JPS63195217A - Nonoriented electrical steel sheet having small iron loss after magnetic annealing - Google Patents

Nonoriented electrical steel sheet having small iron loss after magnetic annealing

Info

Publication number
JPS63195217A
JPS63195217A JP2936487A JP2936487A JPS63195217A JP S63195217 A JPS63195217 A JP S63195217A JP 2936487 A JP2936487 A JP 2936487A JP 2936487 A JP2936487 A JP 2936487A JP S63195217 A JPS63195217 A JP S63195217A
Authority
JP
Japan
Prior art keywords
iron loss
mno
magnetic annealing
inclusions
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2936487A
Other languages
Japanese (ja)
Other versions
JPH0742557B2 (en
Inventor
Morio Shiozaki
塩崎 守雄
Yosuke Kurosaki
洋介 黒崎
Masakatsu Sumimoto
住本 正勝
Kazutaka Tone
和隆 東根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62029364A priority Critical patent/JPH0742557B2/en
Publication of JPS63195217A publication Critical patent/JPS63195217A/en
Publication of JPH0742557B2 publication Critical patent/JPH0742557B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a nonoriented electrical steel sheet having small iron loss after magnetic annealing, by specifying the ratio of the amt. of MnO to the total amt. of SiO2 MnO and Al2O3 in a nonoriented electrical steel sheet contg. specified percentages of C, Si, sol.Al, Mn, S, N and T.O. CONSTITUTION:When a nonoriented electrical steel sheet contg., by weight, <=0.015% C, 0.1-1.0% Si, 0.001-0.005% sol.Al, <=1.5% Mn, <=0.008% S, <=0.0050% N and <=0.02% T.O contains SiO2, MnO and Al2O3 as inclusions, the amt. of MnO is regulated to <=15% of the total amt. of SiO2, MnO and Al2O3. Thus, a nonoriented electrical steel sheet capable of attaining >=50mum average grain size after magnetic annealing and having small iron loss is easily obtd. at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、優れた磁気特性を有する無方向性電磁鋼板に
関するものである。無方向性電磁鋼板は、鋼板が製鉄所
から出荷される際に既に最終的な磁気特性を具備してい
るように製造されたフルプロセス製品と、鋼板の納入先
にて行われる打抜き加工や剪断加工後の磁性焼鈍により
、初めて所定の磁気特性が現出されるようにされたセミ
プロセス製品とに区別され、本発明は後者に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties. Non-oriented electrical steel sheet is a full-process product manufactured so that the steel sheet already has the final magnetic properties when it is shipped from the steel mill, and a non-oriented electrical steel sheet that is manufactured in such a way that it already has the final magnetic properties when the sheet is shipped from the steel mill. It is classified into semi-processed products in which predetermined magnetic properties are revealed for the first time through magnetic annealing after processing, and the present invention relates to the latter.

(従来の技術) 無方向性電磁鋼板は、例えば発電機、電動機、小型変圧
器等の電気機器に広範囲にわたって使用される。しかし
、最近省エネルギーの見地から更に鉄損の少ない材料が
供給されることが求められている。
(Prior Art) Non-oriented electrical steel sheets are widely used in electrical equipment such as generators, electric motors, and small transformers. However, recently there has been a demand for materials with even lower iron loss from the standpoint of energy conservation.

無方向性電磁鋼板の鉄損を決定する主な要因は、Si+
Anの含有量と結晶粒径であり、同一成分の場合は結晶
粒径は約120μmの時に最も鉄損が少なくなることが
知られている。このクラスの無方向性電磁鋼板は、製造
メーカーの出荷時点での平均結晶粒径は約5〜20μ曙
程度であるので、需要家での打抜きなどの加工後の磁性
焼鈍により結晶粒径を大きくすることが鉄損を少なくす
ることになる。
The main factor that determines the iron loss of non-oriented electrical steel sheets is Si+
It is known that the iron loss is the lowest when the An content and the crystal grain size are the same, and the crystal grain size is about 120 μm. This class of non-oriented electrical steel sheet has an average crystal grain size of about 5 to 20 μm at the time of shipment from the manufacturer, so the crystal grain size can be increased by magnetic annealing after processing such as punching at the customer. This will reduce iron loss.

ところで鋼板中の介在物には、硫化物、窒化物、酸化物
等があるが、これらの介在物、特に微細な介在物は需要
家での磁性焼鈍時の結晶粒成長を妨げるので極′27減
らさなければならない。まず硫化物を減らす方法として
は脱硫が必須であり、この方法としては、溶銑予備処理
や、出鋼時、或いは溶鋼の真空脱ガス時に各種脱硫剤を
添加する方法が一般的に知られている0次に窒化物を減
らす方法としてはNの含有量を少なくすることが必須で
あり、低窒素吹錬法などが一般的に知られている。
By the way, inclusions in steel sheets include sulfides, nitrides, oxides, etc. These inclusions, especially fine inclusions, impede crystal grain growth during magnetic annealing in the customer, so must be reduced. First, desulfurization is essential as a method to reduce sulfides, and commonly known methods include adding various desulfurization agents during hot metal pretreatment, tapping, or vacuum degassing of molten steel. As a method for reducing zero-order nitrides, it is essential to reduce the N content, and a low nitrogen blowing method is generally known.

更に酸化物を減らす方法としては、出発溶鋼を真空脱ガ
スし、Aj、3i等で脱酸する方法が一般的に知られて
いる。更に、これらの一般的な方法に加え、微細なAj
Nを無害化する方法としては、従来より5oLjV10
.15%以上とし、微細なAjNを析出させない方法が
知られている。一方、特公昭48−3055号公報では
、5ijc0.3〜2.0%含有する珪素鋼において酸
可溶性M量を0.001%以上(0,014−0,4X
 (S、i) )%以下とする方法が提案されている。
A generally known method for further reducing oxides is to vacuum degas the starting molten steel and deoxidize it with Aj, 3i, or the like. Furthermore, in addition to these general methods, fine Aj
Conventionally, the method of making N harmless is 5oLjV10
.. A method is known in which the content is set at 15% or more and fine AjN is not precipitated. On the other hand, Japanese Patent Publication No. 48-3055 discloses that silicon steel containing 0.3 to 2.0% of 5ijc has an acid-soluble M content of 0.001% or more (0.014-0.4X
(S, i) )% or less has been proposed.

