JPH04107239A - Method for melting silicon steel stock - Google Patents

Method for melting silicon steel stock

Info

Publication number
JPH04107239A
JPH04107239A JP22235790A JP22235790A JPH04107239A JP H04107239 A JPH04107239 A JP H04107239A JP 22235790 A JP22235790 A JP 22235790A JP 22235790 A JP22235790 A JP 22235790A JP H04107239 A JPH04107239 A JP H04107239A
Authority
JP
Japan
Prior art keywords
silicon steel
ladle
slag
molten steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22235790A
Other languages
Japanese (ja)
Other versions
JP3105525B2 (en
Inventor
San Nakato
中戸 参
Tetsuya Fujii
徹也 藤井
Hisashi Osanai
小山内 寿
Hideo Take
武 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP02222357A priority Critical patent/JP3105525B2/en
Publication of JPH04107239A publication Critical patent/JPH04107239A/en
Application granted granted Critical
Publication of JP3105525B2 publication Critical patent/JP3105525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To manufacture a silicon steel as the raw material for a silicon steel sheet having high magnetic flux density, at the time of manufacturing a silicon steel by adding Fe-Si to a molten steel in a ladle, by using Fe-Si having low content of Ti and Al and suppressing the content of Al2O3 and TiO2 in molten slag in the ladle. CONSTITUTION:At the time of manufacturing a silicon steel as the stock for a grain-oriented silicon steel sheet, a raw material molten steel in a ladle is incorporated with, by weight, 70 to 80% Si and is mixed with Fe-Si in which the content of Ti and Al is each regulated to <0.020% and <0.050%; at the same time, the content of Al2O3 and TiO2 in molten slag in the ladle is each regulated to <8% and <0.5% and the basicity of the slag (CaO/SiO2) is regulated to the range of 0.6 to 2.0 and the total content of Ti and Al in the silicon steel is suppressed to <=20ppm. This silicon steel is rolled into a thin sheet material, by which the grain-oriented silicon steel sheet having high magnetic flux density and remarkably improved in core loss value can stably be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は2次再結晶粒を(110) [001F方位
すなわちゴス方位に高度に集積させた一方向性けい素鋼
板の製造に供するけい素鋼素材の溶製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention provides a silicon steel sheet for producing unidirectional silicon steel sheets in which secondary recrystallized grains are highly concentrated in the (110) [001F orientation, that is, the Goss orientation. Concerning a method for melting steel materials.

一方向性けい素鋼板は主にトランス等の電気機器の鉄芯
として使用されるもので、磁化特性並びに鉄損特性に優
れることか要求される。特に近年電気機器の小型化の要
請から、通常BIo値で代表される磁束密度の高い、具
体的にはB10値で1.91Tを越える一方向性けい素
鋼板に対する要求はとりわけ強い。
Unidirectional silicon steel sheets are mainly used as iron cores in electrical equipment such as transformers, and are required to have excellent magnetization characteristics and iron loss characteristics. Particularly in recent years, due to the demand for downsizing of electrical equipment, there is a particularly strong demand for grain-oriented silicon steel sheets that usually have a high magnetic flux density represented by the BIo value, specifically, a B10 value exceeding 1.91T.

例えはB10値か1.89Tを越えるけい素鋼板の製造
方法に関して特開昭54−35817号公報には、T1
及び酸可溶性AI  (以下、A1.。1と略記する)
をそれぞれ0.003 wt% (以下単に%と示す)
以下とし、C:0.06!%以下、Si : 2. (
1−4,0%、Mn01O1〜0.209’6、Se若
しくはSの何れか少なくとも1種を合計てo、 oos
 〜o、 1oo6、Sb、 As、 Bi、 Pb及
びSnのうちから選はれる1種又は2種以上を合計で0
.005〜0.10%含有し、残部実質的にFeよりな
るけい素鋼素材を、熱間圧延と40〜80%の圧下率の
最終冷延を含む圧延工程によって最終板厚の冷延板を得
て、この冷延板に対し脱炭を兼ねた1次再結晶焼鈍を施
した後、800〜920 ’Cの温度で(110) [
001F方位の2次再結晶粒を十分成長させ、引続き1
000°C以上の温度で不純物を除去する最終焼鈍を施
す工程からなる製造方法についての開示かある。
For example, Japanese Patent Application Laid-Open No. 54-35817 describes a method for manufacturing silicon steel sheets with a B10 value exceeding 1.89T.
and acid-soluble AI (hereinafter abbreviated as A1..1)
0.003 wt% (hereinafter simply referred to as %)
As below, C: 0.06! % or less, Si: 2. (
1-4.0%, Mn01O1-0.209'6, at least one of Se or S in total o, oos
~o, 1oo6, Sb, As, Bi, Pb, and Sn or more selected from 0 in total
.. A silicon steel material containing 0.005 to 0.10% and the remainder substantially consisting of Fe is processed into a cold-rolled plate of final thickness through a rolling process including hot rolling and final cold rolling with a rolling reduction of 40 to 80%. This cold-rolled sheet was subjected to primary recrystallization annealing which also served as decarburization, and then (110) [
The secondary recrystallized grains with the 001F orientation are grown sufficiently, and then 1
There is also a disclosure of a manufacturing method comprising a final annealing step to remove impurities at a temperature of 000° C. or higher.

