JP2008260997A - Desulfurization method of molten steel - Google Patents

Desulfurization method of molten steel Download PDF

Info

Publication number
JP2008260997A
JP2008260997A JP2007103951A JP2007103951A JP2008260997A JP 2008260997 A JP2008260997 A JP 2008260997A JP 2007103951 A JP2007103951 A JP 2007103951A JP 2007103951 A JP2007103951 A JP 2007103951A JP 2008260997 A JP2008260997 A JP 2008260997A
Authority
JP
Japan
Prior art keywords
molten steel
desulfurization
caf
amount
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007103951A
Other languages
Japanese (ja)
Other versions
JP5157228B2 (en
Inventor
Tamahiro Matsuzawa
玲洋 松澤
Kenichiro Naito
憲一郎 内藤
Masamitsu Wakao
昌光 若生
Kosuke Kume
康介 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007103951A priority Critical patent/JP5157228B2/en
Publication of JP2008260997A publication Critical patent/JP2008260997A/en
Application granted granted Critical
Publication of JP5157228B2 publication Critical patent/JP5157228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurization method of molten steel in a secondary refining step in steelmaking, which can achieve a high desulfurization efficiency in the secondary refining step by inhibiting the decrease in the desulfurization performance due to the presence of Al<SB>2</SB>O<SB>3</SB>inclusions, can perform desulfurization at a region with low sulfur contents by using a reduced amount of a desulfurization agent, and can reduce refractory erosion. <P>SOLUTION: In the desulfurization method of the molten steel, when molten steel is tapped to a ladle from a converter after decarburizing and refining, ferrosilicon is charged in an amount of ≥2 kg in terms of Si, per 1t molten steel. In a vacuum degassing facility in the subsequent secondary refining step, Al is charged in an amount of ≥0.2 kg per 1t molten steel. The molten steel is circulated for 3-10 min, and the desulfurization agent is subsequently blown in together with Ar. Preferably, the desulfurization agent comprises CaO, CaF<SB>2</SB>, MgO and unavoidable impurities, wherein the MgO content is 10-40 mass% and the composition satisfies the relation: 1.0≤CaO/CaF<SB>2</SB>≤3.0. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、製鋼二次精錬工程における溶鋼の脱硫方法に関する。   The present invention relates to a method for desulfurizing molten steel in a steelmaking secondary refining process.

溶鋼を製造する際の脱硫処理は溶銑予備処理工程で行うのが一般的であるが、次の転炉工程にてスラグおよびスクラップから復硫が生じるため、低硫鋼精錬においては二次精錬工程でも脱硫処理を行って鋼材の品質要求に応じたレベルまで硫黄を低下させる。   The desulfurization treatment when producing molten steel is generally performed in the hot metal pretreatment process, but since the slag and scrap are recovered from the slag and scrap in the next converter process, the secondary refining process is used in low-sulfur steel refining. But desulfurization is performed to reduce the sulfur to a level that meets the quality requirements of the steel.

二次精錬時の溶鋼温度は1550〜1650℃であるため、高温で分解あるいは蒸発を起こしにくいCaO系脱硫剤が使用されている。CaOは融点が2500℃以上と高く単体では反応性に乏しいため、通常はCaF2(蛍石)、Al23、SiO2等の溶融促進剤(滓化剤)と共に使用する。特にCaF2は融点が1423℃と低いため溶融促進効果が大きく、かつCaOの脱硫能を低下させないことから、例えば特許文献1のように高効率の滓化剤として利用されている。CaF2以外の滓化剤を利用した例としては、例えば特許文献2のようにCaO、Al23、MgO等の配合比を規定した脱硫剤が開示されている。 Since the molten steel temperature at the time of secondary refining is 1550 to 1650 ° C., a CaO-based desulfurizing agent that does not easily decompose or evaporate at high temperatures is used. Since CaO has a high melting point of 2500 ° C. or more and is poor in reactivity when used alone, it is usually used together with a melting accelerator (enamelling agent) such as CaF 2 (fluorite), Al 2 O 3 , or SiO 2 . In particular, since CaF 2 has a melting point as low as 1423 ° C., it has a large melting acceleration effect and does not lower the desulfurization ability of CaO. As an example using a fluorinating agent other than CaF 2 , a desulfurization agent that defines a compounding ratio of CaO, Al 2 O 3 , MgO or the like as disclosed in Patent Document 2, for example, is disclosed.

