JPH04196340A - Dielectrics isolation substrate and manufacture thereof - Google Patents

Dielectrics isolation substrate and manufacture thereof

Info

Publication number
JPH04196340A
JPH04196340A JP32633690A JP32633690A JPH04196340A JP H04196340 A JPH04196340 A JP H04196340A JP 32633690 A JP32633690 A JP 32633690A JP 32633690 A JP32633690 A JP 32633690A JP H04196340 A JPH04196340 A JP H04196340A
Authority
JP
Japan
Prior art keywords
substrate
single crystal
separation
semiconductor substrate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32633690A
Other languages
Japanese (ja)
Other versions
JP2691244B2 (en
Inventor
Itaru Suzuki
至 鈴木
Hirotaka Sakaniwa
坂庭 弘孝
Hironori Inoue
洋典 井上
Toshio Uruno
宇留野 利夫
Shinichi Kurita
信一 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP2326336A priority Critical patent/JP2691244B2/en
Publication of JPH04196340A publication Critical patent/JPH04196340A/en
Application granted granted Critical
Publication of JP2691244B2 publication Critical patent/JP2691244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To eliminate the occurrence of outer peripheral polishing sag thereby avoiding the stain and separation of a wafer in the later steps by covering the peripheral part of an isolation substrate with a single crystal semiconductor. CONSTITUTION:The peripheral parts of an isolation substrate 5 are scraped off to reduce the diameter of the substrate and after bonding the substrate 5 onto the single crystal Si substrate 6 to be a supporting body, both substrate 5, 6 are joined to each other using produced silicon oxide by thermal oxidation step in oxidizing atmosphere to form a joined substrate 71. At this time, in order to bond together both substrates 5, 6, the occurrence of non-bonded part on the periphery of the contact surface 51 can be avoided by making the diameter of single crystal Si substrate 6 larger than that of the standard diameter so as to stick the isolation substrate 5 to the single crystal Si substrate 6 not through the intermediary of a bonding layer thereby making no gaps at the outer-most end of the bonding substrate 51. Through these procedures, the polishing sag can be perfectly removed thereby avoiding the separation from the wafer bonding surface 51 due to local etching step.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、貼り合わせ技術を用いた誘電体分離基板およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a dielectric isolation substrate using a bonding technique and a method for manufacturing the same.

[従来の技術] 集積回路の分離技術のうち、誘電体分離方式はシリコン
酸化物やシリコン窒化物のような絶縁体を絶縁層として
利用しているため、分離領域間の耐電圧が高くなり高周
波特性かすぐれている。
[Conventional technology] Of the integrated circuit isolation technologies, the dielectric isolation method uses an insulator such as silicon oxide or silicon nitride as an insulating layer, so the withstand voltage between the isolation regions is high and high frequency It has excellent characteristics.

従来の誘電体分離基板の製造方法を第4図を用いて説明
する。第4図(a)において、単結晶81基板1の一生
面に所要の数および形状を有する分離溝2をエツチング
等により形成し、二の分離溝2を形成した面および裏面
に8102膜などの絶縁膜13.23を被着形成する。
A conventional method for manufacturing a dielectric isolation substrate will be described with reference to FIG. In FIG. 4(a), separation grooves 2 having the required number and shape are formed on the entire surface of a single crystal 81 substrate 1 by etching, etc., and an 8102 film or the like is formed on the surface where the second separation groove 2 is formed and on the back surface. An insulating film 13.23 is deposited.

次に同図(b)に示すように、絶縁膜]3上に気相成長
反応等により多結晶S1層4を堆積させた後、同図(c
)に示すように、多結晶S1層4の表面に研削・研磨を
施して分離用基板5を製造する。さらに同図(d)に示
すように、分離用基板5の研磨された表面に、もう一方
の支持体となる単結晶81基板6を貼り合わせるため、
不純物を含むガラス系の接着層50を設ける。そして、
同図(e)に示すように、前述した単結晶Si基板6を
接着層5゜を介して分離用基板5に貼り合わせる。貼り
合わせた後に、単結晶81基板1を絶縁膜23側から研
削・研磨して、同図(f)に示すような誘電体分離基板
7を製造する。
Next, as shown in FIG. 3(b), a polycrystalline S1 layer 4 is deposited on the insulating film 3 by vapor phase growth reaction, etc., and then, as shown in FIG.
), the surface of the polycrystalline S1 layer 4 is ground and polished to produce a separation substrate 5. Furthermore, as shown in FIG. 5(d), in order to bond the single crystal 81 substrate 6, which will become the other support, to the polished surface of the separation substrate 5,
A glass adhesive layer 50 containing impurities is provided. and,
As shown in FIG. 5E, the aforementioned single crystal Si substrate 6 is bonded to the separation substrate 5 via the adhesive layer 5°. After bonding, the single crystal 81 substrate 1 is ground and polished from the insulating film 23 side to produce a dielectric isolation substrate 7 as shown in FIG.

なお、この種の製造方法に関連するものとしては、例え
ば特公昭58−4518’2を挙げることかできる。
Note that, for example, Japanese Patent Publication No. 58-4518'2 may be mentioned as related to this type of manufacturing method.

[発明が解決しようとする課覇] 誘電体分離基板を張り合わせる従来の方法は、半導体基
板貼り合わせ技術の一つを応用したもので、酸化雰囲気
中で加熱酸化され生成酸化シリコンにて貼り合わせるよ
うにしており、この方法は、不純物を含んだ接着層を用
いないので不純物が拡散することは防止できる。しかし
、分離用基板は、研磨工程に於いて機械的または化学的
要因により、第5図に示すように、5〜10pm程度の
外周研磨ダレ52が発生する。この外周研磨ダレ52の
ために、分離用基板5ともう一方の支持体となる単結晶
81基板6の貼り合わせ接着面51の最端部には、微小
な隙間8が形成される。そして、このような隙間8が形
成されると、いわゆるウェハ後工程に於いて洗浄とかエ
ツチングの際に、洗浄液やエツチング液が隙間8部に残
留し、ウェハを汚染するとともに、隙間8部からの局部
的なエツチングや外部からの何らかの力により、貼り合
わせ後のウェハが剥がれやすくなるという問題がある。
[Challenges to be solved by the invention] The conventional method of bonding dielectric isolation substrates is an application of one of the semiconductor substrate bonding techniques, in which the substrates are heated and oxidized in an oxidizing atmosphere and bonded using silicon oxide. Since this method does not use an adhesive layer containing impurities, diffusion of impurities can be prevented. However, in the separation substrate, a polishing sag 52 on the outer periphery of about 5 to 10 pm occurs due to mechanical or chemical factors during the polishing process, as shown in FIG. Because of this outer periphery polishing sag 52, a minute gap 8 is formed at the extreme end of the bonding surface 51 of the separation substrate 5 and the single crystal 81 substrate 6 serving as the other support. If such a gap 8 is formed, cleaning liquid or etching liquid will remain in the gap 8 during cleaning or etching in the so-called post-wafer process, contaminating the wafer, and leaking from the gap 8. There is a problem in that the bonded wafers tend to peel off due to local etching or some external force.

また、従来の誘電体分離基板では、分離用基板と支持体
となる単結晶81基板の径が同一であると、貼り今わせ
の際に偏心や片ズレ等により貼り合わせ接着面の周辺部
に未接着部が発生するので、貼り合わせ位置決めに大変
な時間を要してしまうという問題もある。
In addition, with conventional dielectric separation substrates, if the diameters of the separation substrate and the single crystal 81 substrate serving as the support are the same, the periphery of the bonding surface may be distorted due to eccentricity or misalignment during assembly. There is also a problem in that it takes a long time to determine the bonding position because unbonded parts occur.

本発明の目的は、外周研磨ダレの発生を回避することに
より、ウェハ後工程においてウェハの汚染や剥がれを防
止することができる誘電体分離基板およびその製造方法
を提供することである。
An object of the present invention is to provide a dielectric isolation substrate and a method for manufacturing the same, which can prevent contamination and peeling of the wafer in a post-wafer process by avoiding the occurrence of polishing sag on the outer periphery.

また、本発明の他の目的は、分離用基板と支持体とを張
り合わせの際に、分離用基板と支持体の位置決めに時間
をかけなくとも、未接着部が生じない誘電体分離基板お
よびその製造方法を提供することである。
Another object of the present invention is to provide a dielectric separation substrate that does not cause unbonded parts without taking time for positioning the separation substrate and the support when the separation substrate and the support are bonded together. An object of the present invention is to provide a manufacturing method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は、分離溝を有する
単結晶半導体上に絶縁膜が形成され、かつその絶縁膜の
上に多結晶半導体が堆積されて、前記分離溝内に堆積さ
れた前記多結晶半導体によって前記単結晶半導体が電気
的に絶縁された分離用基板と、前記多結晶半導体の表面
に貼り合わされた支持体とを備えた誘電体分離基板にお
いて、前記分離用基板の周縁部を単結晶半導体で覆った
ものである。
To achieve the above object, the present invention provides an insulating film formed on a single crystal semiconductor having an isolation trench, a polycrystalline semiconductor deposited on the insulating film, and deposited in the isolation trench. In a dielectric separation substrate comprising a separation substrate in which the single crystal semiconductor is electrically insulated by the polycrystalline semiconductor, and a support bonded to a surface of the polycrystalline semiconductor, a peripheral edge of the separation substrate is covered with a single crystal semiconductor.

また、本発明は、分離溝を有する単結晶半導体基板の表
面に絶縁膜を形成し、その絶縁膜を基板周縁部から一定
範囲だけ除去して単結晶半導体基板を露出させ、次に気
相成長法により、前記露出した単結晶半導体基板上に単
結晶半導体を、前記絶縁膜上に多結晶半導体をそれぞれ
堆積させ、さらに前記堆積層の表面を研削・研磨すると
ともに、半導体基板の周縁部を削り取り又は打ち抜きで
取り除いた後に、前記堆積層の表面に支持体を張り合わ
せ、最後に分離溝を有する面と反対側の面から前記単結
晶半導体基板を研削・研磨することである。
Furthermore, the present invention involves forming an insulating film on the surface of a single crystal semiconductor substrate having a separation groove, removing the insulating film from a certain area from the periphery of the substrate to expose the single crystal semiconductor substrate, and then performing vapor phase growth. A single crystal semiconductor is deposited on the exposed single crystal semiconductor substrate and a polycrystalline semiconductor is deposited on the insulating film by a method, and the surface of the deposited layer is ground and polished, and the peripheral edge of the semiconductor substrate is scraped off. Alternatively, after removal by punching, a support is attached to the surface of the deposited layer, and finally the single crystal semiconductor substrate is ground and polished from the surface opposite to the surface having the separation groove.

また、本発明は、標準径より大きい径を有しかつ分離溝
を有する単結晶半導体基板の表面に絶縁膜を形成し、そ
の絶縁膜を基板周縁部から一定範囲だけ除去して単結晶
半導体基板を露出させ、次に気相成長法により、前記露
出した単結晶半導体基板上に単結晶半導体を、前記絶縁
膜上に多結晶半導体をそれぞれ堆積させ、前記堆積層の
表面を研削・研磨した後に、前記堆積層の表面に標準径
より大きい径の支持体を張り合わせ、さらに前記半導体
基板と支持体の周縁部を削り取り、最後に分離溝を有す
る面と反対側の面から前記単結晶半導体基板を研削・研
磨することである。
In addition, the present invention forms an insulating film on the surface of a single crystal semiconductor substrate having a diameter larger than a standard diameter and a separation groove, and removes the insulating film in a certain range from the periphery of the substrate to form a single crystal semiconductor substrate. Then, by vapor phase growth, a single crystal semiconductor is deposited on the exposed single crystal semiconductor substrate, and a polycrystalline semiconductor is deposited on the insulating film, and the surface of the deposited layer is ground and polished. , pasting a support with a diameter larger than the standard diameter on the surface of the deposited layer, further scraping off the peripheral edges of the semiconductor substrate and the support, and finally removing the single crystal semiconductor substrate from the surface opposite to the surface having the separation groove. It means grinding and polishing.

さらに、本発明は、分離溝を有する単結晶半導体基板の
表面に絶縁膜を形成し、次に気相成長法により前記絶縁
膜上に多結晶半導体を堆積させ、さらに前記堆積層の表
面を研削・研磨するとともに、半導体基板の周縁部を削
り取り又は打ち抜きで取り除いた後に、前記堆積層の表
面に支持体を張り合わせ、最後に分離溝を有する面と反
対側の面から前記単結晶半導体基板を研削・研磨するこ
とである。
Furthermore, the present invention forms an insulating film on the surface of a single crystal semiconductor substrate having a separation groove, then deposits a polycrystalline semiconductor on the insulating film by vapor phase growth, and further grinds the surface of the deposited layer.・After polishing and removing the peripheral edge of the semiconductor substrate by scraping or punching, attaching a support to the surface of the deposited layer, and finally grinding the single crystal semiconductor substrate from the surface opposite to the surface having the separation groove.・It means polishing.

[作用] 研磨工程における単結晶半導体と多結晶半導体の研磨精
度を比較すると、単結晶半導体の研磨レートの方が多結
晶半導体の研磨レートよりも小さいため、単結晶半導体
に対する研磨バラツキを押さえることができ、研磨ダレ
の発生を防止できる。
[Function] Comparing the polishing accuracy of single crystal semiconductors and polycrystalline semiconductors in the polishing process, the polishing rate of single crystal semiconductors is smaller than the polishing rate of polycrystalline semiconductors, so it is possible to suppress the polishing variation for single crystal semiconductors. It is possible to prevent polishing sag from occurring.

したがって、上記のように、基板周縁部より一定範囲は
単結晶半導体を堆積した分離用基板と支持体とを貼り合
わせると、後のウニハエ程で研削・研磨した際に、基板
外周に研磨ダレが発生しない。
Therefore, as described above, when a separation substrate on which a single crystal semiconductor is deposited over a certain area from the periphery of the substrate is bonded to a support, polishing sag may occur on the outer periphery of the substrate during grinding and polishing in the subsequent grinding process. Does not occur.

このために、貼り合わせ接着面端部に隙間が生じること
がなく、エツチング液等の残留によるウェハ汚染を防止
することができるとともに、接着面からの剥がれを防止
することも可能である。
For this reason, there is no gap at the end of the bonded surface, which prevents wafer contamination due to residual etching solution and the like, and also prevents peeling from the bonded surface.

また、誘電体分離基板の外周面は単結晶半導体で覆われ
、多結晶半導体が露出していないので、エツチング工程
や拡散工程の作業中に多結晶半導体からの異物等の発生
を回避することができるとともに、誘電体分離製造中お
よびウニハエ程中のチッピングやウェハ割れを防止する
ことができる。
Furthermore, since the outer peripheral surface of the dielectric isolation substrate is covered with a single crystal semiconductor and the polycrystalline semiconductor is not exposed, it is possible to avoid the generation of foreign substances from the polycrystalline semiconductor during the etching process and diffusion process. At the same time, it is possible to prevent chipping and wafer cracking during dielectric isolation manufacturing and sea urchin fly processing.

さらに、分離用基板と支持体の径を標準径よりも大きく
して裕度をもたせることにより、分離用基板と支持体と
を貼り合わせる際に、それらの位置合わせをあまり厳密
に行わなくとも、貼り合わせ接着面端部に未接着部分が
生じることがなく、高精度な誘電体分離基板を短時間に
製造することができる。
Furthermore, by making the diameters of the separation substrate and support body larger than the standard diameter to provide some margin, it is possible to bond the separation substrate and support body together without having to align them very precisely. There are no unbonded parts at the edges of the bonded surfaces, and a highly accurate dielectric separated substrate can be manufactured in a short time.

[実施例〕 以下、本発明の実施例を図面に従って詳細に説明する。[Example〕 Embodiments of the present invention will be described in detail below with reference to the drawings.

(第1実施例) 第1図は本発明の第1実施例を示す誘電体分離基板の製
造フローである。まず、第1図(a)に示すように、単
結晶81基板1の一主面上に異方性選択エツチング等の
方法で深さ50μmのV形の分離溝2を形成した後、そ
の−主面上に絶縁膜として1.5μm厚の8102膜1
3、および裏面に810.膜23を熱酸化法によって形
成する。
(First Embodiment) FIG. 1 is a manufacturing flow of a dielectric isolation substrate showing a first embodiment of the present invention. First, as shown in FIG. 1(a), a V-shaped separation groove 2 with a depth of 50 μm is formed on one main surface of a single crystal 81 substrate 1 by a method such as anisotropic selective etching. 8102 film 1 with a thickness of 1.5 μm as an insulating film on the main surface
3, and 810. on the back. The film 23 is formed by a thermal oxidation method.

次に、同図(b)に示すように、単結晶81基板1の分
離溝2を有する面上のS〕○、膜13を、基板周縁部よ
り一定の範囲にわたって除去し、単結晶Si基板1の表
面を露出させる。次いで、単結晶81基板1の分離溝2
を有する面を上方に向け、その単結晶81基板1を図示
していない気相成長反応装置に装着し、温度1000’
C〜1200℃下で水素と三塩化シラン蒸気の混合ガス
を供給して、約30〜40分間処理すると、同図(c>
に示すように、S10.NJj131には多結晶Si層
4が、露出した単結晶81基板1の表面には単結S1層
11が同時に堆積する。このようにして堆積した堆積層
9の表面は平坦性が保たれていないので、このまま支持
体となる単結晶81基板6と貼り合わせると、堆積層9
表面の凸凹により貼り合わせ面の密着性が悪くなり、剥
がれの原因となる。そこで同図(d)に示すように、堆
積層9表面の平坦性を出すために、研削・研磨を実施す
る。すなわち、堆積層の30〜4oμmを研削により除
去し、次に、この研削によりダメージを受けた単結晶8
1基板1の研削後の表面をメカニカル・ケミカル研磨法
で磨き、単結晶Si基板1の内部に残存する研削歪を除
去して、同図(e)に示すような分離用基板5を製造す
る。
Next, as shown in FIG. 6B, the S]○ film 13 on the surface of the single crystal 81 substrate 1 having the separation groove 2 is removed over a certain range from the periphery of the substrate, and the single crystal Si substrate 1 is Expose the surface of 1. Next, the separation groove 2 of the single crystal 81 substrate 1 is
The single crystal 81 substrate 1 was placed in a vapor phase growth reaction apparatus (not shown) with the surface having the surface facing upward and heated to a temperature of 1000'
The same figure (c>
As shown in S10. A polycrystalline Si layer 4 is deposited on the NJj 131, and a single bonded S1 layer 11 is deposited on the exposed surface of the single crystal 81 substrate 1 at the same time. Since the surface of the deposited layer 9 deposited in this way does not maintain flatness, if it is bonded to the single crystal 81 substrate 6 that will serve as a support, the deposited layer 9
The unevenness of the surface deteriorates the adhesion of the bonded surfaces and causes peeling. Therefore, as shown in FIG. 4(d), grinding and polishing are performed to improve the flatness of the surface of the deposited layer 9. That is, 30 to 4 μm of the deposited layer is removed by grinding, and then the single crystal 8 that has been damaged by this grinding is removed.
1 The surface of the substrate 1 after grinding is polished by a mechanical/chemical polishing method to remove the grinding strain remaining inside the single crystal Si substrate 1, and a separation substrate 5 as shown in FIG. 1(e) is manufactured. .