(従来の技術) 上記の製造に供するけい素鋼素材を溶製するには、溶銑
を転炉で脱炭吹錬したのち出鋼し、取鍋内若しくはRH
脱ガス装置内で金@Sl若しくはFeSi合金、さらに
Se若しくはSの合金、又はSb、 As。
(Prior art) In order to melt the silicon steel material used in the above manufacturing process, hot metal is decarburized and blown in a converter, then tapped and heated in a ladle or at RH.
In the degasser, gold@Sl or FeSi alloys, as well as alloys of Se or S, or Sb, As.

Bi、 Pb及びSnのうちから選はれる1種又は2種
以上を含む合金を添加することによって成分調整を行い
、清浄な溶鋼とする手順か通例である。
The usual procedure is to adjust the composition by adding an alloy containing one or more selected from Bi, Pb, and Sn to produce clean molten steel.

(発明か解決しようとする課題) 上記けい素鋼素材の溶製方法においては、(1)合金剤
特に金属Si若しくはFeSi合金はTi及びAIを多
量に含むため、けい素鋼素材にTi及びA1か混入する
、 (2)金属Si若しくはFeSi合金を溶鋼に添加する
と取鍋スラグのTiO2及びAl2O3か還元され、T
i及びAIとして溶鋼中に混入する、 のか不可避に生じる。
(Problems to be Solved by the Invention) In the above-mentioned method for melting a silicon steel material, (1) since the alloying agent, especially metal Si or FeSi alloy, contains a large amount of Ti and AI, the silicon steel material contains Ti and Al. (2) When metallic Si or FeSi alloy is added to molten steel, TiO2 and Al2O3 in the ladle slag are reduced, and T
The following will inevitably occur: i and AI will be mixed into molten steel.

すなわちけい素鋼素材中の(Tj+A1.。1)の混入
量は20ppmを下回ることはなく、このような不純物
の多いけい素鋼素材から磁束密度の高いけい素鋼板を製
造するのは極めて難しい。
That is, the amount of (Tj+A1..1) mixed in the silicon steel material never falls below 20 ppm, and it is extremely difficult to manufacture a silicon steel sheet with a high magnetic flux density from such a silicon steel material with many impurities.

一方(Ti+A I 、、I)の和を20ppm未満と
するには、極めて純度の高い金属Siを必要とするため
不経済で、したかってB10値の高いものを工業的に得
ることは困難であった。
On the other hand, making the sum of (Ti+A I,, I) less than 20 ppm requires extremely pure metal Si, which is uneconomical, and it is therefore difficult to industrially obtain one with a high B10 value. Ta.

この発明は上記問題点を解決するために成されたもので
、溶鋼に添加するFeSi合金さらに合金剤添加後の溶
鋼の成分を調整することによって、不純物の少ないけい
素鋼素材を溶製し得る方法について提案することを目的
とする。
This invention was made to solve the above problems, and by adjusting the FeSi alloy added to molten steel and the composition of molten steel after adding alloying agents, it is possible to melt silicon steel material with few impurities. The purpose is to propose methods.