脱硫反応は下記式(1)で表され、溶鋼中の酸素(溶存酸素)が低いほど進行しやすい。よって脱硫処理に先立つ、転炉出鋼時あるいは二次精錬初期に金属Alを添加して脱酸処理を行うのが常である。
CaO+=CaS+ (1)
The desulfurization reaction is represented by the following formula (1), and progresses more easily as the oxygen (dissolved oxygen) in the molten steel is lower. Therefore, it is usual to perform deoxidation treatment by adding metal Al before the desulfurization treatment, at the time of steel leaving the converter or at the initial stage of secondary refining.
CaO + S = CaS + O (1)

また、出鋼時あるいは二次精錬での脱酸により、溶鋼中にはAl23介在物が生成する。このAl23介在物は粗大なクラスターを形成することが多いため、脱硫剤粒子と合体すると脱硫剤粒子中のAl23濃度が40〜50質量%以上となりサルファイドキャパシティーを大きく低下させる。そこで、特許文献3においてはAl投入から所定時間おいてAl23介在物を浮上させた後に脱硫剤を吹き込む方法、特許文献4においては脱硫剤添加前にAl23介在物除去用の粉体を吹き込む方法が開示されている。 In addition, Al 2 O 3 inclusions are generated in the molten steel due to deoxidation at the time of steel extraction or secondary refining. Since the Al 2 O 3 inclusions often form coarse clusters, when combined with the desulfurizing agent particles, the concentration of Al 2 O 3 in the desulfurizing agent particles is 40 to 50% by mass or more, and the sulfide capacity is greatly reduced. . Therefore, in Patent Document 3, a method of blowing a desulfurizing agent after floating Al 2 O 3 inclusions after a predetermined time from Al input, and in Patent Document 4 for removing Al 2 O 3 inclusions before adding the desulfurizing agent. A method for blowing powder is disclosed.

特開昭60−59011号公報JP 60-59011 A 特開昭61−106706号公報JP-A-61-106706 特開昭62−205220号公報JP-A-62-205220 特開昭62−196317号公報JP-A-62-196317

しかしながら、特許文献3のようにAl投入から所定時間経過後に脱硫剤を吹き込む方法において、出鋼時にAlを投入する場合はAl投入直後、溶存酸素は一旦低下するが、その後は大気からの酸素吸収が起こるためAlの歩留まりは低く、大きな脱酸効果は得られにくい。また二次精錬工程でAlを投入する場合は実質10分以上溶鋼を循環させてから脱硫剤を添加することになるため、温度低下および生産性の点で好ましい方法とはいえない。   However, in the method of blowing a desulfurization agent after a predetermined time has passed since Al input as in Patent Document 3, when Al is input at the time of steel output, dissolved oxygen decreases once immediately after Al input, but thereafter oxygen absorption from the atmosphere Therefore, the yield of Al is low and it is difficult to obtain a large deoxidation effect. In addition, when Al is added in the secondary refining process, the desulfurization agent is added after the molten steel is circulated for substantially 10 minutes or more.

特許文献4のようにAl23介在物除去用の粉体を事前に吹き込む方法は、使用量の適正範囲が未知のため、Al23介在物量に対して粉体量が不足の場合は脱硫能低下を抑制できず、過剰の場合は粉体が介在物として残留する。また、複数の粉体を使用することから、タンク等の新たな設備投資が必要となる。 When the powder for removing Al 2 O 3 inclusions is blown in advance as in Patent Document 4, since the appropriate range of usage is unknown, the amount of powder is insufficient relative to the amount of Al 2 O 3 inclusions. Cannot suppress a decrease in desulfurization ability, and if excessive, powder remains as inclusions. In addition, since a plurality of powders are used, a new equipment investment such as a tank is required.

低硫域まで脱硫する際、特許文献1のようにCaF2を含む脱硫剤の方が特許文献2のようにCaF2を含まない脱硫剤よりも溶融速度が速いため有利である。CaF2を含まない脱硫剤の多量使用かつ長時間処理は不可能ではないが、実質的に困難である。よって脱硫剤成分としてCaF2は不可欠であるが、一方で耐火物を侵食する作用も持つため、多量に使用すると耐火物補修に伴うコストおよび非稼動時間が増大することになる。加えて、脱硫剤とAl23介在物の合体は脱硫の阻害だけでなく脱硫剤の使用量増加を招き、CaF2による耐火物溶損を助長する結果となる。 When desulfurizing to a low sulfur region, a desulfurizing agent containing CaF 2 as in Patent Document 1 is advantageous because a melting rate is faster than a desulfurizing agent not containing CaF 2 as in Patent Document 2. A large amount of desulfurization agent not containing CaF 2 and long-time treatment are not impossible, but are substantially difficult. Therefore, CaF 2 is indispensable as a desulfurizing agent component, but on the other hand, it also has an action of eroding refractories. Therefore, when used in a large amount, the cost and non-operating time associated with refractory repair increase. In addition, the combination of the desulfurizing agent and the Al 2 O 3 inclusion not only inhibits the desulfurization but also increases the amount of the desulfurizing agent used, and promotes refractory damage due to CaF 2 .