この時、単結晶S1層11と多結晶S1層4の研磨レー
トを比較すると、単結晶S1層1]の方が多結晶Si層
4よりも小さいので、研磨バラツキを抑えることができ
る。実際に単結晶81層と多結晶S1層の研磨ダレの比
較をしたところ、単結晶S1層の場合は研磨タレは0〜
1μmと低い二とがわかった。したがって、分離用基板
5の周縁部より一定の範囲を単結晶S1層11とするこ
とで外周研磨ダレの発生を防ぐことが可能となる。
At this time, when the polishing rates of the single crystal S1 layer 11 and the polycrystalline S1 layer 4 are compared, the polishing rate of the single crystal S1 layer 1 is smaller than that of the polycrystalline Si layer 4, so that polishing variations can be suppressed. When we actually compared the polishing sag of the single crystal 81 layer and the polycrystalline S1 layer, we found that the polishing sag of the single crystal S1 layer was 0 to 0.
It was found that the thickness was as low as 1 μm. Therefore, by forming the single crystal S1 layer 11 in a certain range from the periphery of the separation substrate 5, it is possible to prevent the outer periphery polishing sag from occurring.

なお、分離用基板5の堆積層9の表面は、周縁部より一
定の範囲を単結晶Si層11、内周を多結晶S1層4と
しているので、研磨レートの関係から平坦性を損なわな
いよう、凸凹を追従しながらメカニカル・ケミカル研磨
法で研磨する。
Note that the surface of the deposited layer 9 of the separation substrate 5 has a monocrystalline Si layer 11 in a certain area from the periphery and a polycrystalline S1 layer 4 in the inner periphery, so that the flatness is not impaired due to the polishing rate. , polishing using mechanical/chemical polishing methods while following the unevenness.

次に、同図(e)に示すように、面取り装置を用いて分
離用基板5の周縁部を削り取り、分離用基板5の径を小
さくする。この時、分離用基板5の堆積層9の表面最端
部に微小の研磨ダレが残存していたとしても、この面取
り装置で径を小さくすることにより、研磨ダレを完全に
除去することができる。なお、この場合、面取り装置を
用いて分離用基板5の周縁部を削り取る代わりに、打ち
抜き装置を用いて分離用基板5の周縁部を打ち抜くよう
にしてもよい。
Next, as shown in FIG. 4E, the peripheral edge of the separation substrate 5 is scraped off using a chamfering device to reduce the diameter of the separation substrate 5. At this time, even if minute polishing sag remains at the outermost edge of the surface of the deposited layer 9 of the separation substrate 5, the polishing sag can be completely removed by reducing the diameter with this chamfering device. . In this case, instead of using a chamfering device to scrape off the peripheral edge of the separation substrate 5, a punching device may be used to punch out the peripheral edge of the separation substrate 5.

次に、同図(f)に示すように、分離用基板5と支持体
となる単結晶81基板6を密接させた後、1100℃の
酸化雰囲気中で加熱酸化し生成酸化シリコンにて両者を
貼り合わせて、張り合わせ基板71を得る。ここで、両
者を密接させる際、単結晶81基板6の径を標準径より
も太きくしておけば、偏心や片ズレ等によって分離用基
板5の貼り合わせ接触面51の周縁に未接着部が発生す
るのを防止でき、貼り合わせに関する位置決め時間を短
縮できる。ただし、支持体となる単結晶81基板6は後
のウニハエ程に於いて、ホトリソや拡散装置で不具合が
生じないよう標準径としなければならない。
Next, as shown in FIG. 5(f), after bringing the separation substrate 5 and the single crystal 81 substrate 6, which will serve as a support, into close contact with each other, they are heated and oxidized in an oxidizing atmosphere at 1100° C., and the silicon oxide produced is used to bond them together. By bonding, a bonded substrate 71 is obtained. Here, when bringing the two into close contact, if the diameter of the single crystal 81 substrate 6 is made larger than the standard diameter, unbonded parts may occur at the periphery of the bonded contact surface 51 of the separation substrate 5 due to eccentricity or misalignment. This can be prevented and the positioning time for bonding can be shortened. However, the single crystal 81 substrate 6 serving as the support must have a standard diameter so as not to cause any problems with the photolithography or diffusion equipment in the subsequent process.

以上のような分離用基板5と、単結晶81基板6を接着
層を介さずに貼り合わせると、貼り合わせ接着面51の
最端部に隙間は形成されなくなる。
When the above-described separation substrate 5 and the single crystal 81 substrate 6 are bonded together without using an adhesive layer, no gap is formed at the extreme end of the bonding surface 51.

したがって、エツチング液残留による発しんや、局部的
なエツチングによるウェハ貼り合わせ接着面51からの
剥がれを防止することができる。この分離用基板5と単
結晶Si基板6を貼り合わせると、気相成長法で堆積し
た多結晶Si層4を、単結晶S1層11が覆って閉じ込
める形になるので、多結晶S1層4は、表面に露出せず
外部との接触がなくなり、多結晶Si層から異物の発生
を防止できるとともに、ウェハ製造中のチッピングやウ
ェハ割れの発生を防止できる。
Therefore, it is possible to prevent bleeds due to residual etching solution and peeling from the wafer bonding adhesive surface 51 due to local etching. When this separation substrate 5 and single crystal Si substrate 6 are bonded together, the single crystal S1 layer 11 covers and confines the polycrystalline Si layer 4 deposited by vapor phase growth, so the polycrystalline S1 layer 4 is Since the polycrystalline Si layer is not exposed to the surface and does not come in contact with the outside, it is possible to prevent the generation of foreign substances from the polycrystalline Si layer, and also to prevent chipping and wafer cracking during wafer manufacturing.

そして最後に、分離溝2を有する面と反対側の面から分
離用基板5を約350〜400μm研削して除去する。
Finally, the separation substrate 5 is ground and removed by approximately 350 to 400 μm from the surface opposite to the surface having the separation grooves 2.

また、この研削によりダメージを受けた単結晶Si基板
1の研削後の表面をメカニカル・ケミカル研磨法で磨き
、単結晶81基板1の内部に残存する研削歪を除去する
。この研磨法では、1次研磨で残存する研削歪を除去し
、2次研磨で誘電体分離構造を形成した後、誘電体分離
構造表面にデバイス膜を形成しても支障のないように仕
上の3次研磨を実施する。以上の手順によって、同図(
g)に示すような誘電体分離基板7を製造する。
Further, the surface of the single-crystal Si substrate 1 damaged by this grinding is polished by mechanical/chemical polishing to remove the grinding strain remaining inside the single-crystal 81 substrate 1. In this polishing method, residual grinding strain is removed in the primary polishing, and after the dielectric isolation structure is formed in the secondary polishing, the finishing is performed so that there is no problem even if a device film is formed on the surface of the dielectric isolation structure. Perform tertiary polishing. By the above steps, the same figure (
A dielectric isolation substrate 7 as shown in g) is manufactured.

(第2実施例) 第2図は本発明の第2実施例を示している。本実施例で
は、最初に標準径より2〜3mm大きい単結晶81基板
1と、同様に標準径より2〜3mm大きい単結晶81基
板6とを用意する。
(Second Embodiment) FIG. 2 shows a second embodiment of the present invention. In this embodiment, first, a single crystal 81 substrate 1 having a diameter of 2 to 3 mm larger than the standard diameter and a single crystal 81 substrate 6 having a diameter of 2 to 3 mm larger than the standard diameter are first prepared.

まず、第2図(a)に示すように、単結晶S】基板1の
一主面上に異方性選択エツチング等の方法で深さ50μ
mのV形の分離溝2を形成した後、その−主面上に絶縁
膜として1.5μm厚の810、膜13、および裏面に
Sin、膜23を熱酸化法によって形成する。次に、同
図(b)に示すように、単結晶S1基板1の面上の$1
0.膜13を、基板周縁部より一定の範囲にわたって除
去し、単結晶81基板1の表面をn呂させる。次いで、
この単結晶81基板1を分離溝2を有する面を上方に向
け、気相成長反応装置に装着して、温度1000℃〜1
200℃下で水素と二酸化シラン蒸気の混合ガスを供給
し、約30〜40分間処理する。これににより同図(C
)に示すように、5102膜13上には多結晶S1層4
が、露出した単結晶Si基板1の表面上には単結晶S1
層11が同時に堆積する。堆積した堆積層9の表面は平
坦性が保たれていないので、このまま支持体となる単結
晶S]基板6と貼り合わせると、堆積層9表面の凸凹に
より貼り合わせ面の密着性が悪くなり、剥がれの原因と
なる。そこで同図(cりに示すように、堆積層9の表面
の平坦性を出すために、研削・研磨を実施する。堆積層
9を30〜40pm研削によって除去し、次に研削ダメ
ージ及び研削歪を除去するため、メカニカル・ケミカル
研磨法にて堆積層表面を仕上げ、分離用基板5を製造す
る。
First, as shown in FIG. 2(a), etching is performed to a depth of 50 μm on one main surface of the single crystal S] substrate 1 by a method such as anisotropic selective etching.
After forming the V-shaped isolation groove 2 of m in length, a 1.5 μm thick insulating film 810 and film 13 are formed on the main surface thereof, and a Sin film 23 is formed on the back surface by thermal oxidation. Next, as shown in the same figure (b), $1 on the surface of the single crystal S1 substrate 1
0. The film 13 is removed over a certain range from the periphery of the substrate to dry the surface of the single crystal 81 substrate 1. Then,
This single crystal 81 substrate 1 was placed in a vapor phase growth reaction apparatus with the surface having the separation grooves 2 facing upward, and the temperature was set at 1000°C to 100°C.
A mixed gas of hydrogen and silane dioxide vapor is supplied at 200° C., and the treatment is carried out for about 30 to 40 minutes. As a result, the same figure (C
), there is a polycrystalline S1 layer 4 on the 5102 film 13.
However, on the exposed surface of the single crystal Si substrate 1, there is a single crystal S1.
Layer 11 is deposited simultaneously. Since the surface of the deposited layer 9 is not kept flat, if it is bonded to the single crystal S] substrate 6 that will serve as a support, the unevenness of the surface of the deposited layer 9 will deteriorate the adhesion of the bonded surface. This may cause peeling. Therefore, as shown in the same figure (c), in order to make the surface of the deposited layer 9 flat, grinding and polishing are carried out.The deposited layer 9 is removed by 30 to 40 pm of grinding, and then the grinding damage and grinding strain are removed. In order to remove the deposited layer, the surface of the deposited layer is finished by mechanical/chemical polishing, and the separation substrate 5 is manufactured.

ここで、面取り装置を用いて分離用基板5の周端部を削
り取ると、分離用基板5の貼り合わせ面の汚染、または
貼り合わせ面に傷のつく可能性がある。したがって、こ
こでは分離用基板5と支持体となる単結晶Si基板6の
径に差を設けず、同径のまま、同図(f)に示すように
、分離用基板5と単結晶Si基板6とを密接させた後、
1100℃の酸化雰囲気中で加熱酸化し住成酸化シリコ
ンにて両者を貼り合わせ、張り合わせ基板71を得る。
Here, if the peripheral edge of the separation substrate 5 is scraped off using a chamfering device, there is a possibility that the bonded surface of the separation substrate 5 may be contaminated or the bonded surface may be damaged. Therefore, here, there is no difference in the diameters of the separation substrate 5 and the single crystal Si substrate 6 serving as a support, and the separation substrate 5 and the single crystal Si substrate 6 are kept the same diameter, as shown in FIG. After bringing 6 into close contact with
A bonded substrate 71 is obtained by heating and oxidizing the substrate in an oxidizing atmosphere at 1100° C. and bonding them together using Sumi oxide silicon.

この場合、両者を密接する際、分離用基板5と単結晶8
1基板6は同径であるため、精密に貼り合わせるために
は多大な時間を要してしまうし、偏心や片ズレによる貼
り合わせ接着面51の周縁部に未接着部が発生して、ウ
ェハ剥がれや、チッピング、異物等の発生をもたらし、
製品歩留りを落としてしまう。そこで、本実施例では、
分離用基板5と単結晶81基板6が標準径よりも大きく
なっているので、両者を貼り合わせてから、その張り合
わせた誘電体分離基板の外周面を面取り装置等を用いて
標準径となるよう削り取る。この時、微小の隙間が発生
していても、また未接着部が発生しても、それらは削り
取りによって除去することができる。
In this case, when the two are brought into close contact, the separation substrate 5 and the single crystal 8
Since the substrates 6 have the same diameter, it takes a lot of time to bond them together precisely, and unbonded areas may occur at the periphery of the bonding surface 51 due to eccentricity or misalignment, causing the wafer This may cause peeling, chipping, foreign matter, etc.
This will reduce product yield. Therefore, in this example,
Since the separation substrate 5 and the single crystal 81 substrate 6 are larger than the standard diameter, after bonding them together, the outer peripheral surface of the bonded dielectric separation substrate is chamfered to the standard diameter using a chamfering device or the like. Scrape it off. At this time, even if minute gaps or unbonded parts occur, they can be removed by scraping.

以上のようにして、貼り合わせ接着面51端部に隙間が
なく、また、貼り合わせ精度の良い張り合わせ基板71
を得る二とができる。そして最後に、分離溝2を有する
面と反対側から分離用基板5を約350〜400μm研
削により除去し、次に、この研削により受けた研削ダメ
ージと研削歪をメカニカル・ケミカル研磨法で除去する
ことにより、同図(g)に示すような誘電体分離基板7
を製造する。
As described above, the bonded substrate 71 has no gaps at the end of the bonded adhesive surface 51 and has good bonding accuracy.
You can get two. Finally, the separation substrate 5 is removed by grinding approximately 350 to 400 μm from the side opposite to the surface having the separation grooves 2, and then the grinding damage and grinding distortion caused by this grinding are removed by mechanical/chemical polishing. By this, a dielectric isolation substrate 7 as shown in FIG.
Manufacture.

上述した製造方法を用いて、分離溝2、単結晶S1層1
1、多結晶81層4の堆積量、および研削・研M量など
を変化させて堆積層9部の厚さ、単結晶81基板1の厚
さを種々調節した試料を作成して誘電体分離基板7を製
造したところ、貼り合わせ接着面51からの剥がれ等が
なく、精度の良い誘電体分離基板7を得ることができた
Using the manufacturing method described above, the separation groove 2, the single crystal S1 layer 1
1. Dielectric separation was performed by creating samples in which the thickness of the deposited layer 9 and the thickness of the single crystal 81 substrate 1 were variously adjusted by changing the amount of deposited polycrystalline 81 layer 4 and the amount of grinding/polishing M. When the substrate 7 was manufactured, there was no peeling from the bonding surface 51, and a highly accurate dielectric separation substrate 7 could be obtained.

(第3実施例) 第3図は本発明の第3実施例を示している。まず、第3
図(a)に示すように、単結晶81基板1の一主面上に
異方性選択エツチング等の方法でv型の分離溝2を形成
した後、絶縁膜として810、膜13、および裏面に8
102膜23を熱酸化法によって形成する。次に同図(
b)に示すように、気相反応成長法により絶縁膜13の
上に多結晶S】層4を堆積した後、同図(c)に示すよ
うに、多結晶S1層4の表面に研削・研磨を実施すると
、外周研磨ダレ52が発生する。そこで、同図(d)に
示うように、面取り装置を用いて外周研磨ダレ52が取
り切れるよう基板外周面を削り、平坦な面のみを有する
分離用基板5を作成する。
(Third Embodiment) FIG. 3 shows a third embodiment of the present invention. First, the third
As shown in Figure (a), after forming a v-type separation groove 2 on one main surface of a single crystal 81 substrate 1 by a method such as anisotropic selective etching, an insulating film 810, a film 13, and a back surface are formed. to 8
102 film 23 is formed by a thermal oxidation method. Next, the same figure (
As shown in b), after depositing a polycrystalline S layer 4 on the insulating film 13 by the vapor phase reaction growth method, as shown in FIG. When polishing is performed, outer periphery polishing sag 52 occurs. Therefore, as shown in FIG. 4D, the outer circumferential surface of the substrate is shaved using a chamfering device so that the outer circumferential polishing sag 52 can be removed, thereby creating a separation substrate 5 having only a flat surface.

なお、この場合、面取り装置を用いて分離用基板5の周
縁部を削り取る代わりに、打ち抜き装置を用いて分離用
基板5の周縁部を打ち抜くようにしてもよい。
In this case, instead of using a chamfering device to scrape off the peripheral edge of the separation substrate 5, a punching device may be used to punch out the peripheral edge of the separation substrate 5.

次に同図(e)に示すように、分離用基板5と支持体と
なる単結晶81基板6とを熱酸化法によって貼り合わせ
、貼り合わせ接着面51の最端部に隙間が形成されない
貼り合わせ基板71を作成する。この時、支持体となる
単結晶81基板6は後のウニハエ程に支障が生じないよ
う標準径とする。
Next, as shown in FIG. 5(e), the separation substrate 5 and the single crystal 81 substrate 6 serving as a support are bonded together by a thermal oxidation method, and the bonding surface 51 is bonded so that no gap is formed at the extreme end. A laminated substrate 71 is created. At this time, the single crystal 81 substrate 6 serving as the support is made to have a standard diameter so as not to cause any trouble as the sea urchin fly will cause later.

このようにして、貼り合わせ接着面51端部に隙間がな
く、また、貼り合わせ精度の良い貼り合わせ基板71を
得ることができる。最後に、分離溝2を有する面と反対
側の面から単結晶81基板1を約350〜400μm研
削する。そして、この研削によりダメージを受けた単結
晶81基板]の研削後の表面を、メカニカル・ケミカル
研磨法で磨く二とにより、単結晶81基板1の内部に残
存する研削歪を除去して、同図(f)に示すような誘電
体分離基板7を製造する。
In this way, it is possible to obtain a bonded substrate 71 with no gap at the end of the bonded bonding surface 51 and with good bonding accuracy. Finally, the single crystal 81 substrate 1 is ground by approximately 350 to 400 μm from the surface opposite to the surface having the separation grooves 2. Then, by polishing the surface of the single crystal 81 substrate 1 damaged by this grinding using a mechanical/chemical polishing method, the grinding strain remaining inside the single crystal 81 substrate 1 is removed. A dielectric isolation substrate 7 as shown in Figure (f) is manufactured.

本実施例によれば、多結晶S1層4の局部的なエツチン
グ等を防止できるので、貼り合わせ強度を増し、発しん
及び異物の発生を抑えることができる。
According to this embodiment, since local etching of the polycrystalline S1 layer 4 can be prevented, the bonding strength can be increased and the generation of blemishes and foreign matter can be suppressed.

[発明の効果] 以上、本発明によれば、貼り合わせ接着面最端部に隙間
が生じないため、エツチング液の残留等による発しんを
防止し、また貼り合わせ強度を増加させることができる
[Effects of the Invention] As described above, according to the present invention, since no gap is generated at the extreme end of the bonding surfaces, it is possible to prevent bleeds due to residual etching liquid, etc., and to increase the bonding strength.

また、支持体と分離用基板の径を標準径より大きいくし
ておくことにより、支持体と分離用基板の位置決めを厳
密に行わなくても、貼り合わせ接着面の周縁部に未接着
部が発生せず、貼り合わせ精度が向上するとともに、貼
り合わせに要する時間も短縮できる。
In addition, by making the diameter of the support and separation substrate larger than the standard diameter, unbonded areas can occur at the periphery of the bonded surfaces even if the support and separation substrate are not precisely positioned. This improves the bonding accuracy and reduces the time required for bonding.

さらに、多結晶半導体が誘電体分離基板の側面に露出し
ないため、多結晶半導体からの異物等の発生を防止でき
るとともに、多結晶半導体の周囲を単結晶半導体が覆っ
ているため、外部からの力等で誘電体分離基板に生じる
チッピングや割れを防止することができる。
Furthermore, since the polycrystalline semiconductor is not exposed on the side surface of the dielectric isolation substrate, it is possible to prevent the generation of foreign substances from the polycrystalline semiconductor, and since the polycrystalline semiconductor is surrounded by the single crystal semiconductor, external forces It is possible to prevent chipping and cracking from occurring in the dielectric isolation substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の誘電体分離基板の製造手順を
示し、第1図は第1実施例を、第2図は第2実施例を、
第3図は第3実施例をそれぞれ示す製造手順説明図、第
4図は従来の誘電体分離基板の製造手順説明図、第5図
は従来の問題点を説明するための説明図である。 l・・単結晶S」基板、2・・・分離溝、4・多結晶S
1層、5・・・分離用基板、6 ・支持体となる単結晶
81基板、7・誘電体分離基板、9・・堆積層、l]・
単結晶Si層、13.23  ・絶縁膜、51・・接着
面、71・・貼り合わせ基板。
1 to 3 show the manufacturing procedure of the dielectric isolation substrate of the present invention, FIG. 1 shows the first embodiment, FIG. 2 shows the second embodiment,
3 is an explanatory diagram of the manufacturing procedure showing the third embodiment, FIG. 4 is an explanatory diagram of the manufacturing procedure of a conventional dielectric isolation substrate, and FIG. 5 is an explanatory diagram for explaining the problems of the conventional method. l... Single crystal S'' substrate, 2... Separation groove, 4. Polycrystalline S
1 layer, 5... Separation substrate, 6 - Single crystal 81 substrate serving as a support, 7 - Dielectric separation substrate, 9... Deposition layer, l].
Single crystal Si layer, 13.23 - Insulating film, 51... Adhesive surface, 71... Bonded substrate.

Claims (1)