(課題を解決するための手段) この発明は、取鍋に収容したけい素鋼用溶鋼に、70〜
80%のSiを含有しかつ、Ti・0.020%以下及
びAt : 0.050%以下に抑制した成分組成のF
eS i合金を添加し、取鍋内のスラグ成分を Al2O,]: 88%以 下iO2: 0.5%以下でかつ Cab/ 5I02 : 0.6〜2.0の範囲に調整
することを特徴とするけい素鋼素材の溶製方法である。
(Means for Solving the Problems) This invention provides molten steel for silicon steel housed in a ladle with a
F with a component composition containing 80% Si and suppressing Ti to 0.020% or less and At: 0.050% or less
eSi alloy is added and the slag component in the ladle is adjusted to Al2O, ]: 88% or less, iO2: 0.5% or less, and Cab/5I02: 0.6 to 2.0. This is a method for melting silicon steel materials.

(作 用) 取鍋内のけい素鋼用溶鋼に添加するFeSi合金さらに
合金元素添加後における取鍋内のスラグを、この発明に
従う成分組成の範囲内にそれぞれ保つ二とにより、けい
素鋼素材として用いる溶鋼中の(Ti+A1.。1)量
を20ppm未満にする二とかできる。
(Function) By keeping the FeSi alloy added to the molten steel for silicon steel in the ladle and the slag in the ladle after adding alloying elements within the range of the composition according to the present invention, It is possible to reduce the amount of (Ti+A1..1) in the molten steel used as less than 20 ppm.

なせならFeSi合金の成分組成を規制し溶鋼に添加す
るFeSi合金から溶鋼中に持ち込まれるTi及びA1
の混入量を減らした上て、取鍋内のスラグの成分調整を
行うことによって、取鍋スラグと溶鋼とは熱力学的に平
衡関係を保ち、取鍋スラグ中のTi及びA1かスラグか
ら溶鋼中へ移行するのを防止し得るためである。
Ti and A1 brought into the molten steel from the FeSi alloy are added to the molten steel by controlling the composition of the FeSi alloy.
By reducing the mixed amount of slag and adjusting the composition of the slag in the ladle, the ladle slag and molten steel maintain a thermodynamically balanced relationship, and the molten steel is removed from the Ti and A1 in the ladle slag or from the slag. This is because it can prevent migration into the interior.

以下にFeSi合金及び取鍋スラグの組成範囲を限定す
る理由を説明する。
The reason for limiting the composition ranges of the FeSi alloy and ladle slag will be explained below.

まずFeSi合金中のTi及びAIの含有量をそれぞれ
0.0200ti以下及び0.050%以下にするのは
、これらの範囲をこえる含有は、取鍋スラグの組成を上
記の適合範囲に保ったとしても、例えば取鍋スラグ量が
極端に少ない場合などに溶鋼中の(Ti十Al5ol)
量が20ppm以上になることがあり、従ってTi及び
AIの含有量は上記の範囲内で極力低下させることが好
ましい。特にTiは溶鋼からの除去可能量となる取鍋ス
ラグ中での許容量が上述のように著しく低いため溶鋼中
のTi量はより少ないこ七が好ましく 、0.015%
以下にすることで溶鋼中のTi量を]Oppm未満にす
ることができる。さらにFeSi合金に含まれる不可避
的不純物としてはC2Mn、  P、  S、 Cu、
 Ni、 Cr、 Ca等があり、これらの含有量も少
ないほど製品の電磁特性に及ぼす影響は小さくなる。
First, the content of Ti and AI in the FeSi alloy should be 0.0200ti or less and 0.050% or less, respectively, because the content exceeding these ranges should be maintained even if the composition of the ladle slag is kept within the above-mentioned compatible range. Also, for example, when the amount of ladle slag is extremely small, (Ti + Al 5 ol) in molten steel
The content of Ti and AI may be 20 ppm or more, therefore, it is preferable to reduce the content of Ti and AI as much as possible within the above range. In particular, since the amount of Ti in ladle slag that can be removed from molten steel is extremely low as described above, the amount of Ti in molten steel is preferably as low as 0.015%.
By doing the following, the amount of Ti in the molten steel can be made less than ]Oppm. Furthermore, unavoidable impurities contained in FeSi alloy include C2Mn, P, S, Cu,
These include Ni, Cr, Ca, etc., and the lower the content of these, the smaller the influence on the electromagnetic properties of the product.

なおこの発明に従う組成になるFeSi合金は、純度の
高い珪石と前述の不純物濃度の低い厳選した鉄鉱石を電
気炉で還元、溶融し精錬することによって製造すること
ができる。
Note that the FeSi alloy having the composition according to the present invention can be manufactured by reducing, melting, and refining highly pure silica stone and the above-mentioned carefully selected iron ore with a low impurity concentration in an electric furnace.

