於いては埋込み酸化膜と、該第2
基板裏面の酸化膜との相関により生じる。そこで始め
に、基板の反りと、埋込み酸化膜及び基板裏面の酸化膜
との関係について調べた結果を、図2及び図3を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings. The warp of the substrate is obtained by bonding the first substrate and the second substrate through an oxide film and then polishing the first substrate to a predetermined thickness.
It is caused by the correlation with the oxide film on the back surface of the substrate. Therefore, first, the results of investigating the relationship between the warp of the substrate and the buried oxide film and the oxide film on the back surface of the substrate will be described with reference to FIGS.

【0018】先ず、上記関係を調べるべく絶縁分離基板
は、図2(a)に示されるように、第1基板21に0.
15μmの酸化膜23、24を、第2基板22に2μm
の酸化膜25、26を、それぞれ酸化性雰囲気中で熱処
理することで形成した後、図2(b)に示されるように
上記第1基板21と第2基板22とを貼り合わせて、図
2(c)に示されるように研削、研磨を行うことによっ
て作製した。上記絶縁分離基板のSOI層29の厚さは
10μm、埋込み酸化膜30の厚さは2.15μmであ
る。また、上記基板の直径は150mm、研磨後の厚み
は620μmである。
First, in order to investigate the above-mentioned relationship, an insulating separation substrate is formed on the first substrate 21 as shown in FIG.
2 μm of 15 μm oxide films 23 and 24 on the second substrate 22.
Oxide films 25 and 26 of FIG. 2 are formed by heat treatment in an oxidizing atmosphere, the first substrate 21 and the second substrate 22 are bonded together as shown in FIG. It was produced by grinding and polishing as shown in (c). The SOI layer 29 of the insulating separation substrate has a thickness of 10 μm, and the buried oxide film 30 has a thickness of 2.15 μm. The diameter of the substrate is 150 mm, and the thickness after polishing is 620 μm.

【0019】このようにして作製される絶縁分離基板の
貼り合わせ前の処理として、H2 SO4 :H22
4:1の混合液による洗浄及び純水洗浄を順次施した
後、スピン乾燥で基板表面に吸着する水分量を制御し
て、第1、第2の基板21、22を密着させる。これに
より、第1、第2の2枚の基板21、22は、それぞれ
の表面に形成されたシラノール基及び表面に吸着した水
分子の水素結合によって接着される。
H 2 SO 4 : H 2 O 2 =
After cleaning with a 4: 1 mixed solution and pure water are sequentially performed, the amount of water adsorbed on the substrate surface is controlled by spin drying to bring the first and second substrates 21 and 22 into close contact with each other. As a result, the first and second substrates 21 and 22 are bonded to each other by hydrogen bonds of silanol groups formed on their surfaces and water molecules adsorbed on the surfaces.

【0020】この後、接着した第1、第2の基板21、
22を、不活性ガスである窒素雰囲気中で1100℃、
1時間の熱処理を行うことで、接着面で脱水縮合反応を
生じさせ、2枚の基板21、22を直接接合させて一体
化させる。これにより、貼り合わせ基板27を形成す
る。
After that, the first and second substrates 21 bonded together,
22 at 1100 ° C. in a nitrogen atmosphere which is an inert gas,
By performing the heat treatment for 1 hour, a dehydration condensation reaction is caused on the adhesive surface, and the two substrates 21 and 22 are directly bonded and integrated. As a result, the bonded substrate stack 27 is formed.

【0021】次に、第1基板21の他方の面28、すな
わち第2の基板と接していない方の面を研削及び研磨す
ることで、上述したように、SOI層29を得て、厚み
を10μmとする。この場合、埋込み酸化膜30の膜厚
は2.15μm、裏面の酸化膜26の膜厚は2μmとな
る。
Next, the other surface 28 of the first substrate 21, that is, the surface which is not in contact with the second substrate 21 is ground and polished to obtain the SOI layer 29 and to reduce the thickness as described above. 10 μm. In this case, the thickness of the buried oxide film 30 is 2.15 μm, and the thickness of the back oxide film 26 is 2 μm.

【0022】以上の方法により、4つの基板を作製し、
これら4つの基板について反りを測定した後、裏面の酸
化膜を弗酸水溶液でエッチングすることで、2.0μm
から1.5μm、1.0μm、0.5μm、そして0μ
mと順次膜厚を薄くして反りとの対応を調べた。
Four substrates were prepared by the above method,
After measuring the warpage of these four substrates, the oxide film on the back surface was etched with a hydrofluoric acid solution to obtain 2.0 μm.
To 1.5 μm, 1.0 μm, 0.5 μm, and 0 μm
Correspondence with the warp was investigated by successively decreasing the film thickness with m.

【0023】その結果、基板の反りと該基板裏面の酸化
膜厚との関係は、図3(a)にて黒丸で示されるように
なる。この場合、反りの方向は、全て第1基板21側
(SOI層29側)に凸状となる。
As a result, the relationship between the warp of the substrate and the thickness of the oxide film on the back surface of the substrate is shown by a black circle in FIG. 3 (a). In this case, all the warp directions are convex toward the first substrate 21 side (SOI layer 29 side).