【特許請求の範囲】 1、分離溝を有する単結晶半導体上に絶縁膜が形成され
、かつその絶縁膜の上に多結晶半導体が堆積されて、前
記分離溝内に堆積された前記多結晶半導体によって前記
単結晶半導体が電気的に絶縁された分離用基板と、前記
多結晶半導体の表面に貼り合わされた支持体とを備えた
誘電体分離基板において、 前記分離用基板の周縁部を単結晶半導体で覆ったことを
特徴とする誘電体分離基板。 2、請求項1記載の誘電体分離基板において、前記単結
晶半導体をシリコンで形成したことをことを特徴とする
誘電体分離基板。 3、分離溝を有する単結晶半導体基板の表面に絶縁膜を
形成し、その絶縁膜を基板周縁部から一定範囲だけ除去
して単結晶半導体基板を露出させ、次に気相成長法によ
り、前記露出した単結晶半導体基板上に単結晶半導体を
、前記絶縁膜上に多結晶半導体をそれぞれ堆積させ、さ
らに前記堆積層の表面を研削・研磨するとともに、半導
体基板の周縁部を削り取り又は打ち抜きで取り除いた後
に、前記堆積層の表面に支持体を張り合わせ、最後に分
離溝を有する面と反対側の面から前記単結晶半導体基板
を研削・研磨することを特徴とする誘電体分離基板の製
造方法。 4、請求項3記載の製造方法において、 前記半導体基板周縁部を削り取り又は打ち抜きで取り除
く際は、半導体基板が標準径よりも小さくなるよう削り
取り又は打ち抜きを行うことを特徴とする誘電体分離基
板の製造方法。 5、標準径より大きい径を有しかつ分離溝を有する単結
晶半導体基板の表面に絶縁膜を形成し、その絶縁膜を基
板周縁部から一定範囲だけ除去して単結晶半導体基板を
露出させ、次に気相成長法により、前記露出した単結晶
半導体基板上に単結晶半導体を、前記絶縁膜上に多結晶
半導体をそれぞれ堆積させ、前記堆積層の表面を研削・
研磨した後に、前記堆積層の表面に標準径より大きい径
の支持体を張り合わせ、さらに前記半導体基板と支持体
の周縁部を削り取り、最後に分離溝を有する面と反対側
の面から前記単結晶半導体基板を研削・研磨することを
特徴とする誘電体分離基板の製造方法。 6、分離溝を有する単結晶半導体基板の表面に絶縁膜を
形成し、次に気相成長法により前記絶縁膜上に多結晶半
導体を堆積させ、さらに前記堆積層の表面を研削・研磨
するとともに、半導体基板の周縁部を削り取り又は打ち
抜きで取り除いた後に、前記堆積層の表面に支持体を張
り合わせ、最後に分離溝を有する面と反対側の面から前
記単結晶半導体基板を研削・研磨することを特徴とする
誘電体分離基板の製造方法。 7、請求項6記載の製造方法において、 前記半導体基板周縁部を削り取り又は打ち抜きで取り除
く際は、半導体基板が標準径よりも小さくなるよう削り
取り又は打ち抜きを行うことを特徴とする誘電体分離基
板の製造方法。
[Claims] 1. An insulating film is formed on a single crystal semiconductor having an isolation trench, and a polycrystalline semiconductor is deposited on the insulating film, and the polycrystalline semiconductor is deposited in the isolation trench. A dielectric separation substrate comprising a separation substrate from which the single crystal semiconductor is electrically insulated, and a support bonded to a surface of the polycrystalline semiconductor, wherein a peripheral portion of the separation substrate is connected to the single crystal semiconductor. A dielectric isolation substrate characterized by being covered with. 2. The dielectric isolation substrate according to claim 1, wherein the single crystal semiconductor is made of silicon. 3. An insulating film is formed on the surface of a single crystal semiconductor substrate having a separation groove, the insulating film is removed from a certain area from the substrate periphery to expose the single crystal semiconductor substrate, and then the above-mentioned A single crystal semiconductor is deposited on the exposed single crystal semiconductor substrate, and a polycrystalline semiconductor is deposited on the insulating film, and the surface of the deposited layer is ground and polished, and the peripheral edge of the semiconductor substrate is removed by scraping or punching. After that, a support is attached to the surface of the deposited layer, and finally the single crystal semiconductor substrate is ground and polished from the surface opposite to the surface having the separation groove. 4. The manufacturing method according to claim 3, wherein when removing the peripheral edge of the semiconductor substrate by scraping or punching, scraping or punching is performed so that the semiconductor substrate has a smaller diameter than a standard diameter. Production method. 5. Forming an insulating film on the surface of a single crystal semiconductor substrate having a diameter larger than the standard diameter and having a separation groove, and removing the insulating film from a certain range from the periphery of the substrate to expose the single crystal semiconductor substrate; Next, by vapor phase growth, a single crystal semiconductor is deposited on the exposed single crystal semiconductor substrate and a polycrystalline semiconductor is deposited on the insulating film, and the surface of the deposited layer is ground and
After polishing, a support having a diameter larger than the standard diameter is attached to the surface of the deposited layer, the peripheral edges of the semiconductor substrate and the support are scraped off, and finally the single crystal is removed from the surface opposite to the surface having the separation groove. A method for manufacturing a dielectric isolation substrate, which comprises grinding and polishing a semiconductor substrate. 6. Forming an insulating film on the surface of a single crystal semiconductor substrate having a separation groove, then depositing a polycrystalline semiconductor on the insulating film by vapor phase growth, and further grinding and polishing the surface of the deposited layer. After removing the peripheral edge of the semiconductor substrate by scraping or punching, attaching a support to the surface of the deposited layer, and finally grinding and polishing the single crystal semiconductor substrate from the surface opposite to the surface having the separation groove. A method for manufacturing a dielectric isolation substrate characterized by: 7. The manufacturing method according to claim 6, wherein when removing the peripheral portion of the semiconductor substrate by scraping or punching, scraping or punching is performed so that the semiconductor substrate has a smaller diameter than a standard diameter. Production method.
JP2326336A 1990-11-28 1990-11-28 Dielectric separation substrate Expired - Lifetime JP2691244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2326336A JP2691244B2 (en) 1990-11-28 1990-11-28 Dielectric separation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2326336A JP2691244B2 (en) 1990-11-28 1990-11-28 Dielectric separation substrate

Publications (2)

Publication Number Publication Date
JPH04196340A true JPH04196340A (en) 1992-07-16
JP2691244B2 JP2691244B2 (en) 1997-12-17

Family

ID=18186640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2326336A Expired - Lifetime JP2691244B2 (en) 1990-11-28 1990-11-28 Dielectric separation substrate

Country Status (1)

Country Link
JP (1) JP2691244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709932B2 (en) 2003-07-01 2010-05-04 Renesas Technology Corp. Semiconductor wafer having a separation portion on a peripheral area
JP2016506619A (en) * 2012-12-14 2016-03-03 ソイテックSoitec Method for making a structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267949A (en) * 1989-04-07 1990-11-01 Sony Corp Manufacture of semiconductor substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267949A (en) * 1989-04-07 1990-11-01 Sony Corp Manufacture of semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709932B2 (en) 2003-07-01 2010-05-04 Renesas Technology Corp. Semiconductor wafer having a separation portion on a peripheral area
JP2016506619A (en) * 2012-12-14 2016-03-03 ソイテックSoitec Method for making a structure

Also Published As

Publication number Publication date
JP2691244B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
CN101084577B (en) Method for trimming a structure obtained by the assembly of two plates
JP3635200B2 (en) Manufacturing method of SOI wafer
US6136666A (en) Method for fabricating silicon-on-insulator wafer
KR101307929B1 (en) Method for Manufacturing Bonded Substrate
JP4277469B2 (en) Method for producing bonded wafer and bonded wafer
JP2000331899A (en) Method for forming soi wafer and soi wafer
JPH0485827A (en) Manufacture of semiconductor device
JP2662495B2 (en) Method for manufacturing bonded semiconductor substrate
JPH0312775B2 (en)
JPH0613456A (en) Manufacture of semiconductor device
JPH04196340A (en) Dielectrics isolation substrate and manufacture thereof
JPH0888272A (en) Manufacture of substrate for semiconductor integrated circuit
JPH11330438A (en) Manufacture of soi wafer and soi wafer
KR940010159B1 (en) Manufacturing method of semiconductor substrate
JP4581349B2 (en) Manufacturing method of bonded SOI wafer
JPH01305534A (en) Manufacture of semiconductor substrate
JP3945130B2 (en) Manufacturing method of bonded dielectric isolation wafer
JP3996557B2 (en) Manufacturing method of semiconductor junction wafer
JP3165735B2 (en) Semiconductor substrate manufacturing method
JPH04148525A (en) Soi substrate and its manufacture
JPH0555358A (en) Manufacture of semiconductor device
JPH06215993A (en) Composite semiconductor substrate and manufacture thereof
JPH05304062A (en) Bonded wafer and manufacture therefore
JPH11214368A (en) Wafer planarizing method and its device
JPH02237066A (en) Manufacture of semiconductor device