次に取鍋スラグの成分は、該スラグ中のA1□0゜及び
TiO□が低ければ低いほど溶鋼中のTi及びAl量は
低くなる。
Next, regarding the components of the ladle slag, the lower the A1□0° and TiO□ in the slag, the lower the amounts of Ti and Al in the molten steel.

すなわちCaO/SiO□比は低い方が溶鋼中のAI。In other words, the lower the CaO/SiO□ ratio, the more AI is in the molten steel.

Tiが低くなるが、CaO/SiO□比が0.6未満に
なると取鍋スラグの流動性が悪くなり、有効なスラグと
溶鋼の反応が行えなくなるだけでなく溶鋼中の酸素が増
加し、磁性改善効果が得られない。一方CaO/SiO
□比が高くなると溶鋼中のAl、Tiの混入率が高くな
るので2.0を上限とする。
Although the Ti content decreases, if the CaO/SiO No improvement effect can be obtained. On the other hand, CaO/SiO
As the □ ratio increases, the mixing rate of Al and Ti in the molten steel increases, so the upper limit is set at 2.0.

しかしCaO/5iOzが適正範囲でもA l tch
が8%を越えるとAI、。、を10ppm未満とするこ
とができないし、またTi0zが0.5%を越えてもT
iを10ppm未満にできない。また、望ましくはA 
l t(hを5%以下、TiO2を0.1%以下にする
と(Ti+A I 、、L)≦10ppmを達成するこ
とができる。
However, even if CaO/5iOz is within the appropriate range, Al tch
If it exceeds 8%, AI. , cannot be made less than 10 ppm, and even if Ti0z exceeds 0.5%, T
i cannot be less than 10 ppm. Also, preferably A
When l t(h is 5% or less and TiO2 is 0.1% or less, (Ti+A I ,,L)≦10 ppm can be achieved.

なお取鍋スラグ中に不可避的に含まれるMgO。Furthermore, MgO is unavoidably contained in the ladle slag.

FeO及びMnOは低い方が望ましいが、これらの総和
が15%以下なら実質的な影響は無視し得る。
It is desirable that FeO and MnO be low, but if their total is 15% or less, the substantial effect can be ignored.

上記に加えてより一層Ti、A Iレベルを低下させた
い場合や、何らかのトラブルで処理前のTi、AIレベ
ルが20ppm以上になった場合や、転炉出鋼時に転炉
内スラグ(塩基度が3.0〜7.0と高い)が取鍋内に
大量(≧15kg/l)に流入した場合などは、取鍋内
の溶鋼に対して酸素ガスを0.005Nm’/1−IN
I13/lの範囲で吹き込むことにより、溶鋼中のTi
やA1を酸化除去すると共に、Siを酸化させることで
必然的に取鍋内スラグ中の塩基度をより一層低下させ、
従来不可能とされている脱Ti、AIを実施できる。
In addition to the above, if you want to further reduce the Ti and AI levels, or if the Ti and AI levels before treatment are over 20 ppm due to some trouble, or if you want to reduce the slag in the converter (basicity 3.0 to 7.0) flows into the ladle in large quantities (≧15 kg/l), the molten steel in the ladle should be treated with oxygen gas at 0.005 Nm'/1-IN.
By blowing in the range of I13/l, Ti in the molten steel is
By oxidizing and removing A1 and oxidizing Si, the basicity in the slag in the ladle is inevitably further reduced,
It is possible to perform Ti removal and AI, which were previously considered impossible.

次に溶鋼に供給する酸素量について説明する。Next, the amount of oxygen supplied to molten steel will be explained.

I Nm’/lをこえる酸素ガスの吹き込みを行うと、
溶鋼中のSiのロスが大きくなって追加するSi合金鉄
量も増加し製造コストの増大をまねく。加えて発熱量も
太きく(10°C以上の昇温)なり、それを冷却するに
は、冷却材を溶鋼に投入せざるを得なくなる不利も生じ
る。この冷却材の添加により、逆に冷却材からTiやA
Iがピックアップされ、かえってTiやAI含有量が上
昇する問題も生じる上、前述の様に溶鋼中の酸素が増加
することで磁性改善効果が得られなくなる。
When oxygen gas is injected in excess of I Nm'/l,
The loss of Si in the molten steel increases, and the amount of Si alloy iron added also increases, leading to an increase in manufacturing costs. In addition, the amount of heat generated increases (temperature rise of 10° C. or more), and in order to cool it, a coolant must be added to the molten steel, which is disadvantageous. By adding this coolant, Ti and A are removed from the coolant.
There is also the problem that I is picked up and the contents of Ti and AI increase, and as mentioned above, the effect of improving magnetism cannot be obtained due to the increase in oxygen in the molten steel.