【0024】ここで、埋込み酸化膜の膜厚を一定にした
場合、基板の反りと基板裏面の酸化膜厚とは、ほぼ正比
例の関係にあることがわかる。図3(a)からもわかる
ように、基板裏面の酸化膜厚が埋込み酸化膜厚(この場
合は2.15μm)に近付くにつれて、反りは0に近付
く。このことは、埋込み酸化膜厚を2.15μmと固定
していることから、基板裏面の酸化膜と埋込み酸化膜と
の膜厚差(以下、単に膜厚差と略記する)と該基板の反
りが、比例関係にあるともいえる。
Here, it is understood that when the thickness of the buried oxide film is constant, the warp of the substrate and the thickness of the oxide film on the back surface of the substrate are in a substantially proportional relationship. As can be seen from FIG. 3A, the warp approaches 0 as the oxide film thickness on the back surface of the substrate approaches the buried oxide film thickness (2.15 μm in this case). This means that since the buried oxide film thickness is fixed at 2.15 μm, the film thickness difference between the oxide film on the back surface of the substrate and the buried oxide film (hereinafter, simply referred to as film thickness difference) and the warp of the substrate. Can be said to have a proportional relationship.

【0025】この膜厚差と反りとの比例関係を確認する
ため、基板裏面の酸化膜及び埋込み酸化膜の膜厚を、図
3(b)に示される番号1〜7の、任意に設定した基板
の反りを調べた。図3(a)に示された×印は、上記膜
厚差と反りとの関係を表したもので、上記番号1〜7の
基板は、ほぼ上記比例関係を表す比例直線上に現れる。
SOI層の厚みが異なっているが、この程度の範囲内で
あれば、反り量に与える影響は少ない。尚、ばらつき
は、貼り合わせ前の第2基板の反り状態にもよる。
In order to confirm the proportional relationship between the film thickness difference and the warp, the film thicknesses of the oxide film and the buried oxide film on the back surface of the substrate were arbitrarily set to the numbers 1 to 7 shown in FIG. 3B. The warp of the substrate was examined. The mark x shown in FIG. 3A represents the relationship between the film thickness difference and the warp, and the substrates of the numbers 1 to 7 appear on the proportional straight line indicating the proportional relationship.
Although the thickness of the SOI layer is different, if the thickness is within this range, the influence on the amount of warp is small. The variation also depends on the warped state of the second substrate before bonding.

【0026】以上のように、基板の厚みと直径が等しい
場合は、膜厚差と反り量とが比例関係にあることから、
基板の反り量の制御は、この膜厚差を調節することで可
能となることがわかる。
As described above, when the thickness and the diameter of the substrate are equal, the difference in film thickness and the amount of warpage are in a proportional relationship.
It can be seen that the amount of warp of the substrate can be controlled by adjusting this film thickness difference.

【0027】また、図4(a)〜(c)に示されるよう
に、酸化性雰囲気中で熱処理することにより、第1シリ
コン基板31に膜厚t1 、第2シリコン基板32に膜厚
2の酸化膜をそれぞれ形成した後密着し、そして接合
の熱処理を窒素等の不活性ガス雰囲気中で行う場合で
は、絶縁分離基板33の埋込み酸化膜34の膜厚は(t
1 +t2 )、裏面の酸化膜35の膜厚はt2 となり、膜
厚差は第1シリコン基板31に形成する酸化膜の膜厚t
1 に等しくなる。
Further, as shown in FIGS. 4A to 4C, the first silicon substrate 31 and the second silicon substrate 32 have a film thickness t 1 and a film thickness t, respectively, by heat treatment in an oxidizing atmosphere. When the two oxide films are formed and then adhered to each other and the heat treatment for bonding is performed in an atmosphere of an inert gas such as nitrogen, the thickness of the buried oxide film 34 of the insulating separation substrate 33 is (t
1 + t 2 ), the film thickness of the oxide film 35 on the back surface is t 2 , and the film thickness difference is the film thickness t of the oxide film formed on the first silicon substrate 31.
Is equal to 1 .

【0028】したがって、第1シリコン基板に形成する
酸化膜の膜厚t1 を制御することによって、絶縁分離基
板の反り量を制御することが可能となる。上記の結果か
ら、直径150mm、厚み620μmを有する絶縁分離
基板の場合は、 反り量(μm)=71×t1 +4(μm) …(1) の関係式が成立する。
Therefore, by controlling the film thickness t 1 of the oxide film formed on the first silicon substrate, it becomes possible to control the warp amount of the insulating separation substrate. From the above results, in the case of an insulating separation substrate having a diameter of 150 mm and a thickness of 620 μm, the relational expression of warpage amount (μm) = 71 × t 1 +4 (μm) (1) is established.

【0029】次に、図1を参照して、この発明の第1の
実施例を説明する。ここでは、例えば、埋込み酸化膜の
厚さ2.0μm、SOI層の厚さ10μm、基板サイズ
は直径150mm、基板厚さが620μmの絶縁分離基
板について、反り量がSOI層側に凸の状態で20μm
に制御する場合を説明する。
Next, a first embodiment of the present invention will be described with reference to FIG. Here, for example, with respect to an insulating separation substrate having a buried oxide film thickness of 2.0 μm, an SOI layer thickness of 10 μm, a substrate size of 150 mm and a substrate thickness of 620 μm, the warpage amount is convex to the SOI layer side. 20 μm
The case of controlling to be described.

【0030】第1の実施例による、貼り合わせ前の絶縁
分離基板は、図1(a)に示されるように、第1シリコ
ン基板35と第2シリコン基板36を有して、第1シリ
コン基板35には酸化膜37、38が、第2シリコン基
板36には酸化膜39、40が形成される。これらの酸
化膜は、次のようにして形成される。
The insulating separation substrate before bonding according to the first embodiment has a first silicon substrate 35 and a second silicon substrate 36, as shown in FIG. Oxide films 37 and 38 are formed on 35, and oxide films 39 and 40 are formed on the second silicon substrate 36. These oxide films are formed as follows.

【0031】反り量をSOI層側に凸の状態で20μm
にするためには、上述したように、膜厚差を規定すれば
よい。すなわち、第1シリコン基板35に形成する酸化
膜厚を、図3(a)(上記関係式(1))から0.23
μmにすればよい。したがって、図1(a)に示される
ように、第1シリコン基板35に、例えばドライO2
ウエットO2 、或いはH2 /O2 混合燃焼気体中等の酸
化性雰囲気中で熱処理を施して、膜厚0.23μmの酸
化膜38を形成する。また、第2シリコン基板36に
は、同様に酸化性雰囲気で熱処理を施すことにより、膜
厚1.77μmの酸化膜39、40を形成する。
The amount of warpage is 20 μm when it is convex on the SOI layer side.
In order to achieve this, the film thickness difference may be specified as described above. That is, the thickness of the oxide film formed on the first silicon substrate 35 is 0.23 from FIG. 3A (the above relational expression (1)).
It may be set to μm. Therefore, as shown in FIG. 1A, for example, dry O 2
Heat treatment is performed in an oxidizing atmosphere such as wet O 2 or H 2 / O 2 mixed combustion gas to form an oxide film 38 having a thickness of 0.23 μm. Further, the second silicon substrate 36 is similarly heat-treated in an oxidizing atmosphere to form oxide films 39 and 40 having a film thickness of 1.77 μm.

【0032】この後、図1(b)に示されるように、第
1シリコン基板35と第2シリコン基板36を密着し
て、窒素雰囲気中に於いて、例えば1100℃で1時間
の熱処理を行う。次いで、図1(c)に示されるよう
に、第1シリコン基板35の他方の面(酸化膜37側)
を研削して、この研削した面を研磨することにより、膜
厚10μmのSOI層41を得る。
Thereafter, as shown in FIG. 1B, the first silicon substrate 35 and the second silicon substrate 36 are brought into close contact with each other, and heat treatment is performed in a nitrogen atmosphere at, for example, 1100 ° C. for 1 hour. . Next, as shown in FIG. 1C, the other surface of the first silicon substrate 35 (on the oxide film 37 side)
Is ground and the ground surface is ground to obtain an SOI layer 41 having a film thickness of 10 μm.

【0033】これにより、埋込み酸化膜42の膜厚2μ
m、裏面の酸化膜40の膜厚1.77μm、膜厚差0.
23μmで反り量がSOI層側に凸状で20μmの絶縁
分離基板43を得ることができる。
As a result, the thickness of the buried oxide film 42 is 2 μm.
m, the thickness of the oxide film 40 on the back surface is 1.77 μm, and the thickness difference is 0.
An insulating separation substrate 43 having a warp amount of 23 μm and a convex shape on the SOI layer side of 20 μm can be obtained.

【0034】次に、この発明の第2の実施例について説
明する。図5は、上述した第1の実施例と同じく、埋込
み酸化膜の膜厚2.0μm、SOI層の厚み10μmの
絶縁分離基板について、反り量をSOI層側に凸の状態
で20μmに制御する場合について示したものである。
Next, a second embodiment of the present invention will be described. FIG. 5 is similar to the above-described first embodiment, in the insulating isolation substrate having a buried oxide film thickness of 2.0 μm and an SOI layer thickness of 10 μm, the warpage amount is controlled to 20 μm in a state of being convex toward the SOI layer side. It shows the case.

【0035】図5(a)に示されるように、第1シリコ
ン基板45及び第2シリコン基板46を酸化性雰囲気中
で熱処理を施すことにより、第1及び第2シリコン基板
45及び46にそれぞれ1μmの酸化膜47、48及び
49、50を形成する。
As shown in FIG. 5A, the first silicon substrate 45 and the second silicon substrate 46 are heat-treated in an oxidizing atmosphere, so that the first and second silicon substrates 45 and 46 have a thickness of 1 μm. Oxide films 47, 48 and 49, 50 are formed.

【0036】次に、図5(b)に示されるように、第1
シリコン基板45と第2シリコン基板46とを密着させ
る。次いで、第1シリコン基板45と第2シリコン基板
46を直接接合をさせるための熱処理を行う。この熱処
理は、酸化性雰囲気中で行うことで、絶縁分離基板の裏
面となるべく第2シリコン基板46の他方の面の酸化膜
50の酸化膜厚を増大させることにより、膜厚差を調節
して基板の反りの制御を行う。この第2の実施例に於い
ては、裏面の酸化膜50の膜厚1μmを1.77μmと
する条件で熱酸化を行う。
Next, as shown in FIG. 5B, the first
The silicon substrate 45 and the second silicon substrate 46 are brought into close contact with each other. Then, heat treatment is performed to directly bond the first silicon substrate 45 and the second silicon substrate 46. This heat treatment is performed in an oxidizing atmosphere to increase the oxide film thickness of the oxide film 50 on the other surface of the second silicon substrate 46 as much as the back surface of the insulating separation substrate, thereby adjusting the film thickness difference. Control warpage of the board. In the second embodiment, thermal oxidation is performed under the condition that the film thickness 1 μm of the back oxide film 50 is 1.77 μm.

【0037】この後、図5(c)に示されるように、上
述した第1の実施例と同様に、第1シリコン基板45の
他方の面(酸化膜47′側)を研削する。次いで、この
研削した面を研磨することにより、10μmのSOI層
51を得る。
Thereafter, as shown in FIG. 5C, the other surface (on the side of the oxide film 47 ') of the first silicon substrate 45 is ground as in the first embodiment described above. Then, the ground surface is polished to obtain a 10 μm SOI layer 51.

【0038】このようにして、埋込み酸化膜52の膜厚
2μm、裏面の酸化膜50′の膜厚1.77μm、膜厚
差0.23μmで、反りがSOI層51側に凸状で20
μmの絶縁分離基板53を得ることができる。
Thus, the buried oxide film 52 has a film thickness of 2 μm, the back oxide film 50 ′ has a film thickness of 1.77 μm, and the film thickness difference is 0.23 μm, and the warp is 20 on the SOI layer 51 side.
It is possible to obtain the insulating separation substrate 53 of μm.

【0039】ところで、上述した実施例のように、埋込
み酸化膜の厚さが2μm以上と厚く、しかも反り量をS
OI層側に凸、或いは凹の状態で20μm以下に小さく
したい場合は、裏面の酸化膜厚も厚く(1.77μm以
上)する必要がある。このため、第1の実施例の作製方
法を用いるか、或いは第2の実施例の第2シリコン基板
の貼り合わせ前の酸化膜厚をなるべく厚くする、すなわ
ち埋込み酸化膜厚に近くしておくことで作製することが
望ましい。
By the way, as in the above-mentioned embodiment, the thickness of the buried oxide film is as thick as 2 μm or more, and the warp amount is S
When it is desired to reduce the thickness to 20 μm or less in the state of being convex or concave on the OI layer side, the oxide film thickness on the back surface also needs to be thick (1.77 μm or more). Therefore, the manufacturing method of the first embodiment is used, or the oxide film thickness of the second silicon substrate of the second embodiment before bonding is made as thick as possible, that is, close to the buried oxide film thickness. It is desirable to make it.

【0040】後者については、接合のための熱処理を短
時間で行うことで、活性層となる第1シリコン基板の熱
負荷を低減することができ、結晶欠陥の発生等を抑える
ことができる。
With respect to the latter, by performing the heat treatment for bonding in a short time, it is possible to reduce the heat load on the first silicon substrate to be the active layer, and to suppress the occurrence of crystal defects.

【0041】また、上述した第1及び第2の実施例で
は、SOI層側に凸状態に反らせる制御の例について説
明したが、図3からも明らかなように、裏面の酸化膜を
埋込み酸化膜よりも厚くすることで、その膜厚差によっ
て同様にSOI層側に凹状態で反り量を制御することも
できる。
Further, in the above-mentioned first and second embodiments, an example of the control for warping the SOI layer side to the convex state has been described. However, as is clear from FIG. 3, the oxide film on the back surface is filled with the buried oxide film. If the thickness is made thicker, the amount of warp can be similarly controlled in the concave state on the SOI layer side by the difference in the film thickness.

【0042】図6は、第3の実施例として、埋込み酸化
膜の膜厚2.0μm、SOI層の厚み10μmの絶縁分
離基板について、反り量をSOI層側に凹の状態で20
μmに制御する場合について示したものである。
FIG. 6 shows, as a third embodiment, an insulating isolation substrate having a buried oxide film thickness of 2.0 μm and an SOI layer thickness of 10 μm, in which the amount of warpage is 20 on the SOI layer side.
It shows the case of controlling to μm.

【0043】反り量をSOI層側に凹の状態で20μ
m、すなわち反り量を−20μmにするためには、上記
関係式(1)から、膜厚差は−0.34μmとしなけれ
ばならない。
The amount of warpage is 20 μ when concave on the SOI layer side.
In order to set m, that is, the amount of warpage to −20 μm, the film thickness difference must be −0.34 μm from the above relational expression (1).

【0044】したがって、図6(a)に示されるよう
に、例えば第1シリコン基板65に膜厚0.2μmの酸
化膜67、68を、第2シリコン基板66に膜厚1.8
μmの酸化膜69、70を、酸化性雰囲気中で熱処理を
施すことによって形成する。
Therefore, as shown in FIG. 6A, for example, the first silicon substrate 65 is provided with oxide films 67 and 68 having a film thickness of 0.2 μm, and the second silicon substrate 66 is provided with a film thickness of 1.8.
The μm oxide films 69 and 70 are formed by heat treatment in an oxidizing atmosphere.

【0045】次いで、図6(b)に示されるように、第
1シリコン基板65と第2シリコン基板66を密着させ
る。次に、この状態で、上記第1シリコン基板65と第
2シリコン基板66を直接接合をさせるための熱処理を
行う。この熱処理を酸化性雰囲気中で行うことで、第2
シリコン基板66の他方の面(絶縁分離基板の裏面)の
酸化膜70の酸化膜厚を増大させて、1.8μmから
2.34μmとする。
Next, as shown in FIG. 6B, the first silicon substrate 65 and the second silicon substrate 66 are brought into close contact with each other. Next, in this state, a heat treatment for directly joining the first silicon substrate 65 and the second silicon substrate 66 is performed. By performing this heat treatment in an oxidizing atmosphere, the second
The oxide film thickness of the oxide film 70 on the other surface of the silicon substrate 66 (back surface of the insulating separation substrate) is increased to 1.8 μm to 2.34 μm.

【0046】この後、図6(c)に示されるように、第
1シリコン基板65の他方の面(酸化膜67′側)を研
削する。次いで、この研削した面を研磨することによ
り、10μmのSOI層71を得る。
After this, as shown in FIG. 6C, the other surface (on the side of the oxide film 67 ') of the first silicon substrate 65 is ground. Then, the ground surface is polished to obtain a 10 μm SOI layer 71.

【0047】これにより、埋込み酸化膜72の膜厚2μ
m、裏面の酸化膜70′の膜厚2.34μm、膜厚差−
0.34μmとなって、絶縁分離基板73の反りはSO
I層71側に凹状で20μmとなる。
As a result, the thickness of the buried oxide film 72 is 2 μm.
m, the film thickness of the oxide film 70 'on the back surface is 2.34 μm, and the film thickness difference −
Since the insulating separation substrate 73 has a warp of SO4
The concave shape is 20 μm on the I layer 71 side.

【0048】[0048]

【発明の効果】以上のようにこの発明によれば、素子形
成前の絶縁分離基板の反り量を所望の値に容易に制御可
能な絶縁分離基板及びその製造方法を提供することがで
きる。
As described above, according to the present invention, it is possible to provide an insulating separation substrate capable of easily controlling the amount of warpage of the insulating separation substrate before element formation to a desired value, and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を説明するもので、絶
縁分離基板の製造工程を示した図である。
FIG. 1 is a view for explaining the first embodiment of the present invention and is a diagram showing a manufacturing process of an insulating separation substrate.

【図2】絶縁分離基板の反りと、埋込み酸化膜及び基板
裏面の酸化膜との関係を説明するもので、該絶縁分離基
板の製造工程を示した図である。
FIG. 2 is a view for explaining the relationship between the warp of the insulating separation substrate and the buried oxide film and the oxide film on the back surface of the substrate, and a diagram showing the manufacturing process of the insulating separation substrate.

【図3】絶縁分離基板の反りと、埋込み酸化膜及び基板
裏面の酸化膜との関係を説明するもので、(a)は該絶
縁分離基板の膜厚差と反り量の関係を示した図、(b)
は基板裏面の酸化膜及び埋込み酸化膜の膜厚をパラメー
タとした基板を表した図である。
FIG. 3 illustrates the relationship between the warpage of the insulating separation substrate and the buried oxide film and the oxide film on the back surface of the substrate. FIG. 3A is a diagram showing the relationship between the film thickness difference of the insulating separation substrate and the amount of warpage. , (B)
FIG. 4 is a diagram showing a substrate with the thicknesses of an oxide film and a buried oxide film on the back surface of the substrate as parameters.

【図4】第1の実施例による絶縁分離基板の反りの制御
を示す説明図である。
FIG. 4 is an explanatory diagram showing control of warpage of the insulating separation substrate according to the first embodiment.

【図5】この発明の第2の実施例を説明するもので、絶
縁分離基板の製造工程を示した図である。
FIG. 5 is a view for explaining the second embodiment of the present invention and is a diagram showing a manufacturing process of an insulating separation substrate.

【図6】この発明の第3の実施例を説明するもので、絶
縁分離基板の製造工程を示した図である。
FIG. 6 is a view for explaining the third embodiment of the present invention and is a diagram showing a manufacturing process of an insulating separation substrate.

【図7】従来の絶縁分離基板の製造工程の一例を示した
図である。
FIG. 7 is a diagram showing an example of a manufacturing process of a conventional insulating separation substrate.

【図8】従来の絶縁分離基板の製造工程の他の例を示し
た図である。
FIG. 8 is a diagram showing another example of a conventional manufacturing process of an insulating separation substrate.

【符号の説明】[Explanation of symbols]

21…第1基板、22…第2基板、23、24、25、
26、37、38、39、40…酸化膜、27…貼り合
わせ基板、28…他方の面、29、41…SOI層、3
0、42…埋込み酸化膜、35…第1シリコン基板、3
6…第2シリコン基板、43…絶縁分離基板。
21 ... First substrate, 22 ... Second substrate, 23, 24, 25,
26, 37, 38, 39, 40 ... Oxide film, 27 ... Bonded substrate, 28 ... Other surface, 29, 41 ... SOI layer, 3
0, 42 ... Buried oxide film, 35 ... First silicon substrate, 3
6 ... 2nd silicon substrate, 43 ... Insulation separation substrate.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の面に酸化シリコン膜が
形成された第1シリコン基板と、 上記酸化シリコン膜が形成された面で上記第1シリコン
基板と貼り合わされるもので、その一方の面及び他方の
面に酸化シリコン膜が形成された第2シリコン基板とを
有し、 上記第1シリコン基板を所定の厚みまで研削、研磨して
形成される絶縁分離基板に於いて、 上記第1及び第2シリコン基板間に埋設された上記酸化
シリコン膜の膜厚と、上記第2のシリコン基板の他方の
面に形成された酸化シリコン膜との膜厚差に基いて、該
基板の反り量を制御することを特徴とする絶縁分離基
板。
1. A first silicon substrate having a silicon oxide film formed on at least one surface thereof, and the first silicon substrate bonded to the surface having the silicon oxide film formed thereon. A second silicon substrate having a silicon oxide film formed on the other surface, and an insulating separation substrate formed by grinding and polishing the first silicon substrate to a predetermined thickness. The amount of warpage of the substrate is controlled based on the difference in film thickness between the silicon oxide film embedded between the two silicon substrates and the silicon oxide film formed on the other surface of the second silicon substrate. An insulating separation substrate characterized by being.
【請求項2】 上記第2シリコン基板は、上記第1シリ
コン基板と貼り合わせる一方の面には酸化シリコン膜は
形成せず、他方の面のみに酸化シリコン膜が形成される
ことを特徴とする請求項1に記載の絶縁分離基板。
2. The second silicon substrate is characterized in that a silicon oxide film is not formed on one surface to be bonded to the first silicon substrate, and a silicon oxide film is formed only on the other surface. The insulating separation substrate according to claim 1.
【請求項3】 上記第1シリコン基板には酸化シリコン
膜は形成せず、上記第2シリコン基板の一方の面及び他
方の面に酸化シリコン膜が形成されることを特徴とする
請求項1に記載の絶縁分離基板。
3. The silicon oxide film is not formed on the first silicon substrate, and the silicon oxide film is formed on one surface and the other surface of the second silicon substrate. The insulating isolation substrate described.
【請求項4】 上記第1シリコン基板及び第2シリコン
基板に形成された酸化シリコン膜の膜厚は、該絶縁分離
基板の直径、厚みによって決定される請求項1乃至3に
記載の絶縁分離基板。
4. The insulating separation substrate according to claim 1, wherein the film thickness of the silicon oxide film formed on the first silicon substrate and the second silicon substrate is determined by the diameter and thickness of the insulating separation substrate. .
【請求項5】 第1シリコン基板の少なくとも一方の面
に、研磨後の基板が所望の反り量となるべく膜厚の酸化
シリコン膜を形成する第1工程と、 上記第1シリコン基板に貼り合わされる第2シリコン基
板の一方及び他方の面に酸化シリコン膜を酸化性雰囲気
中で熱処理を施して形成する第2工程と、 上記第1シリコン基板の酸化シリコン膜を形成した面
と、上記第2シリコン基板の酸化シリコン膜が形成され
た面を洗浄、乾燥した後に密着させる第3工程と、 上記密着された第1及び第2シリコン基板を不活性ガス
雰囲気中で熱処理を施して貼り合わせ基板を形成する第
4工程と、 上記貼り合わせ基板のうち上記第1シリコン基板の他方
の面を研削、研磨する第5工程とを具備し、 上記第1工程は、上記第1シリコン基板に形成する酸化
シリコン膜の膜厚を制御して、該基板の反り量を制御す
ることを特徴とする絶縁分離基板の製造方法。
5. A first step of forming a silicon oxide film having a film thickness on a surface of at least one surface of a first silicon substrate so that the substrate after polishing has a desired warp amount, and the first silicon substrate is bonded to the first step. A second step of forming a silicon oxide film on one surface and the other surface of the second silicon substrate by performing a heat treatment in an oxidizing atmosphere; a surface of the first silicon substrate on which the silicon oxide film is formed; A third step of cleaning and drying the surface of the substrate on which the silicon oxide film is formed, and then adhering the same, and heat-treating the adhered first and second silicon substrates in an inert gas atmosphere to form a bonded substrate. And a fifth step of grinding and polishing the other surface of the first silicon substrate out of the bonded substrate, the first step comprising the oxidation formed on the first silicon substrate. By controlling the thickness of the silicon film, the manufacturing method of the isolation substrate and controlling warpage of the substrate.
【請求項6】 上記第1工程に於いて、上記第1シリコ
ン基板に形成される酸化シリコン膜は、酸化性雰囲気中
で熱処理を施すことにより形成されるものであることを
特徴とする請求項5に記載の絶縁分離基板の製造方法。
6. The silicon oxide film formed on the first silicon substrate in the first step is formed by heat treatment in an oxidizing atmosphere. 5. The method for manufacturing an insulating separation substrate according to 5.
【請求項7】 上記第1シリコン基板に形成される酸化
シリコン膜の膜厚は、該絶縁分離基板の直径、厚みによ
って決定される請求項5に記載の絶縁分離基板の製造方
法。
7. The method for manufacturing an insulation separation substrate according to claim 5, wherein the film thickness of the silicon oxide film formed on the first silicon substrate is determined by the diameter and thickness of the insulation separation substrate.
【請求項8】 第1シリコン基板の少なくとも一方の面
及びこの第1シリコン基板に貼り合わされるべく第2シ
リコン基板の一方及び他方の面に、酸化シリコン膜を形
成する第1工程と、 上記第1シリコン基板の酸化シリコン膜を形成した面
と、上記第2シリコン基板の酸化シリコン膜が形成され
た一方の面を洗浄、乾燥した後に密着させる第2工程
と、 上記密着された第1及び第2シリコン基板を酸化性雰囲
気中で熱処理を施して貼り合わせ基板を形成する第3工
程と、 上記貼り合わせ基板のうち上記第1シリコン基板の他方
の面を研削、研磨する第4工程とを具備し、 上記第3工程は、絶縁分離基板の裏面となるべく第2シ
リコン基板の他方の面に形成された酸化シリコン膜の膜
厚を制御して該基板の反り量を制御することを特徴とす
る絶縁分離基板の製造方法。
8. A first step of forming a silicon oxide film on at least one surface of a first silicon substrate and one and the other surfaces of a second silicon substrate to be bonded to this first silicon substrate, and the first step. 1. A second step of cleaning and drying one surface of the silicon substrate on which the silicon oxide film is formed and one surface of the second silicon substrate on which the silicon oxide film is formed; 2 A third step of forming a bonded substrate by subjecting the silicon substrate to a heat treatment in an oxidizing atmosphere, and a fourth step of grinding and polishing the other surface of the bonded silicon substrate of the first silicon substrate. The third step is characterized in that the thickness of the silicon oxide film formed on the other surface of the second silicon substrate as much as the back surface of the insulating separation substrate is controlled to control the amount of warpage of the substrate. Manufacturing method of isolation substrate.
【請求項9】 上記第1工程に於いて、上記第1シリコ
ン基板及び第2シリコン基板に形成される酸化シリコン
膜は、酸化性雰囲気中で熱処理を施すことにより形成さ
れるものであることを特徴とする請求項8に記載の絶縁
分離基板の製造方法。
9. The silicon oxide film formed on the first silicon substrate and the second silicon substrate in the first step is formed by heat treatment in an oxidizing atmosphere. The method for manufacturing an insulating separation substrate according to claim 8, wherein the insulating separation substrate is manufactured.
【請求項10】 上記第1工程に於いて、上記第2シリ
コン基板のみに酸化シリコン膜を形成することを特徴と
する請求項8に記載の絶縁分離基板の製造方法。
10. The method of manufacturing an insulating separation substrate according to claim 8, wherein in the first step, a silicon oxide film is formed only on the second silicon substrate.
【請求項11】 上記第1工程に於いて、上記第2シリ
コン基板の一方の面のみに酸化シリコン膜を形成するこ
とを特徴とする請求項8に記載の絶縁分離基板の製造方
法。
11. The method according to claim 8, wherein in the first step, a silicon oxide film is formed only on one surface of the second silicon substrate.
【請求項12】 上記第3工程に於いて、上記第2シリ
コン基板の他方の面に形成される酸化シリコン膜の膜厚
は、該絶縁分離基板の直径、厚みによって決定される請
求項8に記載の絶縁分離基板の製造方法。
12. The film thickness of the silicon oxide film formed on the other surface of the second silicon substrate in the third step is determined by the diameter and thickness of the insulating separation substrate. A method for manufacturing the insulating and separated substrate described.
JP14884995A 1995-06-15 1995-06-15 Insulation separation substrate and its manufacture Pending JPH098124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14884995A JPH098124A (en) 1995-06-15 1995-06-15 Insulation separation substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14884995A JPH098124A (en) 1995-06-15 1995-06-15 Insulation separation substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH098124A true JPH098124A (en) 1997-01-10

Family

ID=15462120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14884995A Pending JPH098124A (en) 1995-06-15 1995-06-15 Insulation separation substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH098124A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093788A (en) * 1999-09-21 2001-04-06 Komatsu Electronic Metals Co Ltd Method for manufacturing bonded soi wafer
US6614068B1 (en) 1998-10-28 2003-09-02 Hyundai Electronics Industries Co., Ltd. SOI device with reversed stacked capacitor cell and body contact structure and method for fabricating the same
JP2004320051A (en) * 2004-07-09 2004-11-11 Toppan Printing Co Ltd Stencil mask
WO2005027204A1 (en) * 2003-09-08 2005-03-24 Sumco Corporation Bonded wafer and its manufacturing method
WO2008117509A1 (en) * 2007-03-26 2008-10-02 Shin-Etsu Handotai Co., Ltd. Soi wafer manufacturing method
JP2009246389A (en) * 2009-07-23 2009-10-22 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009260369A (en) * 2009-07-23 2009-11-05 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2009283974A (en) * 2009-08-20 2009-12-03 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2010016391A (en) * 2009-08-20 2010-01-21 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2010153488A (en) * 2008-12-24 2010-07-08 Rohm Co Ltd Manufacturing method of soi wafer, and soi wafer
USRE42097E1 (en) 1998-09-04 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
JP2011071193A (en) * 2009-09-24 2011-04-07 Sumco Corp Lamination soi wafer and manufacturing method of the same
WO2011158535A1 (en) * 2010-06-16 2011-12-22 住友電気工業株式会社 Method for producing composite substrate and composite substrate
JP2012204810A (en) * 2011-03-28 2012-10-22 Sony Corp Semiconductor device and semiconductor device manufacturing method
WO2013046525A1 (en) * 2011-09-29 2013-04-04 信越半導体株式会社 Method for calculating warping of bonded soi wafer and method for manufacturing bonded soi wafer
WO2014091670A1 (en) * 2012-12-14 2014-06-19 信越半導体株式会社 Soi wafer manufacturing method
WO2019012866A1 (en) * 2017-07-10 2019-01-17 株式会社Sumco Silicon wafer production method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42139E1 (en) 1998-09-04 2011-02-15 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
USRE42241E1 (en) 1998-09-04 2011-03-22 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
USRE42097E1 (en) 1998-09-04 2011-02-01 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
US9070604B2 (en) 1998-09-04 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device
US6614068B1 (en) 1998-10-28 2003-09-02 Hyundai Electronics Industries Co., Ltd. SOI device with reversed stacked capacitor cell and body contact structure and method for fabricating the same
JP2001093788A (en) * 1999-09-21 2001-04-06 Komatsu Electronic Metals Co Ltd Method for manufacturing bonded soi wafer
JPWO2005027204A1 (en) * 2003-09-08 2007-11-08 株式会社Sumco Bonded wafer and manufacturing method thereof
WO2005027204A1 (en) * 2003-09-08 2005-03-24 Sumco Corporation Bonded wafer and its manufacturing method
JP4552858B2 (en) * 2003-09-08 2010-09-29 株式会社Sumco Manufacturing method of bonded wafer
JP2004320051A (en) * 2004-07-09 2004-11-11 Toppan Printing Co Ltd Stencil mask
JP4582299B2 (en) * 2004-07-09 2010-11-17 凸版印刷株式会社 Manufacturing method of stencil mask
JP2008244019A (en) * 2007-03-26 2008-10-09 Shin Etsu Handotai Co Ltd Manufacturing method of soi wafer
WO2008117509A1 (en) * 2007-03-26 2008-10-02 Shin-Etsu Handotai Co., Ltd. Soi wafer manufacturing method
JP2010153488A (en) * 2008-12-24 2010-07-08 Rohm Co Ltd Manufacturing method of soi wafer, and soi wafer
JP2009246389A (en) * 2009-07-23 2009-10-22 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2009260369A (en) * 2009-07-23 2009-11-05 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP4481354B2 (en) * 2009-07-23 2010-06-16 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP4481355B2 (en) * 2009-07-23 2010-06-16 株式会社半導体エネルギー研究所 Semiconductor device
JP2009283974A (en) * 2009-08-20 2009-12-03 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2010016391A (en) * 2009-08-20 2010-01-21 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP4481359B2 (en) * 2009-08-20 2010-06-16 株式会社半導体エネルギー研究所 Semiconductor device
JP4481358B2 (en) * 2009-08-20 2010-06-16 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2011071193A (en) * 2009-09-24 2011-04-07 Sumco Corp Lamination soi wafer and manufacturing method of the same
WO2011158535A1 (en) * 2010-06-16 2011-12-22 住友電気工業株式会社 Method for producing composite substrate and composite substrate
US9472472B2 (en) 2011-03-28 2016-10-18 Sony Corporation Semiconductor device and method of manufacturing semiconductor device
JP2012204810A (en) * 2011-03-28 2012-10-22 Sony Corp Semiconductor device and semiconductor device manufacturing method
JP2013077652A (en) * 2011-09-29 2013-04-25 Shin Etsu Handotai Co Ltd Method of calculating warp of bonded soi wafer and method of manufacturing bonded soi wafer
CN103918058A (en) * 2011-09-29 2014-07-09 信越半导体株式会社 Method for calculating warping of bonded SOI wafer and method for manufacturing bonded SOI wafer
US8962352B2 (en) 2011-09-29 2015-02-24 Shin-Etsu Handotai Co., Ltd. Method for calculating warpage of bonded SOI wafer and method for manufacturing bonded SOI wafer
WO2013046525A1 (en) * 2011-09-29 2013-04-04 信越半導体株式会社 Method for calculating warping of bonded soi wafer and method for manufacturing bonded soi wafer
WO2014091670A1 (en) * 2012-12-14 2014-06-19 信越半導体株式会社 Soi wafer manufacturing method
US9337080B2 (en) 2012-12-14 2016-05-10 Shin-Etsu Handotai Co., Ltd. Method for manufacturing SOI wafer
WO2019012866A1 (en) * 2017-07-10 2019-01-17 株式会社Sumco Silicon wafer production method
JP2019016748A (en) * 2017-07-10 2019-01-31 株式会社Sumco Manufacturing method for silicon wafer
KR20190142383A (en) * 2017-07-10 2019-12-26 가부시키가이샤 사무코 Silicon Wafer Manufacturing Method
US10910328B2 (en) 2017-07-10 2021-02-02 Sumco Corporation Silicon wafer manufacturing method

Similar Documents

Publication Publication Date Title
JP3033412B2 (en) Method for manufacturing semiconductor device
KR100243881B1 (en) Semiconductor substrate fabricating method
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JPH098124A (en) Insulation separation substrate and its manufacture
US5514235A (en) Method of making bonded wafers
JP3048754B2 (en) Semiconductor substrate
JPH0846031A (en) Manufacture of laminated silicon substrate
JPH043908A (en) Manufacture of semiconductor substrate
JPS63246841A (en) Dielectric isolating method of silicon crystal body
JPH01302740A (en) Dielectric isolation semiconductor substrate
JP2857456B2 (en) Method for manufacturing semiconductor film
JP2754295B2 (en) Semiconductor substrate
JP3518083B2 (en) Substrate manufacturing method
JP2754819B2 (en) Method for manufacturing dielectric-separated semiconductor substrate
JPH01226166A (en) Manufacture of semiconductor device substrate
JPH03136346A (en) Manufacture of soi substrate
JPH02237066A (en) Manufacture of semiconductor device
JP3165735B2 (en) Semiconductor substrate manufacturing method
JP3611143B2 (en) Bonded wafer and manufacturing method thereof
JPH05160087A (en) Manufacture of semiconductor substrate
JP3563144B2 (en) Manufacturing method of bonded SOI substrate
JP3614927B2 (en) Method for manufacturing bonded semiconductor substrate
JPH0645429A (en) Manufacture of semiconductor device
JPH1197320A (en) Method for manufacturing soi substrate
JPH02228061A (en) Manufacture of soi substrate