これは、soL Atの含有量が(0,014−0,4
X (St) )%を越え、0.15%未満では、微細
な/’JNの悪影響により磁性焼鈍時の結晶粒の粗大化
が難しく、磁気特性が不安定で劣ることによる。また、
特開昭61−119652号公報では、Mを0.15〜
0.60%とし、Nを0. OO20%以下、Sを0.
0025%以下、0を0.0020%以下とする方法が
提案されている。これは、Nを0.0020%以下、S
を0.0025%以下とすることによる高純化とM添加
による微細窒化物の析出防止の効果であると推定してい
る。特開昭54−163720号公報では、IVは0.
1%以下としB/N(硼素含有量/窒素含有量)を 0
.5〜2.5、Nは0.0100%以下にコントロール
する方法が提案されている。これは、BはAIよりもN
との親和力が強いためBNを生成し、BNは微細に析出
せず結晶粒成長を阻害しないことによる。
This means that the content of soL At is (0,014-0,4
If it exceeds X (St)% and is less than 0.15%, it is difficult to coarsen the crystal grains during magnetic annealing due to the adverse effects of fine /'JN, resulting in unstable and inferior magnetic properties. Also,
In JP-A-61-119652, M is 0.15~
0.60%, and N is 0.60%. OO20% or less, S 0.
A method has been proposed in which 0 is set to 0.0025% or less, and 0 is set to 0.0020% or less. This means that N is less than 0.0020% and S
It is estimated that this is due to the effects of high purification by reducing the content to 0.0025% or less and prevention of precipitation of fine nitrides by adding M. In JP-A-54-163720, the IV is 0.
1% or less and B/N (boron content/nitrogen content) is 0.
.. 5 to 2.5, and a method of controlling N to 0.0100% or less has been proposed. This means that B is more N than AI.
This is because BN is generated because it has a strong affinity with BN, and BN does not precipitate finely and does not inhibit crystal grain growth.

一方、特公昭56−43294号公報では、溶鋼を真空
脱ガス処理して鋼中の炭素を0.015%以下及び酸素
を0.02%以下に下げた後脱酸にアルミニウムを使用
せず珪素のみを使用し、鋼中の珪素量を0.1〜1.0
%、全アルミニウム量を0.007%以下に調整し、鉄
損が優れ、かつ鋼板のたて目、よこ目平均の透磁率μI
 S/Soが2500以上である珪素鋼板を得る方法を
提案している。これは、鋼中に残存するアルミニウムが
、様々な析出物、介在物の形態で存在し、それらが焼鈍
による結晶粒成長の際に透磁率を下げるような好ましく
ない結晶方位を発達せしめたものと想像している。
On the other hand, in Japanese Patent Publication No. 56-43294, molten steel is vacuum degassed to reduce the carbon content in the steel to 0.015% or less and the oxygen content to 0.02% or less, and then silicon is removed without using aluminum for deoxidation. silicon content in the steel from 0.1 to 1.0.
%, the total aluminum amount is adjusted to 0.007% or less, and the iron loss is excellent, and the average magnetic permeability μI of the steel plate's warp and width
A method for obtaining a silicon steel plate with an S/So of 2500 or more is proposed. This is because the aluminum remaining in the steel exists in the form of various precipitates and inclusions, and these develop unfavorable crystal orientations that lower magnetic permeability during grain growth due to annealing. I'm imagining it.

(発明が解決しようとする問題点) 前記の従来の技術により得られる鉄損は満足できるもの
ではなく、本発明は、前記の従来の技術の持つ欠点を解
決した工業的に安価に製造し得るセミプロセス無方向性
電磁鋼板である。
(Problems to be Solved by the Invention) The iron loss obtained by the above-mentioned conventional technology is not satisfactory, and the present invention solves the drawbacks of the above-mentioned conventional technology and can be manufactured at an industrially low cost. This is a semi-processed non-oriented electrical steel sheet.

(問題点を解決するための手段) 本発明は、c:o、ots%以下、St : 0.1〜
1.0%、soj、 Aj : 0.001〜0.00
5%、Mn:1.5%以下、S : 0.008%以下
、N : 0.0050%以下、T、O:0.02%以
下を含む無方向性電磁鋼板において、鋼中の5iOz+
 MnO,Ajz03の3種の介在物の総重量に対する
MnOの重量の割合が15%以下であることを特徴とす
る磁性焼鈍後の平均結晶粒径を50μm以上になし得る
鉄損の少ない無方向性電磁鋼板である。
(Means for Solving the Problems) The present invention provides c:o, ots% or less, St: 0.1 to
1.0%, soj, Aj: 0.001-0.00
5%, Mn: 1.5% or less, S: 0.008% or less, N: 0.0050% or less, T, O: 0.02% or less, 5iOz+ in the steel
Non-directional with low iron loss that can make the average grain size after magnetic annealing 50 μm or more, characterized in that the ratio of the weight of MnO to the total weight of the three types of inclusions MnO and Ajz03 is 15% or less It is a magnetic steel sheet.

本発明者は、5oLAlの含有量が0.1%以下で、B
を添加しない、安価に製造し得る磁性焼鈍後の鉄損の少
ないセミプロセス無方向性電磁鋼板を提供すべ(,75
0℃×2時間の磁性焼鈍後の製品の鉄損と平均結晶粒径
、介在物について調査を行なった。磁性焼鈍は、750
℃×2時間が一応の目処であるが、連続的に焼鈍したり
、±50℃程度温度条件が変わる場合がある。特に、低
温側に磁性焼鈍条件がずれた場合でも、優れた磁気特性
が得られることが肝要である。その結果新たに得られた
知見を0.1%Si鋼を例に以下に説明する。
The present inventor has proposed that the content of 5oLA1 is 0.1% or less, and B
To provide a semi-processed non-oriented electrical steel sheet that does not contain additives and can be produced at low cost and has low iron loss after magnetic annealing (,75
After magnetic annealing at 0° C. for 2 hours, the core loss, average grain size, and inclusions of the product were investigated. Magnetic annealing is 750
℃ × 2 hours is the standard, but there are cases where continuous annealing is performed or the temperature conditions change by about ±50°C. In particular, it is important that excellent magnetic properties can be obtained even when the magnetic annealing conditions are shifted to the lower temperature side. The newly obtained findings will be explained below using 0.1% Si steel as an example.

■ 金相組織 第1図の(1)には磁性焼鈍後の鉄損の悪い製品(WI
S/S。≧6.0 W/ kg) 、(21には鉄…が
中程度の製品(4,8W/−≦W+s/so < 6.
0 W/ kg)、(3)には鉄損の少ない製品(VL
s/so < 4.8 W/ kg)の金相組織の例を
示す。磁性焼鈍後の鉄損は、公知のように結晶粒径と良
い・相関を示し、鉄損の悪い製品の平均結晶粒径は約1
0〜20μl、鉄損が中程度の製品の平均結晶粒径は約
20〜50μ―、鉄損の少ない製品の平均結晶粒径は5
0μ爾以上であることが分かった。
■ Metal phase structure (1) in Figure 1 shows a product with poor iron loss after magnetic annealing (WI
S/S. ≧6.0 W/kg), (21 is a product with medium iron content (4.8 W/-≦W+s/so <6.
0 W/kg), (3) is a product with low iron loss (VL
An example of a gold phase structure with s/so < 4.8 W/kg) is shown. As is well known, the iron loss after magnetic annealing shows a good correlation with the crystal grain size, and the average crystal grain size of products with poor iron loss is approximately 1.
0 to 20 μl, the average grain size of products with medium iron loss is approximately 20 to 50 μl, and the average grain size of products with low iron loss is 5
It was found that it was more than 0μ.

■ 介在物 第2図(a)は磁性焼鈍後の鉄損の悪い製品の介在物の
走査電子顕微鏡写真図、同図(d)は同介在物をエネル
ギー分散型X線分析装W (EDX)を用いて分析した
結果を示す図、同図山)は鉄損が中程度の製品の介在物
の走査電子顕微鏡写真図、同図(Q)は同介在物をエネ
ルギー分散型X線分析装置(EDX)を用いて分析した
結果を示す図、同図(C1は鉄損の少ない製品の介在物
の走査電子顕微鏡写真図、同図<nは同介在物をエネル
ギー分散型X線分析装! (EDX)を用いて分析した
結果を示す図である。
■ Inclusions Figure 2 (a) is a scanning electron micrograph of inclusions in a product with poor iron loss after magnetic annealing, and Figure 2 (d) shows the inclusions taken using an energy dispersive X-ray analyzer W (EDX). The figure showing the results of the analysis using an energy dispersive X-ray analyzer (Fig. EDX), the same figure (C1 is a scanning electron micrograph of inclusions in a product with low iron loss, the same figure <n is an energy dispersive X-ray analysis system! It is a figure which shows the result of analysis using EDX).

鉄損の悪い製品には、圧延方向に沿って延びた介在物が
多数観察され、これが結晶粒成長を抑制していた。鉄損
が中程度の製品にもこの介在物は観察されたが、その量
は鉄損の悪い製品と比べ少なかった。鉄損の少ない製品
には圧延方向に延びた介在物はほとんど観察されず、球
状のものがほとんどであり、結晶粒成長を抑制していな
かった。
In products with poor iron loss, many inclusions extending along the rolling direction were observed, which suppressed grain growth. These inclusions were also observed in products with medium iron loss, but the amount was smaller than in products with poor iron loss. In products with low iron loss, inclusions extending in the rolling direction were hardly observed, most of them were spherical, and grain growth was not suppressed.

これらの介在物をEDXで分析した結果、StO□−M
nO−u、o、系の介在物であることが判明した。
As a result of analyzing these inclusions by EDX, it was found that StO□-M
It turned out to be an inclusion of the nO-u,o system.

そして、Aj、SlSMnを定量し、これからSin、
、Mn01AlzO1の組成を求め、これをSi01S
10l−/V2O3三元系状態図にプロットした結果を
第3図に示す。
Then, Aj, SlSMn are quantified, and from this, Sin,
, find the composition of Mn01AlzO1 and convert it to Si01S
The results plotted on a 10l-/V2O3 ternary system phase diagram are shown in FIG.

これより、鉄損の悪い製品の介在物は、融点が1140
〜1200℃と低融点のものが多く、鉄損の中程度の製
品の介在物の組成は、鉄損の悪い製品の介在物よりもM
nOが少ないものが多く、鉄損の少ない製品の介在物は
、MnOの非常に少ない組成のものであることが判明し
た。第4図には、Sing −MnO状態図を示す、こ
れより、鉄損あ中程度の製品の介在物の方が、鉄損の少
ない製品の介在物よりも融点の低い物質をより多(含有
してい名ことが分かる。
From this, inclusions in products with poor iron loss have a melting point of 1140
Many have a low melting point of ~1200℃, and the composition of inclusions in products with medium core loss is lower than that in products with low core loss.
It was found that inclusions in products with low iron loss and low nO content were found to have compositions with very low MnO content. Figure 4 shows the Sing-MnO phase diagram, which shows that the inclusions of products with medium iron loss contain more substances with low melting points than the inclusions of products with low iron loss. I know the name.

従って、鉄損の悪い製品と鉄損の中程度の製品に観察さ
れた5tOz−’MnOI’JzOz系の介在物は、ス
ラブ加熱中に溶融或いは半溶融状態となり、熱延中に圧
延方向に延ばされ、これが磁性焼鈍時の結晶粒成長を抑
制するということが新たに判明した。
Therefore, the 5tOz-'MnOI'JzOz-based inclusions observed in products with poor iron loss and products with medium iron loss become molten or semi-molten during slab heating, and are rolled in the rolling direction during hot rolling. It has been newly discovered that this suppresses grain growth during magnetic annealing.

第5図は、製品中のSing、Mn02A7to、の含
有量を化学分析し、SiOいMnO,Altosの3種
の介在物の総重量に対するMnOの比率、平均結晶粒径
と磁性焼鈍後の鉄損W+s/s。の関係を示すものであ
る。Sin、、Mn01jV、0.の総重量に対するM
nOの比率を15%以下にすれば、磁性焼鈍後の平均結
晶粒径を50μI以上になし得、例えばSi0.1%綱
では鉄損をWIS/S。<4.8W/kgというような
低鉄損を得られることが分かる。
Figure 5 shows the chemical analysis of the content of Sing, Mn02A7to, in the product, the ratio of MnO to the total weight of three types of inclusions: SiO, MnO, and Altos, the average grain size, and the iron loss after magnetic annealing. W+s/s. This shows the relationship between Sin,,Mn01jV,0. M for the total weight of
If the nO ratio is 15% or less, the average grain size after magnetic annealing can be 50 μI or more, and for example, in a 0.1% Si steel, the iron loss is WIS/S. It can be seen that a low core loss of <4.8 W/kg can be obtained.

以上述べた通り、本発明者は、鋼中のSiO□、MnO
As stated above, the present inventor has discovered that SiO□, MnO in steel
.

IV、O,の3種の介在物の総重量に対するMnOの重
量の割合を15%以下に調整することにより、磁性焼鈍
後の平均結晶粒径を50μm以上になし得る、鉄損の少
ない安価な無方向性電磁鋼板を発明したものである。
By adjusting the weight ratio of MnO to the total weight of the three types of inclusions, IV and O, to 15% or less, the average crystal grain size after magnetic annealing can be made to be 50 μm or more. He invented non-oriented electrical steel sheets.

さて、このような無方向性電磁鋼板の製造方法の例を1
00を転炉、真空脱ガス装置を用いて製造する場合につ
いて述べる。従来法では、転炉出鋼時にFe −Mn合
金を150賭添加していたが、本発明では300 kg
添加する。これにより、溶鋼はMnにより脱酸され、M
nOを生成するが、とのMnOは溶鋼を転炉から真空脱
ガス処理装置への搬送中や、脱炭のための真空脱ガス処
理前半に浮上してしまう。そして、真空脱ガス処理の後
半にAl脱酸を行い、それに続いて成分調整の目的のた
めにSL、 Mnを添加するが、転炉出鋼時にMnを添
加しているので、溶鋼中のMnの含有量が多くなってお
り、この時期の成分調整のためのMn添加量を減少でき
、MnOの生成を減少させることができる。これらの一
連の処理により、本発明法ではSiO2、MnO%M2
0.の総重量に対するMnOの割合が15%以下であり
、低融点介在物を生成せず、磁性焼鈍時の結晶粒成長を
容易ならしめることが可能となった。
Now, here is an example of a method for manufacturing such a non-oriented electrical steel sheet.
The case where 00 is manufactured using a converter and a vacuum degassing device will be described. In the conventional method, 150 kg of Fe-Mn alloy was added at the time of steel tapping in the converter, but in the present invention, 300 kg of Fe-Mn alloy was added.
Added. As a result, molten steel is deoxidized by Mn, and Mn
Although nO is generated, MnO and MnO float to the surface during transport of molten steel from the converter to the vacuum degassing treatment equipment or during the first half of the vacuum degassing treatment for decarburization. Then, Al deoxidation is performed in the latter half of the vacuum degassing treatment, and then SL and Mn are added for the purpose of composition adjustment, but since Mn is added at the time of steel extraction from the converter, the Mn in the molten steel is Since the content of Mn is increased, the amount of Mn added for component adjustment during this period can be reduced, and the generation of MnO can be reduced. Through these series of treatments, in the method of the present invention, SiO2, MnO%M2
0. The ratio of MnO to the total weight of the steel was 15% or less, and low melting point inclusions were not generated, making it possible to facilitate crystal grain growth during magnetic annealing.

〔従来公知技術との関連〕[Relationship with conventionally known technology]

特公昭48 = 3055号公報は、/VNの無害化を
図る技術であり、本発明もSol、 klは0.001
%〜0、005%としている。しかしながら、本発明で
は鋼中のSiO□+ MnO,AlzO3の3種の介在
物の総重量に対するMnOの重量の割合を15%以下に
調整することが必須であり、これなくしては、例えばS
i0.1%鋼で磁性焼鈍後の鉄損Wtszvo< 4.
8 W 7kgというような鉄損の少ない製品は不可能
であり、本発明は一歩進んだ技術と解される。
Japanese Patent Publication No. 3055 is a technique for making /VN harmless, and the present invention also uses Sol and kl of 0.001.
% to 0,005%. However, in the present invention, it is essential to adjust the weight ratio of MnO to the total weight of the three types of inclusions of SiO□+MnO and AlzO3 in the steel to 15% or less.
Iron loss after magnetic annealing for i0.1% steel Wtszvo<4.
It is impossible to create a product with low core loss such as 8 W 7 kg, and the present invention is considered to be a step ahead in technology.

特開昭61−119652号公報も微細なAjNの析出
防止を図る技術であり、Aβは0.15%〜0.60%
としており、本発明とは異なる技術と解され、また、M
の添加量が多いためコストの上昇は避けえない。
JP-A-61-119652 also discloses a technique for preventing the precipitation of fine AjN, and Aβ is 0.15% to 0.60%.
This is considered to be a technology different from the present invention, and M
Since the amount of addition is large, an increase in cost is unavoidable.

特開昭54−163720号公報は、微細なAjNの析
出を防止するためBを添加するものであり、本発明とは
異なる技術と解され、また、高価なりを添加するためコ
ストの上昇は避けえない、。
JP-A-54-163720 discloses the addition of B in order to prevent the precipitation of fine AjN, which is considered to be a different technology from the present invention, and also adds an expensive amount of B to avoid an increase in cost. No way.

特公昭56−43294号公報は、アルミニウムの析出
物、介在物が鉄損、透磁率に及ぼす悪影響に対する技術
であり、MnOについてはなんら言及されていない。し
かしながら、本発明では、AlzO,のみばかりでな(
MnOのコントロールが必須であり、鋼中のSiOz9
MnO,kl、0+の3種の介在物の総重量に対するM
nOの重量の割合を15%以下に調整することで初めて
良好な鉄損が得られるのであり、異なる技術と解される
Japanese Patent Publication No. 56-43294 is a technique for dealing with the adverse effects of aluminum precipitates and inclusions on core loss and magnetic permeability, and does not mention MnO at all. However, in the present invention, not only AlzO, but also (
Control of MnO is essential, and SiOz9 in steel
M relative to the total weight of three types of inclusions: MnO, kl, and 0+
Good core loss can only be obtained by adjusting the weight ratio of nO to 15% or less, and this can be interpreted as a different technology.

(本発明の諸条件) 以下に本発明の諸条件及び限定理由を説明する。(Conditions of the present invention) The conditions and reasons for limitations of the present invention will be explained below.

〔C〕 : Cは0.015%を越えると磁気特性に有害となるばか
りかCの析出による磁気時効が著しくなり、磁気特性が
劣化するので0.015%以下、望ましくはo、oto
%以下とする。
[C]: If C exceeds 0.015%, it is not only harmful to the magnetic properties, but also causes significant magnetic aging due to the precipitation of C, deteriorating the magnetic properties.
% or less.

(Si)  : Stは、添加量が増加すればするほど鉄損の減少度合い
を増す元素であるが、本発明は、700〜800℃程度
の磁性焼鈍で粗粒化させ、低鉄損化を狙うため、SLは
0.1〜1.0%とした。
(Si): St is an element that increases the degree of decrease in iron loss as the amount added increases, but in the present invention, the grains are made coarser by magnetic annealing at about 700 to 800°C to reduce iron loss. To achieve this goal, the SL was set to 0.1 to 1.0%.

(soL Aj)  : 5oLNが0.001%未満であると鋼中の酸素量が多
くなりすぎ、0.005%を越えると、磁性焼鈍時の結
晶粒成長を抑制するに十分な量のAj2Nが生成するた
め、5oLAIはo、ooi〜0.005%とした。
(soL Aj): If 5oLN is less than 0.001%, the amount of oxygen in the steel will be too large, and if it exceeds 0.005%, there will be a sufficient amount of Aj2N to suppress grain growth during magnetic annealing. For generation, 5oLAI was o,ooi~0.005%.

(Mn)  : Mnは鋼板の硬度を増加させ、打抜き性を改善す、  
るため添加するが、上限の1.5%は経済的理由による
ものである。
(Mn): Mn increases the hardness of the steel plate and improves the punching property.
However, the upper limit of 1.5% is for economic reasons.

〔S〕 : SはMnやトランプエレメントのCuなどと結合しMn
SやCuzSとなり、磁性焼鈍時の結晶粒成長を妨げる
ので少ない方が好ましく、0.008%以下とした。
[S]: S combines with Mn and Cu of the Trump element to form Mn.
Since it becomes S and CuzS and hinders crystal grain growth during magnetic annealing, it is preferable to have a small amount, and the content is set to 0.008% or less.

〔N〕 : Nが0.008o%を越えると、磁性焼鈍後の結晶粒成
長を抑制するに十分な量のIVNが生成するため、Nは
0.008o%以下とした。好ましくは、0.0030
%以下である。
[N]: If N exceeds 0.008o%, a sufficient amount of IVN is generated to suppress grain growth after magnetic annealing, so N was set to 0.008o% or less. Preferably 0.0030
% or less.

(T、O): T、Oが0.2%を越えると酸化物が増え、磁性焼鈍時
に結晶粒成長を妨げるので、′r、0は0.02%以下
とした。5oLNの上限を越えない範囲で7.0量を5
極力少なくすることが望ましく、特に0.015%以下
にすると効果が著しい。
(T, O): When T and O exceed 0.2%, oxides increase and hinder crystal grain growth during magnetic annealing, so 'r,0 was set to 0.02% or less. 7.0 amount within the range not exceeding the upper limit of 5oLN
It is desirable to reduce it as much as possible, and the effect is particularly significant when it is reduced to 0.015% or less.

(MnO) + (/VtO+) + (Sing) 
 :既に述べたごと< 、MnO+A7zOa+ 5i
Ozの3種の介在物の総重量に対するMnOの重量の割
合が15%を越えると低融点の介在物を生成し、これら
がスラブ加熱中に溶融あるいは軟化し、熱延中に圧延方
向に微細に分断されたり、圧延方向に伸ばされ、磁性焼
鈍時に結晶粒成長を妨げるので、MnO+八1zへa+
Singの3種の介在物の総重量に対するMnOの重量
の割合を15%以下とした。
(MnO) + (/VtO+) + (Sing)
: As already stated<, MnO+A7zOa+5i
If the weight ratio of MnO to the total weight of the three types of Oz inclusions exceeds 15%, inclusions with a low melting point will be generated, and these will melt or soften during slab heating, causing fine particles to form in the rolling direction during hot rolling. MnO+81z is divided into MnO+81z and a+
The ratio of the weight of MnO to the total weight of the three types of Sing inclusions was set to 15% or less.

MnO,A7zOs、 siog以外の例えばMgO,
CaO、Zr0z等の製鋼作業中に止むを得ず混入する
酸化物が存在する。勿論、これらの酸化物は極力少ない
方が好ましい。
MnO, A7zOs, other than siog, such as MgO,
There are oxides such as CaO and ZrOz that are unavoidably mixed in during steel manufacturing operations. Of course, it is preferable that the amount of these oxides be as small as possible.

磁性焼鈍後の平均結晶粒径: 同一成分の場合には、結晶粒径が約120μmの時に最
も鉄損が少なくなることが知られており、製造メーカー
の出荷時点での平均結晶粒径は5〜20μmであるので
、磁性焼鈍により結晶粒径を太き(することが鉄損を少
なくすることになり、磁性焼鈍後の平均結晶粒径が50
μm以上であると、例えばSi0.1%鋼の場合WIS
/S。<4.8W/kgのような鉄損の少ない製品が得
られるので、磁性焼鈍後の平均粒径は50μm以上とし
た。
Average grain size after magnetic annealing: It is known that when the ingredients are the same, the iron loss is the lowest when the grain size is approximately 120 μm, and the average grain size at the time of shipment from the manufacturer is 5. ~20μm, so the grain size is increased by magnetic annealing (doing so reduces iron loss, and the average grain size after magnetic annealing is 50μm).
If it is more than μm, for example, in the case of Si0.1% steel, WIS
/S. Since a product with low iron loss such as <4.8 W/kg can be obtained, the average grain size after magnetic annealing was set to 50 μm or more.

(実施例) 〔実施例1〕 0.1%Stを含有する種々の成分組成の無方向性電磁
鋼板用スラブを製造した。次いで、これを1180℃に
連続加熱炉で加熱し、厚さ2.0鶴に熱間圧延した。こ
の熱延板を酸洗し、0.5fi厚に冷間圧延し、次いで
775℃、60秒の条件で連続炉で仕上焼鈍を行ない、
更に750℃、2時間の磁性焼鈍を行なった。こうして
得られた製品の成分組成、介在物の含有割合、磁性焼鈍
後の平均結晶粒径及び磁気特性を第1表に示す。これよ
り、本発明の製品は磁性焼鈍後の平均結晶粒径を50μ
m以上になし得、鉄損の少ない製品であることが分かる
。なお、本発明法では、転炉出鋼時にFe〔実施例2〕 0.7%Stを含有する種々の成分組成の無方向性電磁
鋼板用スラブを製造した。次いで、これを1150℃に
連続加熱炉で加熱し、厚さ2.0鶴に熱間圧延した。こ
の熱延板を酸洗し、0.5fl厚に冷間圧延し、次いで
780℃、60秒の条件で連続炉で仕上焼鈍を行ない、
更に750℃、2時間の磁性焼鈍を行なった。こうして
得られた製品の成分組成、介在物の含有割合、磁性焼鈍
後の平均結晶粒径及び磁気特性を第2表に示す。これよ
り、本発明の製品は磁性焼鈍後の平均結晶粒径を50μ
彌以上になし得、鉄損の少ない製品であることが分かる
。なお、本発明法では、転炉出鋼時にFe−Mn合金を
従来よりも多い300 kg添加した。次いで行った真
空脱ガス処理は、処理の後半にM脱酸を行い、それに続
いて成分調整の目的のためにSi、 Mnを添加したが
、本発明ではこの時期の成分調整のためのMn添加量を
減少した。一方、比較法は、通常の製鋼方法で行った。
(Example) [Example 1] Slabs for non-oriented electrical steel sheets having various compositions containing 0.1% St were manufactured. Next, this was heated to 1180° C. in a continuous heating furnace and hot rolled to a thickness of 2.0 mm. This hot-rolled sheet was pickled, cold-rolled to a thickness of 0.5fi, and then final annealed in a continuous furnace at 775°C for 60 seconds.
Furthermore, magnetic annealing was performed at 750°C for 2 hours. Table 1 shows the component composition, content of inclusions, average grain size and magnetic properties after magnetic annealing of the product thus obtained. From this, the product of the present invention has an average grain size of 50μ after magnetic annealing.
It can be seen that the product can be made more than m and has low iron loss. In addition, according to the method of the present invention, slabs for non-oriented electrical steel sheets having various compositions containing Fe [Example 2] 0.7% St at the time of steel tapping in a converter were manufactured. Next, this was heated to 1150° C. in a continuous heating furnace and hot rolled to a thickness of 2.0 mm. This hot-rolled sheet was pickled, cold-rolled to a thickness of 0.5fl, and then final annealed in a continuous furnace at 780°C for 60 seconds.
Furthermore, magnetic annealing was performed at 750°C for 2 hours. Table 2 shows the component composition, content of inclusions, average crystal grain size after magnetic annealing, and magnetic properties of the product thus obtained. From this, the product of the present invention has an average grain size of 50μ after magnetic annealing.
It can be seen that it is a product that can be made even better than Yai and has less iron loss. In addition, in the method of the present invention, 300 kg of Fe-Mn alloy was added at the time of steel tapping in the converter, which is larger than the conventional method. In the subsequent vacuum degassing treatment, M deoxidation was performed in the latter half of the treatment, and then Si and Mn were added for the purpose of component adjustment, but in the present invention, Mn addition for component adjustment at this stage was The amount was reduced. On the other hand, the comparative method was conducted using a normal steel manufacturing method.

(発明の効果) 以上詳述の如く、本発明は無方向性電磁鋼板の成分組成
と介在物の含有割合を限定したもので、磁性焼鈍時の結
晶粒成長が容易な、安価な鉄損の少ない無方向性電磁鋼
板である。
(Effects of the Invention) As detailed above, the present invention limits the composition and content of inclusions in a non-oriented electrical steel sheet, which facilitates grain growth during magnetic annealing and reduces iron loss at low cost. It is a non-oriented electrical steel sheet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)は磁性焼鈍後の鉄損の悪い製品、(2)は
鉄損が中程度の製品、(3)は鉄損の少ない製品の金相
組織を夫々示す金属顕微鏡写真図、第2図(a)は磁性
焼鈍後の鉄損の悪い製品の介在物の走査電子金属顕微鏡
写真図、同図(d)は同介在物をエネルギー分散型X線
分析装置(EDX)を用いて分析した結果を示す図、同
図(b)は鉄損が中程度の製品の介在物の走査電子金属
顕微鏡写真図、同図(e)は同介在物をエネルギー分散
型X線分析装置(EDX)を用いて分析した結果を示す
図、同図(C1は鉄損の少ない製品の介在物の走査電子
金属顕微鏡写真図、同図(f)は同介在物をエネルギー
分散型X線分析装置(EDX)を用いて分析した結果を
示す図、第3図は、SiOz−MnOAJ!03系介在
物の5ift、MnO、l’dt03の組成を求め、こ
れをSiOSlol−−Al2O2三元系状態図にプロ
ットした結果を示す図、第4図は、5fOz  MnO
の状態図、第5図は、製品中のSiO2、MnO、AZ
、0.の含有量を化学分析し、Sin、、Mn01IV
、O,の3種の介在物の総重量に対するMnOの比率、
平均結晶粒径と磁性焼鈍後の鉄損WIS/S。の関係を
示す図である。 第3図 MJNn(−’  lI’flW)・J祷’711is
’・Jtl”      /、7,755p(々hmi
匈(〃−女) 0           、fO、/(:40手続補正
書(自発ン 昭和62年4月24日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和62年特許願第29364号 2、発明の名称 磁性焼鈍後の鉄損の少ない無方向性電磁鋼板3、補正を
する者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式會社 代表者 武  1)   豊 4、代理人〒100 東京都千代田区丸の内二丁目4番1号 5、補正命令の日付 昭和  年  月  日6、補正
の対象 明細書の発明の詳細な説明の欄 (1)  明細書3頁12行「sob、八710.15
%」を「sat、 IVを0.15%」に補正する。 (2)同15頁末行「なお、本発明法では、転炉出鋼時
にFeJを[なお、本発明法では、転炉出鋼時にFe−
Mn合金を従来よりも多い300 kg添加した。次い
で行った真空脱ガス処理は、処理の後半″にM脱酸を行
い、それに続いて成分調整の目的のためにSt、Mnを
添加したが、本発明法ではこの時期の成分調整のための
Mn添加量を減少した。一方、比較法は、通常の製鋼方
法で行った。」に補正する。 手続補正書(自発) 昭和62年8月19日
Fig. 1 (1) is a metallurgical micrograph showing the gold phase structure of a product with poor iron loss after magnetic annealing, (2) a product with medium iron loss, and (3) a product with low iron loss, respectively. Figure 2 (a) is a scanning electron metallurgical micrograph of inclusions in a product with poor core loss after magnetic annealing, and Figure 2 (d) is a scanning electron metallurgical micrograph of the inclusions in a product with poor iron loss after magnetic annealing. Figures showing the analysis results. Figure (b) is a scanning electron metallurgical micrograph of inclusions in a product with medium iron loss, and Figure (e) is a scanning electron metallurgical micrograph of the inclusions in a product with an energy dispersive X-ray analyzer (EDX). (C1 is a scanning electron metallurgical micrograph of inclusions in a product with low iron loss, and (f) is a scanning electron metallurgical micrograph of the inclusions in a product with low iron loss.) Figure 3 is a diagram showing the results of the analysis using the EDX). The composition of 5ift, MnO, and l'dt03 of the SiOz-MnOAJ!03 system inclusion is determined, and this is converted into the SiOSlol--Al2O2 ternary system phase diagram. A diagram showing the plotted results, Figure 4, shows 5fOz MnO
Figure 5 shows the state diagram of SiO2, MnO, and AZ in the product.
,0. Chemically analyzed the content of Sin, , Mn01IV
, the ratio of MnO to the total weight of the three types of inclusions, O,
Average grain size and iron loss WIS/S after magnetic annealing. FIG. Figure 3 MJNn(-'lI'flW)・J'711is
'・Jtl'' /, 7,755p (hmi
匈(〃-女) 0, fO, /(:40 Procedural Amendment (Spontaneous April 24, 1985 Commissioner of the Patent Office Black 1) Ming Xiong 1, Indication of Case 1988 Patent Application No. 29364 2 , Name of the invention: Non-oriented electrical steel sheet with low core loss after magnetic annealing 3, Relationship with the amended case Patent applicant: Nippon Steel Corporation, 2-6-3 (665) Otemachi, Chiyoda-ku, Tokyo Company Representative Takeshi 1) Toyoshi 4, Agent Address: 2-4-1-5 Marunouchi, Chiyoda-ku, Tokyo 100, Date of Amendment Order: Month, Day, 6, 1939, Detailed Description of the Invention in the Specification Subject to Amendment ( 1) Specification page 3 line 12 “sob, 8710.15
%” to “sat, IV to 0.15%”. (2) End of page 15 of the same paper: ``In addition, in the method of the present invention, FeJ is
300 kg of Mn alloy was added, which is more than before. In the subsequent vacuum degassing treatment, M deoxidation was carried out in the latter half of the treatment, followed by the addition of St and Mn for the purpose of component adjustment. The amount of Mn added was reduced.On the other hand, the comparative method was carried out using a normal steel manufacturing method.'' Procedural amendment (voluntary) August 19, 1988

Claims (1)

【特許請求の範囲】[Claims] 1)C:0.015%以下、Si:0.1〜1.0%、
sol.Al:0.001〜0.005%、Mn:1.
5%以下、S:0.008%以下、N:0.0050%
以下、T.O:0.02%以下を含む無方向性電磁鋼板
において、鋼中のSiO_2、MnO、Al_2O_3
の3種の介在物の総重量に対するMnOの重量の割合が
15%以下であることを特徴とする磁性焼鈍後の平均結
晶粒径を50μm以上になし得る鉄損の少ない無方向性
電磁鋼板。
1) C: 0.015% or less, Si: 0.1 to 1.0%,
sol. Al: 0.001-0.005%, Mn: 1.
5% or less, S: 0.008% or less, N: 0.0050%
Below, T. In a non-oriented electrical steel sheet containing O: 0.02% or less, SiO_2, MnO, Al_2O_3 in the steel
A non-oriented electrical steel sheet with low core loss and capable of having an average grain size of 50 μm or more after magnetic annealing, characterized in that the ratio of the weight of MnO to the total weight of the three types of inclusions is 15% or less.
JP62029364A 1987-02-10 1987-02-10 Non-oriented electrical steel sheet with low iron loss after magnetic annealing Expired - Lifetime JPH0742557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62029364A JPH0742557B2 (en) 1987-02-10 1987-02-10 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62029364A JPH0742557B2 (en) 1987-02-10 1987-02-10 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Publications (2)

Publication Number Publication Date
JPS63195217A true JPS63195217A (en) 1988-08-12
JPH0742557B2 JPH0742557B2 (en) 1995-05-10

Family

ID=12274120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62029364A Expired - Lifetime JPH0742557B2 (en) 1987-02-10 1987-02-10 Non-oriented electrical steel sheet with low iron loss after magnetic annealing

Country Status (1)

Country Link
JP (1) JPH0742557B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280517A (en) * 1988-09-17 1990-03-20 Kobe Steel Ltd Manufacture of non-oriented electrical steel sheet
JPH02259015A (en) * 1989-03-31 1990-10-19 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property after magnetic annealing
JPH03104844A (en) * 1989-09-18 1991-05-01 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture
KR100421685B1 (en) * 2000-07-31 2004-03-12 신닛뽄세이테쯔 카부시키카이샤 Non-oriented electrical steel sheet for small-sized precision motor
WO2022113264A1 (en) 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet
WO2022113263A1 (en) 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet
WO2022219742A1 (en) 2021-04-14 2022-10-20 日本製鉄株式会社 Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558409A (en) * 1978-06-30 1980-01-22 Nippon Steel Corp Nondirectional magnetic steel plate of low watt loss
JPS5752410A (en) * 1980-08-21 1982-03-27 Matsushita Electric Ind Co Ltd Top plate molding method of cooking table
JPS61119652A (en) * 1984-11-15 1986-06-06 Kawasaki Steel Corp Nonoriented electrical steel sheet having small iron loss

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558409A (en) * 1978-06-30 1980-01-22 Nippon Steel Corp Nondirectional magnetic steel plate of low watt loss
JPS5752410A (en) * 1980-08-21 1982-03-27 Matsushita Electric Ind Co Ltd Top plate molding method of cooking table
JPS61119652A (en) * 1984-11-15 1986-06-06 Kawasaki Steel Corp Nonoriented electrical steel sheet having small iron loss

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0280517A (en) * 1988-09-17 1990-03-20 Kobe Steel Ltd Manufacture of non-oriented electrical steel sheet
JPH02259015A (en) * 1989-03-31 1990-10-19 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property after magnetic annealing
JPH0689402B2 (en) * 1989-03-31 1994-11-09 新日本製鐵株式会社 Method for manufacturing non-oriented electrical steel sheet with excellent magnetic properties after magnetic annealing
JPH03104844A (en) * 1989-09-18 1991-05-01 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture
JPH0569910B2 (en) * 1989-09-18 1993-10-04 Nippon Steel Corp
KR100421685B1 (en) * 2000-07-31 2004-03-12 신닛뽄세이테쯔 카부시키카이샤 Non-oriented electrical steel sheet for small-sized precision motor
WO2022113264A1 (en) 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for producing same, and hot-rolled steel sheet
WO2022113263A1 (en) 2020-11-27 2022-06-02 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for manufacturing same, and hot-rolled steel sheet
KR20230109727A (en) 2020-11-27 2023-07-20 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof, and hot-rolled steel sheet
KR20230110338A (en) 2020-11-27 2023-07-21 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method thereof, and hot-rolled steel sheet
WO2022219742A1 (en) 2021-04-14 2022-10-20 日本製鉄株式会社 Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same
KR20230136755A (en) 2021-04-14 2023-09-26 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet for non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0742557B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US4560423A (en) Process for producing a non-oriented electromagnetic steel sheet having excellent magnetic properties
JPS63195217A (en) Nonoriented electrical steel sheet having small iron loss after magnetic annealing
US6322638B1 (en) Electromagnetic steel sheet having excellent high-frequency magnetic properties
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JP3456295B2 (en) Melting method of steel for non-oriented electrical steel sheet
EP0535651B1 (en) Method of manufacturing grain oriented silicon steel sheets
JP3105525B2 (en) Melting method of silicon steel material
US3976518A (en) Process for producing grain-oriented electric steel sheets having remarkably improved magnetic flux density
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JPH0967653A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP2000328207A (en) Silicon steel sheet excellent in nitriding and internal oxidation resistances
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JPH10212556A (en) Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production
JP3350214B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP3179530B2 (en) Melting method of extremely low Ti steel
US4878959A (en) Method of producing grain-oriented silicon steel with small boron additions
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JPH07150248A (en) Nonoriented silicon steel sheet minimal in iron loss after magnetic annealing
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH06248398A (en) Nonoriented silicon steel sheet for large-sized rotary machine low in iron loss
JPH05186834A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and low iron loss
JPH01152239A (en) Nonoriented electrical steel plate having excellent iron loss characteristics after magnetic annealing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term