(実施例) 実施炎上 180tの溶鋼を転炉から取鍋に出鋼中、表1に示す成
分組成のFeSi合金8.8tを添加し、引続き表2の
組成を有する合成フラックス2tを添加した。
(Example) While 180 tons of molten steel was being tapped from a converter to a ladle, 8.8 tons of FeSi alloy having the composition shown in Table 1 was added, followed by 2 tons of synthetic flux having the composition shown in Table 2.

この合成フラツクスは転炉から流出した約3tのスラグ
及びFeS i合金の一部が酸化されて生成しりSiO
2などと溶解し合い、次の組成を有するほぼ均質な取鍋
スラグを生成した。
This synthetic flux is produced by the oxidation of approximately 3 tons of slag flowing out from the converter and a portion of the FeSi alloy.
2 and others to form a substantially homogeneous ladle slag having the following composition:

〈取鍋スラグ組成〉 CaO/5iOz : 0.80 A1□03   :3.2% TiO□   : 0.09% (MnO+FeO+Mg0) : 3.8%F    
:o、s% その後溶鋼に1550°Cで約20分間ORH脱ガス処
理を施し、連続鋳造法にて鋳造しけい素綱スラブを得た
。このスラブの化学成分組成は次の通りであり、(Ti
十八へ 5ot)の混入量は7 ppmであった。
<Ladle slag composition> CaO/5iOz: 0.80 A1□03: 3.2% TiO□: 0.09% (MnO+FeO+Mg0): 3.8%F
: o, s% Thereafter, the molten steel was subjected to ORH degassing treatment at 1550°C for about 20 minutes, and a silicon steel slab was obtained by continuous casting. The chemical composition of this slab is as follows: (Ti
The amount of contamination (18 to 5 ot) was 7 ppm.

くけい素鋼スラブの化学成分組成〉 C10,04%、Si/3.51%、Mn10.05%
、5e10.030%、5b10.025 %、 AI
 10.0002%、Ti70.0005%、Olo、
0012%、 次いでこのけい素綱スラブを用いて上述の特開昭54−
35817号公報に従う手順で方向性けい素鋼板とした
。かくして得られた板厚0.2〜Q、3mmの製品の磁
気特性はB10値の平均値が1.93T以上で1.95
Tを越える製品が得られ、鉄損−5,7,。値も0.9
W/kg以下のものが得られた。
Chemical composition of silicon steel slab> C10.04%, Si/3.51%, Mn10.05%
, 5e10.030%, 5b10.025%, AI
10.0002%, Ti70.0005%, Olo,
0012%, and then using this silicon steel slab, the above-mentioned JP-A-54-
A grain-oriented silicon steel sheet was prepared using the procedure according to Publication No. 35817. The magnetic properties of the thus obtained product with a plate thickness of 0.2 to Q, 3 mm are 1.95 when the average B10 value is 1.93T or more.
A product exceeding T was obtained, with an iron loss of -5.7. The value is also 0.9
W/kg or less was obtained.

1呈1 実施例1と同様に、180tの溶鋼を転炉から取鍋に出
鋼中、表1に示した成分組成のFeSi合金約9tを添
加し、引続き焼石灰を500kg加えた後、1550°
Cで20分間ORH脱ガス処理を施し、取鍋スラグを次
に示す組成に調整した。
1 Presentation 1 As in Example 1, while 180 tons of molten steel was being tapped from a converter to a ladle, about 9 tons of FeSi alloy having the composition shown in Table 1 was added, and then 500 kg of burnt lime was added, and then 1550 tons of molten steel was poured into a ladle. °
The ladle slag was subjected to ORH degassing treatment at C for 20 minutes, and the ladle slag was adjusted to the composition shown below.