これらの問題を鑑み、本発明は二次精錬工程での脱硫効率を高めることで従来技術より脱硫剤使用量を少なくしても低硫域まで脱硫でき、さらには耐火物の溶損も軽減する方法を提供することを目的とする。   In view of these problems, the present invention improves the desulfurization efficiency in the secondary refining process, so that even if the amount of desulfurizing agent used is less than that of the prior art, it can be desulfurized to a low sulfur region, and further, the refractory melting loss is reduced. It aims to provide a method.

本発明者らは、従来技術の課題を解決すべく鋭意研究を行った。その結果、Si脱酸を利用することで二次精錬処理前の溶存酸素を安定制御し、その後の二次精錬工程でAlを投入し、所定の時間経過後に脱硫剤を吹き込むことで高い脱硫率を得る方法を見出した。この方法では、耐火物溶損を軽減することも可能である。   The present inventors have conducted intensive research to solve the problems of the prior art. As a result, by using Si deoxidation, the dissolved oxygen before the secondary refining process is stably controlled, Al is introduced in the subsequent secondary refining process, and a high desulfurization rate is achieved by blowing a desulfurizing agent after a predetermined time. I found a way to get it. This method can also reduce refractory melt damage.

本発明は以下の構成を要旨とする。
(1)脱炭精錬後に転炉から取鍋へ溶鋼を出鋼する際にフェロシリコンをSi換算で溶鋼1t当たり2kg以上投入し、続く二次精錬工程の真空脱ガス設備において、Alを溶鋼1t当たり0.2kg以上投入し、溶鋼を3分以上10分以下循環した後に脱硫剤をArとともに吹き込むことを特徴とする溶鋼の脱硫方法。
(2)CaO、CaF2、MgOおよび不可避的不純物から構成され、その組成が1.0≦CaO/CaF2≦3.0を満たし、かつMgOが10質量%以上40質量%以下である脱硫剤を使用することを特徴とする、請求項1に記載の溶鋼の脱硫方法。
The gist of the present invention is as follows.
(1) When the molten steel is discharged from the converter to the ladle after decarburization refining, 2 kg or more of ferrosilicon is added per 1 ton of molten steel in terms of Si, and in the vacuum degassing equipment in the subsequent refining process, 1 t of molten steel is added. A desulfurization method for molten steel, wherein 0.2 kg or more per unit is charged and the desulfurizing agent is blown together with Ar after circulating the molten steel for 3 minutes or more and 10 minutes or less.
(2) A desulfurization agent composed of CaO, CaF 2 , MgO and unavoidable impurities, the composition satisfying 1.0 ≦ CaO / CaF 2 ≦ 3.0, and MgO being 10% by mass or more and 40% by mass or less. The method for desulfurizing molten steel according to claim 1, wherein:

本発明によると、脱硫剤使用量を少なくしても高い脱硫率が得られ、さらに耐火物溶損も軽減することができる。   According to the present invention, a high desulfurization rate can be obtained even if the amount of the desulfurizing agent used is reduced, and the refractory melt damage can be reduced.

本発明の最良の実施形態について詳細に説明する。   The best embodiment of the present invention will be described in detail.

転炉で脱炭精錬を終了した溶鋼には酸素が400〜1000ppm含まれていることから、出鋼時にフェロシリコンをSi換算で溶鋼1t当たり5kg以上添加する。図1にSi添加量(kg/t)と溶存酸素(ppm)の関係を示す。5kg/t以上の領域ではSi添加量に対する溶存酸素の変化は小さいことが分かる。すなわち、5kg/t以上添加すれば溶存酸素を安定制御でき、さらに大気からの酸素吸収が起こっても溶存酸素の急激な変化は起こりにくい。   Since the molten steel that has been decarburized and refined in the converter contains 400 to 1000 ppm of oxygen, 5 kg or more of ferrosilicon is added per 1 ton of molten steel in terms of Si at the time of steel output. FIG. 1 shows the relationship between the amount of Si added (kg / t) and dissolved oxygen (ppm). It can be seen that the change in dissolved oxygen with respect to the amount of Si added is small in the region of 5 kg / t or more. That is, if 5 kg / t or more is added, dissolved oxygen can be stably controlled, and even if oxygen absorption from the atmosphere occurs, a rapid change in dissolved oxygen is unlikely to occur.

フェロシリコン投入量の上限は最終成品Siに応じて決まる。本発明は最終成品Siが低い鋼種には適用できないが、低硫鋼は自動車用高張力鋼板のように高い強度を発現するためにフェロシリコンを添加すること多いので、そのような鋼種に対して本発明は大きな効果を発揮する。   The upper limit of the amount of ferrosilicon input is determined according to the final product Si. Although the present invention cannot be applied to a steel grade having a low final product Si, low-sulfur steel is often added with ferrosilicon to develop high strength like a high-strength steel plate for automobiles. The present invention exhibits a great effect.

次に、二次精錬設備にてAlを添加して脱酸する。設備としてはRHのような真空脱ガス設備を用いれば、脱酸後の溶鋼に添加する脱硫剤粉体が含有する水分による水素ピックアップを防止することができる。図2にAl添加量(kg/t)と溶存酸素(ppm)の関係を示す。溶存酸素は0.2kg/tのAl添加により大きく低下することが分かる。よってAl添加量の下限を0.2kg/tとする。Al添加量が0.6kg/tを超えてもそれ以上の溶存酸素の低下量は小さくコストが高くなるだけなので、Al添加量の上限は0.6kg/tとすることが好ましい。   Next, Al is added and deoxidized in the secondary refining equipment. If vacuum degassing equipment such as RH is used as equipment, hydrogen pick-up due to moisture contained in the desulfurizing agent powder added to the molten steel after deoxidation can be prevented. FIG. 2 shows the relationship between the amount of added Al (kg / t) and dissolved oxygen (ppm). It can be seen that the dissolved oxygen is greatly reduced by the addition of 0.2 kg / t Al. Therefore, the lower limit of the amount of Al added is 0.2 kg / t. Even if the Al addition amount exceeds 0.6 kg / t, the further decrease in dissolved oxygen is only small and the cost is high, so the upper limit of the Al addition amount is preferably 0.6 kg / t.

Al添加では式(2)および(3)の反応が起こる。
Al+3=Al23 (2)
Al+3SiO2=2Al23+3Si (3)
式(2)はAlによる溶存酸素の脱酸反応、式(3)は出鋼時のフェロシリコン添加で生成したSiO2介在物をAlが還元する反応である。ここで、式(2)の反応で生成したAl23介在物は100μm超のクラスターとなるため、脱硫剤粒子と合体すると脱硫能を大きく低下させる。一方、式(3)の反応で生成したAl23介在物は粒径がおおむね50μm未満となるため、脱硫剤粒子と合体しても粒子中Al23濃度が大きく上昇することは少ない。発明者らの研究では、この場合のAl23濃度上昇は10質量%以下であり、この程度であればAl23はCaOの滓化を促進し脱硫率向上に寄与することを新たに知見した。このように、SiO2の還元により微小なAl23介在物とすることが必要であるので、出鋼時にフェロシリコンとAlを同時に添加してしまうとそのままAl23が生成してしまい、本発明の効果は得られ難くなる。
When Al is added, the reactions of formulas (2) and (3) occur.
2 Al +3 O = Al 2 O 3 (2)
4 Al + 3SiO 2 = 2Al 2 O 3 +3 Si (3)
Formula (2) is a deoxidation reaction of dissolved oxygen by Al, and Formula (3) is a reaction in which Al reduces SiO 2 inclusions generated by adding ferrosilicon during steel output. Here, since the Al 2 O 3 inclusions produced by the reaction of the formula (2) form a cluster exceeding 100 μm, when combined with the desulfurizing agent particles, the desulfurization ability is greatly reduced. On the other hand, since the Al 2 O 3 inclusions produced by the reaction of formula (3) have a particle size of generally less than 50 μm, the concentration of Al 2 O 3 in the particles hardly increases even when combined with the desulfurizing agent particles. . In the research by the inventors, the increase in the concentration of Al 2 O 3 in this case is 10% by mass or less, and at this level, Al 2 O 3 promotes the hatching of CaO and contributes to the improvement of the desulfurization rate. I found out. Thus, since it is necessary to reduce the SiO 2 to make a minute Al 2 O 3 inclusion, if ferrosilicon and Al are added simultaneously at the time of steelmaking, Al 2 O 3 is generated as it is. The effect of the present invention is difficult to obtain.

同じAl23介在物でも、式(2)で生成する場合と式(3)で生成する場合とでは脱硫剤粒子に及ぼす影響が異なることから、Al添加後は溶鋼を循環して両者の分離を図る。ここでの循環とは取鍋から真空脱ガス設備の真空槽に溶鋼を吸引して流動させる作業を意味し、例えばRH、またはDHでの処理がそれに当てはまる。Al添加後の循環時間とAl23介在物指数の関係を図3に示す。この指数はAl添加直後のAl23介在物量を1とし、それとの相対値で表示したものである。Alを添加してから3分以上循環すれば粗大なAl23介在物は半分以下に減少するが、10分以上循環すると微小なAl23介在物も半分以下に減少する。 Even if the same Al 2 O 3 inclusions are produced by the formula (2) and the formula (3), the influence on the desulfurizing agent particles is different. Try to separate. The circulation here means an operation of sucking and flowing molten steel from a ladle to a vacuum tank of a vacuum degassing facility, and for example, treatment with RH or DH is applicable thereto. FIG. 3 shows the relationship between the circulation time after the addition of Al and the Al 2 O 3 inclusion index. This index is expressed as a value relative to the amount of Al 2 O 3 inclusions immediately after addition of Al as 1. When Al is added for 3 minutes or more after circulation, coarse Al 2 O 3 inclusions are reduced to less than half, but when it is circulated for 10 minutes or more, minute Al 2 O 3 inclusions are also reduced to less than half.

図4に循環時間と脱硫率の関係を示す。脱硫率は式(4)で定義される。
脱硫率=([Si]i−[Si]f)/[Si]i×100 (4)
ここで、[S]iは初期溶鋼中S濃度、[S]fは終点溶鋼中S濃度である。循環時間が3分未満では粗大なAl23介在物と脱硫剤粒子の合体、10分超では微細なAl23介在物の減少によりいずれも脱硫率が低下するため、Al添加後の好適な循環時間は3分以上10分以下である。脱硫反応は高温ほど進行しやすいことから、長時間の循環は溶鋼温度低下の点からも好ましくない。循環時間の上限はより好ましくは5分以下である。
FIG. 4 shows the relationship between the circulation time and the desulfurization rate. The desulfurization rate is defined by equation (4).
Desulfurization rate = ([Si] i − [Si] f ) / [Si] i × 100 (4)
Here, [S] i is the S concentration in the initial molten steel, and [S] f is the S concentration in the end-point molten steel. Circulation time coalescence of coarse Al 2 O 3 inclusions and the desulfurization agent particles is less than 3 minutes for the 10 minutes than to decrease both desulfurization rate by a reduction in the fine Al 2 O 3 inclusions, Al after addition A suitable circulation time is 3 minutes or more and 10 minutes or less. Since the desulfurization reaction proceeds more easily at higher temperatures, long-term circulation is not preferable from the viewpoint of lowering the molten steel temperature. The upper limit of the circulation time is more preferably 5 minutes or less.

式(3)の還元反応が一部の介在物で完全に起こらず、介在物がAl23−SiO2複合組成となる場合もあるが、SiO2もAl23と同様にCaOの滓化作用を有する。このときもAl23とSiO2濃度上昇の和が10質量%以下であれば良く、Al23−SiO2複合介在物であっても同じ効果を得ることができる。 Although the reduction reaction of formula (3) does not occur completely with some inclusions and the inclusions may have an Al 2 O 3 —SiO 2 composite composition, SiO 2 is also composed of CaO in the same manner as Al 2 O 3. Has hatching action. At this time, the sum of the Al 2 O 3 and SiO 2 concentration increases should be 10% by mass or less, and the same effect can be obtained even with Al 2 O 3 —SiO 2 composite inclusions.

真空槽に溶鋼を吸引する浸漬管は、溶鋼面上のスラグと処理中は常に接触しており、CaF2を含む脱硫剤を使用すると最も溶損しやすくなる。しかし本発明は従来技術よりも脱硫剤使用量を少なくしても高い脱硫率が得られるため、耐火物の溶損を軽減することができる。 The dip tube for sucking molten steel into the vacuum chamber is always in contact with the slag on the molten steel surface during processing, and is most easily damaged by using a desulfurizing agent containing CaF 2 . However, since the present invention can obtain a high desulfurization rate even if the amount of the desulfurizing agent used is less than that of the prior art, it is possible to reduce the refractory melt damage.

さらに、本発明ではCaO−CaF2−MgO系脱硫剤を使用すると耐火物溶損を大きく抑制することができることがわかった。MgOの存在によりCaF2が希釈され、耐火物の浸食作用が抑えられるからである。但し、CaF2が希釈させるとCaOの溶融速度は遅くなって脱硫率が低下し易くなるため、好適な組成範囲がある。 Furthermore, the present invention has found that it is possible to increase suppress refractory erosion Using CaO-CaF 2 -MgO based desulfurizing agent. This is because CaF 2 is diluted by the presence of MgO, and the erosion action of the refractory is suppressed. However, when CaF 2 is diluted, the melting rate of CaO is slowed and the desulfurization rate is likely to decrease, so that there is a suitable composition range.

まず、CaOとCaF2の比率は1.0≦CaO/CaF2≦3.0である。CaO/CaF2<1.0ではCaF2比率が高いため耐火物の溶損が激しく、またCaO/CaF2>3.0では滓化が不十分で高い脱硫率を得にくくなる。MgOは10質量%以上40質量%以下である。MgOが10質量%未満ではCaF2希釈効果を得にくく、40質量%超では滓化が不十分になりやすい。MgOの比率はより好ましくは20質量%以上35質量%以下である。 First, the ratio of CaO and CaF 2 is 1.0 ≦ CaO / CaF 2 ≦ 3.0. When CaO / CaF 2 <1.0, the CaF 2 ratio is high, so that the refractory melts severely. When CaO / CaF 2 > 3.0, hatching is insufficient and it is difficult to obtain a high desulfurization rate. MgO is 10 mass% or more and 40 mass% or less. If MgO is less than 10% by mass, the CaF 2 dilution effect is difficult to obtain, and if it exceeds 40% by mass, hatching tends to be insufficient. The ratio of MgO is more preferably 20% by mass or more and 35% by mass or less.

転炉で脱炭精錬した溶鋼400tを取鍋へ出鋼する際にSi濃度75%のフェロシリコンを投入した。次に、二次精錬工程であるRHにてAlを投入して循環した後、取鍋に浸漬したランスからArを搬送ガスとして粉体脱硫剤を吹き込んで脱硫した。   When taking 400 t of molten steel decarburized and refined in a converter into a ladle, ferrosilicon having a Si concentration of 75% was introduced. Next, Al was introduced and circulated in RH, which is a secondary refining process, and then desulfurized by blowing a powder desulfurizing agent from a lance immersed in a ladle using Ar as a carrier gas.

RH処理前S濃度は30〜40ppm、処理中の温度は1580〜1620℃、脱硫剤の吹き込み速度は50kg/分であった。この処理を表1の水準で連続5チャージずつ行った。連続処理後にはRH浸漬管(Al23−MgO系耐火物)の内径変化を測定し、1チャージ当たりの溶損量を求めた。水準1〜11は発明例、水準12〜15は比較例であり、表中で「*」の表示は、本願発明の範囲外であることを示すものである。 The S concentration before RH treatment was 30 to 40 ppm, the temperature during treatment was 1580 to 1620 ° C., and the blowing rate of the desulfurizing agent was 50 kg / min. This process was performed for 5 consecutive charges at the level shown in Table 1. After the continuous treatment, the inner diameter change of the RH dip tube (Al 2 O 3 —MgO refractory) was measured to determine the amount of erosion per charge. Levels 1 to 11 are invention examples, and levels 12 to 15 are comparative examples. In the table, “*” indicates that the present invention is outside the scope of the present invention.

Figure 2008260997
Figure 2008260997

表2に上記表1で処理した各溶鋼を用いて水準1〜15に示す脱硫剤を添加して脱硫処理を行った場合の試験結果を5チャージの平均値で示す。脱硫処理はS濃度が10ppm以下になるまで実施したが、比較例の水準12、13は脱硫の進行が遅く、長時間処理による溶鋼温度異常低下および浸漬管異常溶損の懸念があったため、処理時間30分、脱硫剤原単位3.8kg/tとなった時点で処理を終了した。   Table 2 shows the test results in the case of performing desulfurization treatment by adding the desulfurization agent shown in levels 1 to 15 using each molten steel treated in Table 1 above, as an average value of 5 charges. The desulfurization treatment was carried out until the S concentration became 10 ppm or less. However, in Comparative Examples 12 and 13, the progress of the desulfurization was slow, and there was a concern that the molten steel temperature was abnormally lowered and the dip tube was abnormally damaged due to the long-time treatment. The treatment was terminated when the desulfurizing agent basic unit reached 3.8 kg / t for 30 minutes.

本発明例である水準1〜11ではいずれも70%以上の高い脱硫率が得られた。特に、脱硫剤組成が1.0≦CaO/CaF2≦3.0を満たし、かつMgOが10質量%以上40質量%以下である水準4〜7では浸漬管溶損量が1チャージ当たり3mm未満に抑制された。この結果を図5および6に示す。水準1〜3あるいは水準8〜9では浸漬管溶損量が若干増大するものの1チャージ当たり5mm未満だった。また水準10および11ではS濃度を10ppm以下にするまで3.5〜3.7kg/tの脱硫剤原単位を要したが、浸漬管溶損量は1チャージ当たり3mm未満であった。 In Examples 1 to 11 as examples of the present invention, a high desulfurization rate of 70% or more was obtained. In particular, at levels 4 to 7 where the desulfurizing agent composition satisfies 1.0 ≦ CaO / CaF 2 ≦ 3.0 and MgO is 10% by mass or more and 40% by mass or less, the amount of dip tube erosion is less than 3 mm per charge. Was suppressed. The results are shown in FIGS. In Levels 1 to 3 or Levels 8 to 9, although the dip tube erosion amount slightly increased, it was less than 5 mm per charge. In levels 10 and 11, 3.5 to 3.7 kg / t of desulfurizing agent basic unit was required until the S concentration was 10 ppm or less, but the dip tube erosion amount was less than 3 mm per charge.

一方、比較例である水準12は出鋼時にフェロシリコンを投入しなかったため、比較例である水準13はRHでのAl投入量が少ないため、いずれもS濃度が10ppmまで到達せず且つ浸漬管は1チャージ当たり8mm以上溶損した。比較例である水準14および15はいずれも10ppm以下までS濃度が到達したが、前者はAl投入後の循環時間が短すぎるため、後者はAl投入後の循環時間が長すぎるために3.0kg/t以上の脱硫剤を必要とし、浸漬管が1チャージ当たり6.5〜6.9mm溶損した。   On the other hand, since level 12 as a comparative example did not input ferrosilicon at the time of steel output, level 13 as a comparative example had a small amount of Al input at RH, so that the S concentration did not reach 10 ppm and the dip tube Melted more than 8 mm per charge. Levels 14 and 15, which are comparative examples, both reached an S concentration of 10 ppm or less, but the former was too short for the circulation time after the Al was charged, and the latter was 3.0 kg because the circulation time after the Al was too long. A desulfurizing agent of at least / t was required, and the dip tube melted 6.5 to 6.9 mm per charge.

Figure 2008260997
Figure 2008260997

溶鋼1t当たりのSi添加量と溶存酸素の関係を示す図である。It is a figure which shows the relationship between Si addition amount per 1t of molten steel, and dissolved oxygen. 溶鋼1t当たりのAl添加量と溶存酸素の関係を示す図である。It is a figure which shows the relationship between the amount of Al addition per 1t of molten steel, and dissolved oxygen. Al添加後循環時間と介在物指数の関係を示す図である。It is a figure which shows the relationship between the circulation time after Al addition, and an inclusion index. Al添加後循環時間と脱硫率の関係を示す図である。It is a figure which shows the relationship between the circulation time after Al addition, and a desulfurization rate. CaO/CaF2と脱硫率および浸漬管溶損量の関係を示す図である。Is a diagram showing the relationship between CaO / CaF 2 and the desulfurization rate and dip tube erosion amount. MgOと脱硫率および浸漬管溶損量の関係を示す図である。It is a figure which shows the relationship between MgO, a desulfurization rate, and the amount of dip pipe erosion.

Claims (2)

脱炭精錬後に転炉から取鍋へ溶鋼を出鋼する際にフェロシリコンをSi換算で溶鋼1t当たり5kg以上投入し、続く二次精錬工程の真空脱ガス設備において、Alを溶鋼1t当たり0.2kg以上投入し、溶鋼を3分以上10分以下循環した後に脱硫剤をArとともに吹き込むことを特徴とする溶鋼の脱硫方法。   When the molten steel is discharged from the converter to the ladle after decarburizing and refining, 5 kg or more of ferrosilicon is added per 1 ton of molten steel in terms of Si. A desulfurization method for molten steel, wherein 2 kg or more is charged and the desulfurization agent is blown together with Ar after circulating the molten steel for 3 minutes or more and 10 minutes or less. 前記脱硫剤が、CaO、CaF2、MgOおよび不可避的不純物から構成され、その組成が1.0≦CaO/CaF2≦3.0を満たし、かつ、MgOが10質量%以上40質量%以下であることを特徴とする、請求項1に記載の溶鋼の脱硫方法。 The desulfurizing agent is composed of CaO, CaF 2 , MgO and inevitable impurities, the composition satisfies 1.0 ≦ CaO / CaF 2 ≦ 3.0, and MgO is 10 mass% or more and 40 mass% or less. The method for desulfurization of molten steel according to claim 1, characterized in that it is present.
JP2007103951A 2007-04-11 2007-04-11 Desulfurization method for molten steel Active JP5157228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103951A JP5157228B2 (en) 2007-04-11 2007-04-11 Desulfurization method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103951A JP5157228B2 (en) 2007-04-11 2007-04-11 Desulfurization method for molten steel

Publications (2)

Publication Number Publication Date
JP2008260997A true JP2008260997A (en) 2008-10-30
JP5157228B2 JP5157228B2 (en) 2013-03-06

Family

ID=39983692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103951A Active JP5157228B2 (en) 2007-04-11 2007-04-11 Desulfurization method for molten steel

Country Status (1)

Country Link
JP (1) JP5157228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752731A (en) * 2022-03-23 2022-07-15 北京首钢股份有限公司 RH refining high-efficiency desulfurization method
CN115044743A (en) * 2022-05-26 2022-09-13 江阴兴澄特种钢铁有限公司 Method for controlling desulfurization rate of low-carbon sulfur-containing steel in VD furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196317A (en) * 1986-02-21 1987-08-29 Nippon Steel Corp Treatment of molten steel
JPS62205220A (en) * 1986-03-04 1987-09-09 Nippon Steel Corp Degassing and desulfurizing method for molten steel
JPH04107239A (en) * 1990-08-27 1992-04-08 Kawasaki Steel Corp Method for melting silicon steel stock
JPH07188731A (en) * 1993-12-27 1995-07-25 Sumitomo Metal Ind Ltd Method for melting urtralow oxygen steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196317A (en) * 1986-02-21 1987-08-29 Nippon Steel Corp Treatment of molten steel
JPS62205220A (en) * 1986-03-04 1987-09-09 Nippon Steel Corp Degassing and desulfurizing method for molten steel
JPH04107239A (en) * 1990-08-27 1992-04-08 Kawasaki Steel Corp Method for melting silicon steel stock
JPH07188731A (en) * 1993-12-27 1995-07-25 Sumitomo Metal Ind Ltd Method for melting urtralow oxygen steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752731A (en) * 2022-03-23 2022-07-15 北京首钢股份有限公司 RH refining high-efficiency desulfurization method
CN114752731B (en) * 2022-03-23 2023-05-05 北京首钢股份有限公司 RH refining high-efficiency desulfurization method
CN115044743A (en) * 2022-05-26 2022-09-13 江阴兴澄特种钢铁有限公司 Method for controlling desulfurization rate of low-carbon sulfur-containing steel in VD furnace
CN115044743B (en) * 2022-05-26 2023-09-15 江阴兴澄特种钢铁有限公司 Method for controlling desulfurization rate of low-carbon sulfur-containing steel in VD furnace

Also Published As

Publication number Publication date
JP5157228B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP5343308B2 (en) Desulfurization method for molten steel
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP4742740B2 (en) Method for melting low-sulfur steel
JP4999483B2 (en) Manufacturing method of stainless steel
JP5605339B2 (en) Recycling method of steelmaking slag
JP5891826B2 (en) Desulfurization method for molten steel
JP5157228B2 (en) Desulfurization method for molten steel
CN112322958A (en) Low-carbon aluminum-containing steel and smelting control method thereof
JP2008063610A (en) Method for producing molten steel
JP5888194B2 (en) Desulfurization method for molten steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP4648820B2 (en) Method for producing extremely low sulfur chromium-containing molten steel
CN114214481A (en) Method for reducing nitrogen content in steel
JP4609010B2 (en) Steel manufacturing method
JP2000345224A (en) Method for desulfurizing molten iron
JP5286892B2 (en) Dephosphorization method of hot metal
JP2016079462A (en) Method for refining hot pig iron
JP5387045B2 (en) Manufacturing method of bearing steel
JP7255639B2 (en) Molten steel desulfurization method and desulfurization flux
JP7107099B2 (en) Hot metal refining method
JP5803866B2 (en) Desulfurizing agent for molten steel and desulfurization method using the same
JP7319548B2 (en) Molten steel desulfurization method
JP2011190532A (en) Dephosphorization treatment method of molten iron in mixer car
CN101365811A (en) Flux used in smelting low-nitrogen, low-oxygen, and low-sulfur steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350