〈取鍋スラグ組成〉 Cab/ 5iOz : 1.14 A I z03: 5.6% TiO□   :0.13% (MnO+FeO+Mg0) : 9.41%その後連
続鋳造法にて鋳造しけい素鋼スラブを得た。このスラブ
の化学成分組成は次の通りであり、(Ti + A I
 $61)の混入量はl0pp−であった。
<Ladle slag composition> Cab/5iOz: 1.14 AI z03: 5.6% TiO□: 0.13% (MnO+FeO+Mg0): 9.41% After that, a cast silicon steel slab was obtained by continuous casting method. Ta. The chemical composition of this slab is as follows: (Ti + A I
The amount of contamination ($61) was 10 pp-.

くけい素鋼スラブの化学成分組成〉 C10,04%、Si/3.48%、Mn10.06%
、5e10.030%、5b10.025 %、 A 
1 soL 10.0003%、Ti10.0007%
、O10,0010%、 次いでこのけい素鋼スラブを用いて実施例1と同様特開
昭54−35817号公報に従う手順で方向性けい素鋼
板とした。かくして得られた板厚0.2〜0.3閣の製
品の磁気特性はB、。値の平均値が1.91T以上で1
.94Tを越える製品が得られ、鉄損−17/、。
Chemical composition of silicon steel slab> C10.04%, Si/3.48%, Mn10.06%
, 5e10.030%, 5b10.025%, A
1 soL 10.0003%, Ti 10.0007%
, O10,0010%.Then, this silicon steel slab was used to prepare a grain-oriented silicon steel plate in the same manner as in Example 1 according to the procedure described in JP-A-54-35817. The magnetic properties of the thus obtained product with a plate thickness of 0.2 to 0.3 mm are B. 1 if the average value is 1.91T or more
.. A product with a strength exceeding 94T was obtained, with an iron loss of -17/.

値は0.8〜1.0W/kg以下のものが得られた。Values of 0.8 to 1.0 W/kg or less were obtained.

比較■ また比較として、実施例2と同様の処理を、添加するF
eSi合金の成分組成のうちA1:0.052%及びT
i:0.021%に変更して行った場合の取鍋スラグ組
成は次の通りであり、得られた連鋳スラブの(Ti十A
 l 5ot)混入量は21ppmであった。
Comparison■ Also, as a comparison, the same treatment as in Example 2 was carried out with the addition of F.
A1: 0.052% and T in the component composition of eSi alloy
The ladle slag composition when changing i to 0.021% is as follows, and the obtained continuous cast slab (Ti + A
15ot) The amount of contamination was 21 ppm.

〈取鍋スラグ組成〉 Cab/ Sing : 2.10 A I 、0.   : 7.5% TiO□   : 0.60% (MnO+ FeO±Mg0) : 9.6%次いでこ
の連鋳スラブを上記実施例と同様に方向性けい素鋼板と
したところ、この鋼板の磁気特性はB1゜値の平均値が
1.89Tで1.93Tを越える製品はほとんど得られ
ず、鉄損h+t/so値は0.9〜1.1W/kgであ
った。
<Ladle slag composition> Cab/Sing: 2.10 AI, 0. : 7.5% TiO□ : 0.60% (MnO+ FeO±Mg0) : 9.6% Next, this continuous cast slab was made into a grain-oriented silicon steel plate in the same manner as in the above example, and the magnetic properties of this steel plate were as follows. The average B1° value was 1.89T, and hardly any products exceeding 1.93T were obtained, and the iron loss h+t/so value was 0.9 to 1.1 W/kg.

ちなみにこの発明に従うAI及びTiの混入低減方法は
、高炭素軸受鋼や極細線用鋼等の溶製にも適用できる。
Incidentally, the method for reducing contamination of AI and Ti according to the present invention can also be applied to the production of high carbon bearing steel, ultrafine wire steel, and the like.

(発明の効果) この発明に従う方法によって、けい素鋼素材の(Ti 
+ A 15at)混入量を20ppm未満に抑えるこ
とができ、B1゜値の平均値が1.91を越えるような
高磁束密度でかつ、鉄損値h+tzs。値も大幅に低減
した方向性けい素鋼板の製造を容易に実現するけい素鋼
素材を工業的に熔製し得る。
(Effect of the invention) By the method according to the invention, silicon steel material (Ti
+ A 15at) A high magnetic flux density such that the amount of contamination can be suppressed to less than 20 ppm, the average value of B1° value exceeds 1.91, and iron loss value h + tzs. It is possible to industrially melt a silicon steel material that can easily produce grain-oriented silicon steel sheets with significantly reduced values.

same

Claims (1)

【特許請求の範囲】 1、取鍋に収容したけい素鋼用溶鋼に、70〜80%の
Siを含有しかつ、Ti:0.020wt%以下及びA
l:0.050wt%以下に抑制した成分組成のFeS
i合金を添加し、取鍋内のスラグ成分を Al_2O_3:8wt%以下 TiO_2:0.5wt%以下でかつ CaO/SiO_2:0.6〜2.0 の範囲に調整することを特徴とするけい素鋼素材の溶製
方法。
[Claims] 1. Molten steel for silicon steel contained in a ladle contains 70 to 80% Si, Ti: 0.020 wt% or less, and A
l: FeS with a component composition suppressed to 0.050 wt% or less
i-alloy is added, and the slag component in the ladle is adjusted to Al_2O_3: 8 wt% or less, TiO_2: 0.5 wt% or less, and CaO/SiO_2: 0.6 to 2.0. Method for melting steel materials.
JP02222357A 1990-08-27 1990-08-27 Melting method of silicon steel material Expired - Fee Related JP3105525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02222357A JP3105525B2 (en) 1990-08-27 1990-08-27 Melting method of silicon steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02222357A JP3105525B2 (en) 1990-08-27 1990-08-27 Melting method of silicon steel material

Publications (2)

Publication Number Publication Date
JPH04107239A true JPH04107239A (en) 1992-04-08
JP3105525B2 JP3105525B2 (en) 2000-11-06

Family

ID=16781075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02222357A Expired - Fee Related JP3105525B2 (en) 1990-08-27 1990-08-27 Melting method of silicon steel material

Country Status (1)

Country Link
JP (1) JP3105525B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260997A (en) * 2007-04-11 2008-10-30 Nippon Steel Corp Desulfurization method of molten steel
JP2013527318A (en) * 2010-06-23 2013-06-27 宝山鋼鉄股▲分▼有限公司 Control method for ultra-low carbon, ultra-low Ti aluminum and silicon killed steel
CN111471827A (en) * 2020-04-03 2020-07-31 湖南华菱涟源钢铁有限公司 Method for controlling titanium content in smelted silicon steel to be less than or equal to 15ppm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284379A (en) * 1995-04-17 1996-10-29 Matsukusuton Kk Waterproofed combustible surface decorated mat

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260997A (en) * 2007-04-11 2008-10-30 Nippon Steel Corp Desulfurization method of molten steel
JP2013527318A (en) * 2010-06-23 2013-06-27 宝山鋼鉄股▲分▼有限公司 Control method for ultra-low carbon, ultra-low Ti aluminum and silicon killed steel
CN111471827A (en) * 2020-04-03 2020-07-31 湖南华菱涟源钢铁有限公司 Method for controlling titanium content in smelted silicon steel to be less than or equal to 15ppm

Also Published As

Publication number Publication date
JP3105525B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
US7377986B2 (en) Method for production of non-oriented electrical steel strip
US5779819A (en) Grain oriented electrical steel having high volume resistivity
KR20120030140A (en) Method for producing grain-oriented electromagnetic steel plate
JP3550924B2 (en) Method for manufacturing high carbon steel wire and wire
KR100479992B1 (en) A non-oriented steel sheet with excellent magnetic property and a method for producing it
JPH04107239A (en) Method for melting silicon steel stock
JPS633007B2 (en)
JPH05140649A (en) Manufacture of now-oriented silicon steel sheet excellent in magnetic property
US3986902A (en) Silicon steel suitable for production of oriented silicon steel using low slab reheat temperature
JP2003286533A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
JP3179530B2 (en) Melting method of extremely low Ti steel
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JPH07122090B2 (en) Method of melting directional silicon steel material
JPS63195217A (en) Nonoriented electrical steel sheet having small iron loss after magnetic annealing
JP3456295B2 (en) Melting method of steel for non-oriented electrical steel sheet
JPH0463220A (en) Method for refining silicon steel stock
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP4256617B2 (en) High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy
JP4218136B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP7413600B1 (en) Fe-Ni alloy plate and its manufacturing method
JP6989000B2 (en) Manufacturing method of slab slab, which is a material for non-oriented electrical steel sheets
JP4055252B2 (en) Method for melting chromium-containing steel
JPH0565524A (en) Production of slab for grain oriented silicon steel
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JP2002206144A (en) Fe-Ni BASED ALLOY HAVING EXCELLENT SURFACE PROPERTY AND PRODUCTION METHOD THEREFOR

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees