JP4256617B2 - High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy - Google Patents

High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy Download PDF

Info

Publication number
JP4256617B2
JP4256617B2 JP2002090650A JP2002090650A JP4256617B2 JP 4256617 B2 JP4256617 B2 JP 4256617B2 JP 2002090650 A JP2002090650 A JP 2002090650A JP 2002090650 A JP2002090650 A JP 2002090650A JP 4256617 B2 JP4256617 B2 JP 4256617B2
Authority
JP
Japan
Prior art keywords
iron
ferroboron
content
alloy
based amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002090650A
Other languages
Japanese (ja)
Other versions
JP2003286534A (en
Inventor
順 竹内
有一 佐藤
広明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002090650A priority Critical patent/JP4256617B2/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to KR10-2003-0019265A priority patent/KR100533129B1/en
Priority to TW095120437A priority patent/TWI315347B/en
Priority to US10/401,063 priority patent/US20030183041A1/en
Priority to TW092106953A priority patent/TWI281504B/en
Priority to CNB031211860A priority patent/CN1286998C/en
Publication of JP2003286534A publication Critical patent/JP2003286534A/en
Priority to US11/513,452 priority patent/US7704450B2/en
Application granted granted Critical
Publication of JP4256617B2 publication Critical patent/JP4256617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質合金の原料等に使用される高純度フェロボロンの製造方法、該フェロボロンを使用する鉄基非晶質合金用母合金の製造方法、および該母合金を使用する鉄基非晶質合金の製造方法に関するものである。
【0002】
【従来の技術】
非晶質合金は磁気的性質や機械的性質に優れ、多くの用途における工業材料として有望視されている。なかでも、電力トランスや高周波トランスなどの鉄心材料用として、鉄損が低く、かつ飽和磁束密度や透磁率が高いなどの理由から、鉄基非晶質合金、例えばFe−B−Si系やFe−B−Si−C系の非晶質合金が採用されている。
【0003】
これら非晶質合金は、単ロール法や双ロール法などにより、母合金を溶融状態から急冷凝固させて製造される。これらの方法は、高速回転する金属製ドラムの外周面に溶融金属をオリフィスなどから噴出させ、急速に凝固させて薄帯や細線を鋳造するものである。
母合金は非晶質合金の組成に成分調整された合金である。上記のような鉄基非晶質合金の場合、フェロボロンと希釈鉄源とSiやCなどの副原料を配合し、成分調整して製造される。
【0004】
母合金に不純物が含まれていると、急冷凝固の際に非晶質が安定して形成されず優れた特性が得られないなどの理由から、母合金の原料にはいずれも高純度のものが使用され、希釈鉄源には電解鉄が使用されていた。
フェロボロンは、酸化硼素や硼酸等の硼素源と、鉄源と、コークスや木炭、微粉炭等の炭素系還元剤を原料として電気炉等の溶融還元炉で製造され、高純度フェロボロンの鉄源には電解鉄が使用されていた。
【0005】
ところで鉄基非晶質合金のB含有量は数質量%であり、母合金の製造には、電炉法で得たB含有量が10質量%以上のフェロボロンを希釈する方法と、竪型炉や取鍋精錬で得たB含有量が数質量%のフェロボロンの成分を微調整する方法が提案されている。現実には前者が採用されている。その主たる理由は、前者の方がB利用効率が高く低コストであるためである。さらにはB含有量を高めることでC含有量が低減されるためである。
【0006】
フェロボロン中のCの溶解度はB含有量と逆相関の関係にあり、B含有量が低くなるとCの溶解度が上昇する。したがって、Cが不純物として有害である場合にはB含有量を高めることが有効な手段である。
特開昭59−232250号公報には、上記逆相関の関係と、B含有量≧10質量%でC含有量≦0.5質量%のフェロボロンが商業的に生産できることが開示されている。しかし、フェロボロンを電炉法で製造する場合、B含有量が高いと電力原単位が高いという問題がある。
さらに特開昭59−126732号公報には、フェロボロン溶湯中に酸素ガスをバブリングすることでC含有量を低下させる方法が開示されている。しかし酸素ガスによりBも酸化され、Bの利用効率が低下するという問題がある。
【0007】
また、低Alの高純度フェロボロンの製造方法として、電気炉にてB濃度が10〜20質量%のフェロボロンを得る方法が、特開昭59−232250号公報および特開昭60−103151号公報に開示されている。しかし鉄源として鉄屑を使用した場合には、鉄屑に含まれるAl濃度が一定しないため、Al保証値<0.20質量%であった。このため、従来商業的に得られる低Alの高純度フェロボロンは、Al保証値<0.025質量%とするため、鉄源として電解鉄を用いており高価であった。
【0008】
鉄基非晶質合金用のフェロボロンを低コストで得るために、B濃度は低いが、電気炉を用いない溶融還元法で得る方法が開示されている。特開昭58−77509号公報には、竪型炉で鉄鉱石および酸化硼素を同時に還元して、B濃度が数質量%のフェロボロンを得る方法が開示されており、特開昭58−197252号公報には、取鍋精錬炉にて、溶鋼に酸化硼素と還元剤を添加し、酸化硼素を還元して、B濃度が数質量%のフェロボロンを得る方法が開示されている。
【0009】
しかし、これらの方法は未還元の酸化硼素がスラグ中に残存し、Bの利用効率が低い。酸化硼素は比較的高価な原料であり、これらの方法は逆にコスト高となる。さらには、近年における環境規制の厳格化により、Bを含むスラグの廃棄には高額の処理費用を必要とし、ますます高コストな方法となってきた。これらの方法はAl含有量の低減化には有用と考えられるが、初期の目的である低コスト化が達成さない。したがって、これらの方法は現状では商業的には実施されていない。
【0010】
一方、現在の量産鋼は連続鋳造工程を経て製造されている。連続鋳造ではかつての造塊工程より生産性が高く、低コストだからである。造塊工程では鋳込みが容易なため脱酸程度によりリムド鋼とキルド鋼の作り分けが可能であったが、連続鋳造工程ではガス発生を抑制するためキルド鋼が製造される。量産鋼においては一般的に脱酸剤としてAlが採用されるので、鋼中に相当程度のAlが含まれている。したがって、鉄基非晶質合金用の母合金や、その原料となる高純度フェロボロンの鉄源には量産鋼は使用できないと考えられていた。
しかし、一部の量産鋼においてはSiやMnを脱酸剤に用い、また精錬技術の進歩によりAl脱酸でもAl含有量の低い鋼が量産されるようになっている。
【0011】
【発明が解決しようとする課題】
そこで本発明が解決しようとする課題は、酸化硼素など硼素源からのB回収効率を高めたうえでC含有量を低下させた高純度フェロボロンを安価に製造することである。また鉄源として高価な電解鉄を使用せず、安価な量産鋼を使用可能にすることである。そして得られたフェロボロンを原料として優れた特性を有する鉄基非晶質合金用母合金、および鉄基非晶質合金を製造することである。
【0012】
【課題を解決するための手段】
上記課題を解決するための本発明は、フェロボロンの溶湯に溶湯温度1600℃以上で酸素ガスを吹き、脱炭することを特徴とする高純度フェロボロンの製造方法である。
そして、前記溶湯が、硼素源と鉄源と炭素系還元剤を電気炉に装入し溶融還元して得られた溶湯であってもよく、該溶湯を固体化したフェロボロンを再溶融した溶湯であってもよい。また、前記溶湯中のB含有量を10質量%以下とするのが好ましい。さらに、前記鉄源が製鋼プロセスの精錬炉により得られた鋼であり、該鋼のAl含有量が0.03質量%以下であるのが好ましい。
【0013】
また、上記方法により製造された高純度フェロボロンに希釈鉄源と副原料を加えて成分調整することを特徴とする鉄基非晶質合金用母合金の製造方法である。そして、前記希釈鉄源が製鋼プロセスの精錬炉により得られた鋼であり、該鋼のAl含有量が0.006質量%以下であるのが好ましい。
また、上記方法により製造された母合金の溶湯を、急冷凝固法により鋳造することを特徴とする鉄基非晶質合金の製造方法である。
【0014】
【発明の実施の形態】
本発明の高純度フェロボロン製造法は、フェロボロンの溶湯に溶湯温度1600℃以上で酸素ガスを吹き脱炭することにより、B含有量を低下させずにC含有量を低下させる方法である。
本発明者らは、C含有量の高いフェロボロンの溶湯に酸素ガスを吹く方法において、B含有量を低下させずにC含有量を低下させる条件を熱力学的考察と実験により鋭意検討して本発明に至った。
【0015】
酸化物の還元難易度、逆にいえば純物質の酸化難易度を簡便に判定する際、Ellingham Diagram が広く用いられている。この Diagram 上では、約1900°KにてBとCが交わっている。これより高温側では金属Bがより安定であり、CはCOとなる。これより低温側ではCがより安定であり、Bは酸化硼素となる。現実の問題では、安定性が逆転する交点の温度は、Fe−B−C中のBの活量およびCの活量、酸素分圧、CO分圧に依存しており、熱力学的に正確に求めるのは困難である。
そこで本発明者らは、実際のフェロボロン溶湯について、安定性が逆転する交点の温度を実験により求め、現実の操業に即した条件を定めることで上記本発明のフェロボロン製造法を完成させた。
【0016】
上記本発明法において、フェロボロンの溶湯は電気炉で溶融還元して得られたものであるのが好ましい。その理由は、高価なBの利用効率が高く、かつ生産性が高いからである。この溶湯は、電気炉で溶融還元して得られた溶湯を固体化した後、再溶融した溶湯であってもよい。再溶融は、C含有量を低下させる必要のあるフェロボロンと他のフェロボロンを作り分ける場合に有用である。
また、電炉法においては溶湯中のB含有量が高いと電力原単位が上昇し、B含有量が10質量%を超えると急激に上昇するので、10質量%以下とするのが好ましい。
【0017】
さらに本発明法において、原料の鉄源に通常の製鋼プロセスの精錬炉で得られたAl含有量が0.03質量%以下の鋼を採用するのが好ましい。その他の原料は、酸化硼素や硼酸等の硼素源と、コークス、木炭、微粉炭等の炭素系還元剤であり、これら原料を溶融還元炉に装入してフェロボロンを製造する。溶融還元炉としては、電気炉を採用するのが生産性やコスト面で好ましい。
【0018】
鉄源には高価な電解鉄を使用せず、安価な量産鋼を使用できるので、安価なフェロボロンが製造可能である。使用する鋼は、転炉、電炉などの精錬炉を経て、連続鋳造などで鋳造された鋳片でもよく、さらに熱間圧延や冷間圧延された板などでもよい。鉄源の鋼は、Al脱酸した鋼であってもAl含有量が0.03質量%以下であれば使用可能である。SiやMnで脱酸したより低Alの鋼でもよい。
【0019】
実験結果によれば、Al含有量が0.001質量%のMn脱酸鋼を鉄源としても、還元剤等からの混入により、得られるフェロボロンのAl含有量が0.02質量%のオーダーに上昇する場合がある。そして、Al含有量が0.03質量%以下の鋼を鉄源とした高純度フェロボロンを原料とすれば、磁気的性質や機械的性質に優れた鉄基非晶質合金を安定して製造することができる。
本発明法で得られた高純度フェロボロンは、このほか、磁性材料の原料や製鋼添加剤等にも使用することができる。
【0020】
次に、本発明の鉄基非晶質合金用母合金の製造法は、上記本発明法により製造された高純度フェロボロンに希釈鉄源と副原料を加えて成分調整する方法である。希釈鉄源としては、高価な電解鉄を使用せず、製鋼プロセスの精錬炉により得られた量産鋼を使用することができ、その場合、鋼のAl含有量を0.006質量%以下とするのが好ましい。副原料は、SiやC等、対象とする鉄基非晶質合金の構成成分の原料である。高純度フェロボロンは、上記方法により得られた溶融状態のものを使用することもでき、固体のものを溶解することもできる。溶解には高周波誘導炉等を使用することができる。
【0021】
母合金の成分組成は、対象とする鉄基非晶質合金の成分組成と実質的に一致したものとする。製造に際しては、この所定成分組成となるように、組成のわかっている原料を配合する。実験結果によれば、製造した母合金の分析結果は、あらかじめ設定した所定成分組成からほとんどずれていない。
【0022】
母合金の成分組成を設定する際、Fe、Bなどの主要成分について原料配合比を定める。このとき、Al含有量については、優れた特性を有する非晶質合金が安定的に得られる許容量以下となるように設定する。その場合、高純度フェロボロンのAl含有量は、鉄源として使用した鋼の最大含有量0.03%を超えることがないので、これを希釈して母合金のAl含有量が上記許容量以下となるように希釈鉄源のAl含有量を定めることができる。
実験結果によれば、希釈鉄源の鋼にAlが含まれていても、0.006質量%以下であれば、対象とするほとんどの鉄基非晶質合金について安定的に優れた特性が得られる。
【0023】
次に本発明の鉄基非晶質合金の製造方法は、上記本発明法により製造された母合金の溶湯を、急冷凝固法により鋳造するものである。母合金の溶湯は、固体の母合金を高周波誘導炉等により再溶融したものであってもよく、また上記により製造した溶融状態のものであってもよい。
【0024】
本発明法により、例えばFe−B−Si−P系の鉄基非晶質合金において、Al含有量が0.005質量%以下の薄帯が鋳造できる。この薄帯は優れた磁気特性を有していた。
急冷凝固法としては、単ロール法や双ロール法等を採用することができる。
優れた交流軟磁気特性を有している。
【0025】
【実施例】
(実施例1)
低Cのフェロボロン製造に際して脱Bが起こらない下限温度を求めるため、誘導溶解炉にて酸素吹錬実験を行った。表1に示す鋼種Aと、B含有量18質量%のフェロボロンと炭材をルツボに装入し、誘導溶解炉にて溶解した。初期の溶湯重量は1000g、初期組成はB含有量4.0質量%、C含有量2.4質量%となるように配合した。溶湯温度を1500℃、1600℃、1700℃の3水準に保定して、純酸素ガスを上部より1リットル/分にて供給し吹錬した。5分毎に溶湯からサンプルを採取して化学分析に供した。
【0026】
図1に、酸素吹錬時間に対する溶湯中のBおよびCの含有量の推移を示す。1500℃ではBおよびCが同時に減少している。したがって、BとCの熱力学的安定性が逆転する温度はこの近傍であることがわかった。1600℃および1700℃では脱Cは進んでいるが、B含有量は一定しており脱B反応は進行していない。
【0027】
(実施例2)
低コストにてCおよびAl含有量の低いフェロボロンが製造可能であることを確認するため、電炉法によりフェロボロンを製造し、これを酸素吹錬した。
表1に示す4種の鉄源と酸化硼素と炭素系還元剤を電気炉で溶解し、フェロボロンを製造した。各鉄源は、高炉で得られた銑鉄から、脱S工程、脱Si工程、および転炉での酸素吹錬による脱Pおよび脱C工程を経て製造された鋼である。鋼種AはSiおよびMnで脱酸し、鋼種BおよびDはMnで脱酸し、鋼種CはAlで脱酸した。各鋼種とも、連続鋳造によりスラブとした後、熱間圧延にて板厚約3mmの熱延コイルとし、各熱延コイルからシャーにて数cm四方程度に切出したものを電気炉に装入した。
【0028】
電気炉には電気容量600KVA の3相エルー式電気炉を用いた。炉の操業は16日間継続して行った。前期の8日間はB含有量が15〜16質量%のフェロボロンを製造し、2日毎に鉄源をB、D、A、Cの順に切り替えた。後期の8日間はB含有量が9質量%程度のフェロボロンを製造し、2日毎に鉄源をB、D、A、Cの順に切り替えた。
電気炉よりタップされたフェロボロン溶湯を取鍋に受け、高周波誘導にて1600℃に保定し酸素吹錬を行った。
【0029】
前期8日間の平均的操業条件は、電圧45V、電流4000〜5000A、タッピング間隔は約2時間弱、日産2t/日、電力原単位は4.3kWh/kg−FeBであった。後期8日間の平均的操業条件は、電圧45V、電流4000〜5000A、タッピング間隔は約1時間半強、日産2.2t/日、電力原単位は3.9kWh/kg−FeBであった。
【0030】
酸素吹錬前のフェロボロンの分析結果を表2に、酸素吹錬後のフェロボロンの分析結果を表3に示す。全ての試料においてC含有量が低減している。さらに、AlやTiの含有量も低減するという副次的効果も確認できる。なお表中のT.Alは金属Alと化合物Alの合計値を示す。
【0031】
本実施例から、酸素ガス吹付けによるC含有量低減は、電気炉から供給されるフェロボロン溶湯に適用可能であることがわかる。なお、電気炉法に用いる鉄源としては、転炉法による鋼種A〜Dのいずれも採用可能である。また製品重量当りの電力原単位からはフェロボロン中のB濃度が低い方が電力コスト的には有利であることがわかる。
【0032】
(実施例3)
電気炉法により得られるフェロボロンをタッピング後、一旦凝固しても、再溶解して酸素ガスを吹き付けることにより脱Cが可能であることを確認した。すなわち、実施例2で得られた表2に示すフェロボロン8種につき、再溶融し,1600℃に保定して酸素ガスを吹き付けた。この場合もフェロボロン中のB含有量を低下させずにC含有量を0.1質量%以下とすることが可能であった。
【0033】
(実施例4)
本発明法により製造したフェロボロンが、鉄基非晶質合金用母合金、さらには鉄基非晶質合金の製造に適していることを確認するため、フェロボロンに希釈鉄源および副原料を加え、母合金を製造した。
実施例2で得られたのフェロボロンと、希釈鉄源と、副原料としてFeP、炭材およびSiを高周波誘導炉にて溶解し、Fe−B−Si−P系の鉄基非晶質合金用母合金を製造した。フェロボロンは、実施例2にてタップされ凝固したものを粉砕して使用した。希釈鉄源は、表1の鋼種A〜Dを使用した。
【0034】
高周波誘導炉では、母合金の主要成分組成が所定値となるように原料を配合し、完全に溶解するまで昇温し、均一になるまで保定した後、凝固、粉砕して、その一部をサンプリングし分析した。
表3のフェロボロンFeB−A9−Oを原料とした場合の原料配合例を表4に示す。母合金FeB−A9−O−Aは希釈鉄源に鋼種Aを使用した場合、母合金FeB−A9−O−Cは希釈原料に鋼種Cを使用した場合の例である。
【0035】
この配合例で得られた母合金の成分分析結果を表5に示す。表5の分析値は、あらかじめ設定した所定値からほとんどずれておらず、原料配合どおりの組成が得られることが確認された。
母合金FeB−A9−O−Aは、不純物としてのAl含有量が低く、鉄基非晶質合金用として適している。しかし希釈鉄源にAl含有量の高い鋼種Cを使用した母合金FeB−A9−O−CはAl含有量が高く、さらにTi含有量も高く、鉄基非晶質合金用として適さない。
【0036】
希釈鉄源を鋼種A、鋼種B、鋼種Dとした場合は、フェロボロンを表3の何れにしても、得られた母合金のAl含有量は0.0050質量%以下であり、鉄基非晶質合金用として適していた。しかし希釈鉄源を鋼種Cとした場合は、何れも得られた母合金のAl含有量が高く、鉄基非晶質母合金用として適さないものであった。
【0037】
(実施例5)
本発明法により製造したフェロボロン、さらには鉄基非晶質合金用母合金が、鉄基非晶質合金の製造に適していることを確認するため、母合金から急冷凝固法により非晶質合金を製造した。
実施例4で得られた表5の母合金FeB−A9−O−Aを再溶解し、単ロール法により急冷凝固して薄帯を製造し、鉄心材料としての磁気特性を評価した。また薄帯の成分を分析した結果、母合金との成分ズレはなかった。なお、再溶解時にさらなる副原料を加えて成分調整を行った場合でも、配合成分どおりの薄帯が得られた。
【0038】
磁気特性の評価に際しては、薄帯を120mm長さに切断して、360℃で窒素雰囲気中1時間、磁場中でアニールした後、SST(単板磁気測定器)を用いてB80および鉄損を測定した。B80は最大印加磁場が80A/mのときの最大磁束密度、鉄損は最大磁束密度1.3Tにおける値である。測定周波数は50Hzである。
測定結果は、B80=1.44Tの高い磁束密度が発現し、鉄損は0.063W/kgと低く、優れた交流軟磁気特性を有し、十分実用に供し得るものであった。
【0039】
【表1】

Figure 0004256617
【0040】
【表2】
Figure 0004256617
【0041】
【表3】
Figure 0004256617
【0042】
【表4】
Figure 0004256617
【0043】
【表5】
Figure 0004256617
【0044】
【発明の効果】
本発明法によれば、酸化硼素など硼素源からのB回収効率を高めたうえでC含有量を低下させた高純度フェロボロンを安価に製造することができる。また高価な電解鉄を使用せず、Al脱酸鋼等の量産鋼を鉄源として高純度フェロボロンを製造できる。さらに、これらフェロボロンを原料として優れた特性を有する鉄基非晶質合金用母合金、および鉄基非晶質合金を製造することができる。フェロボロン用の鉄源および母合金用の希釈鉄源に、それぞれ適正なAl含有量の量産鋼を使用することで、たとえば、高磁束密度でかつ低鉄損の優れた磁気特性を有する鉄心用の鉄基非晶質合金薄帯が、安価に製造できる。
【図面の簡単な説明】
【図1】本発明法を説明するためのグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity ferroboron used as a raw material for an amorphous alloy, a method for producing a master alloy for an iron-based amorphous alloy using the ferroboron, and an iron-based non-ferrous alloy using the mother alloy. The present invention relates to a method for producing a crystalline alloy.
[0002]
[Prior art]
Amorphous alloys are excellent in magnetic and mechanical properties and are promising as industrial materials in many applications. Among them, for iron core materials such as power transformers and high-frequency transformers, iron-based amorphous alloys such as Fe-B-Si and Fe are used because they have low iron loss and high saturation magnetic flux density and magnetic permeability. An amorphous alloy of -B-Si-C system is employed.
[0003]
These amorphous alloys are manufactured by rapidly solidifying a mother alloy from a molten state by a single roll method or a twin roll method. In these methods, molten metal is ejected from an orifice or the like on the outer peripheral surface of a metal drum that rotates at high speed, and is rapidly solidified to cast a ribbon or a thin wire.
The master alloy is an alloy whose components are adjusted to the composition of the amorphous alloy. In the case of the iron-based amorphous alloy as described above, ferroboron, a dilute iron source, and auxiliary materials such as Si and C are blended, and the components are adjusted.
[0004]
If the mother alloy contains impurities, the amorphous material is not formed stably during rapid solidification and excellent properties cannot be obtained. And electrolytic iron was used as the diluted iron source.
Ferroboron is manufactured in a smelting reduction furnace such as an electric furnace using a boron source such as boron oxide or boric acid, an iron source, and a carbon-based reducing agent such as coke, charcoal, or pulverized coal as a raw material. Electrolytic iron was used.
[0005]
By the way, the B content of the iron-based amorphous alloy is several mass%, and for the production of the master alloy, a method of diluting ferroboron having a B content of 10 mass% or more obtained by an electric furnace method, a vertical furnace, There has been proposed a method for finely adjusting a ferroboron component having a B content of several mass% obtained by ladle refining. In reality, the former is adopted. The main reason is that the former has higher B utilization efficiency and lower cost. Furthermore, it is because C content is reduced by raising B content.
[0006]
The solubility of C in ferroboron has an inverse correlation with the B content, and the solubility of C increases as the B content decreases. Therefore, when C is harmful as an impurity, increasing the B content is an effective means.
Japanese Patent Application Laid-Open No. 59-232250 discloses that the ferroboron having the above-described inverse correlation and B content ≧ 10 mass% and C content ≦ 0.5 mass% can be produced commercially. However, when ferroboron is produced by the electric furnace method, there is a problem that when the B content is high, the power consumption is high.
Further, Japanese Patent Application Laid-Open No. 59-126732 discloses a method for reducing the C content by bubbling oxygen gas into molten ferroboron. However, there is a problem that B is also oxidized by the oxygen gas, and the utilization efficiency of B is lowered.
[0007]
Further, as a method for producing a low purity, high purity ferroboron, a method for obtaining ferroboron having a B concentration of 10 to 20% by mass in an electric furnace is disclosed in JP-A-59-232250 and JP-A-60-103151. It is disclosed. However, when iron scrap was used as the iron source, the Al concentration contained in the iron scrap was not constant, so the Al guaranteed value was <0.20 mass%. For this reason, the low-purity, high-purity ferroboron that has been commercially obtained in the past is expensive because it uses electrolytic iron as an iron source in order to obtain an Al guaranteed value <0.025 mass%.
[0008]
In order to obtain ferroboron for iron-based amorphous alloys at a low cost, a method is disclosed in which the B concentration is low but obtained by a smelting reduction method without using an electric furnace. Japanese Patent Laid-Open No. 58-77509 discloses a method of simultaneously reducing iron ore and boron oxide in a vertical furnace to obtain ferroboron having a B concentration of several mass%. The gazette discloses a method of obtaining ferroboron having a B concentration of several mass% by adding boron oxide and a reducing agent to molten steel in a ladle refining furnace and reducing boron oxide.
[0009]
However, in these methods, unreduced boron oxide remains in the slag, and the utilization efficiency of B is low. Boron oxide is a relatively expensive raw material, and these methods are costly. Furthermore, due to stricter environmental regulations in recent years, disposal of slag containing B requires high processing costs and has become an increasingly expensive method. These methods are considered useful for reducing the Al content, but the initial cost reduction cannot be achieved. Therefore, these methods are not currently implemented commercially.
[0010]
On the other hand, current mass-produced steel is manufactured through a continuous casting process. This is because continuous casting has higher productivity and lower cost than the former ingot-making process. Since casting is easy in the ingot-making process, it is possible to make rimmed steel and killed steel depending on the degree of deoxidation, but in the continuous casting process, killed steel is produced to suppress gas generation. In mass-produced steel, Al is generally employed as a deoxidizer, so that a considerable amount of Al is contained in the steel. Accordingly, it has been considered that mass-produced steel cannot be used as a master alloy for an iron-based amorphous alloy or an iron source of high-purity ferroboron as a raw material.
However, in some mass-produced steels, Si or Mn is used as a deoxidizer, and steel with a low Al content is mass-produced by the advancement of refining technology even with Al deoxidation.
[0011]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to produce inexpensively high-purity ferroboron in which the B content from a boron source such as boron oxide is increased and the C content is reduced. Also, it is possible to use inexpensive mass-produced steel without using expensive electrolytic iron as an iron source. Then, it is to produce an iron-based amorphous alloy mother alloy and an iron-based amorphous alloy having excellent characteristics using the obtained ferroboron as a raw material.
[0012]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problems is a method for producing high-purity ferroboron, characterized in that oxygen gas is blown into a molten ferroboron at a molten metal temperature of 1600 ° C. or higher for decarburization.
The molten metal may be a molten metal obtained by charging a boron source, an iron source, and a carbon-based reducing agent into an electric furnace and melting and reducing the molten ferroboron obtained by solidifying the molten metal. There may be. Moreover, it is preferable that B content in the said molten metal shall be 10 mass% or less. Furthermore, it is preferable that the iron source is steel obtained by a refining furnace of a steel making process, and the Al content of the steel is 0.03% by mass or less.
[0013]
Further, the present invention is a method for producing a master alloy for an iron-based amorphous alloy, characterized in that a high purity ferroboron produced by the above method is added with a diluted iron source and an auxiliary material to adjust the components. And it is preferable that the said diluted iron source is steel obtained by the refining furnace of the steelmaking process, and Al content of this steel is 0.006 mass% or less.
Further, the present invention is a method for producing an iron-based amorphous alloy, wherein the molten metal alloy produced by the above method is cast by a rapid solidification method.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The high-purity ferroboron production method of the present invention is a method of reducing the C content without reducing the B content by blowing and decarburizing oxygen gas to the molten ferroboron at a melt temperature of 1600 ° C. or higher.
In the method of blowing oxygen gas into a molten ferroboron having a high C content, the present inventors have conducted diligent investigations on conditions for reducing the C content without reducing the B content by thermodynamic considerations and experiments. Invented.
[0015]
The Ellingham Diagram is widely used to easily determine the degree of difficulty in reducing oxides, or in other words, the degree of difficulty in oxidizing pure substances. On this diagram, B and C intersect at about 1900 ° K. On the higher temperature side, metal B is more stable and C becomes CO. On the lower temperature side, C is more stable, and B is boron oxide. In reality, the temperature at the intersection where the stability is reversed depends on the B activity in Fe-B-C, the C activity, the oxygen partial pressure, and the CO partial pressure. It is difficult to ask for.
Accordingly, the inventors of the present invention completed the above-described ferroboron production method of the present invention by determining the temperature at the intersection where the stability is reversed by experiment and determining the conditions according to the actual operation.
[0016]
In the above method of the present invention, the molten ferroboron is preferably obtained by melting and reducing in an electric furnace. The reason is that the expensive B is efficiently used and the productivity is high. The molten metal may be a molten metal obtained by solidifying a molten metal obtained by melting and reducing in an electric furnace and then remelting the molten metal. Remelting is useful when differentiating ferroboron that needs to reduce the C content and other ferroboron.
Further, in the electric furnace method, when the B content in the molten metal is high, the electric power consumption increases, and when the B content exceeds 10% by mass, it rapidly increases. Therefore, the content is preferably 10% by mass or less.
[0017]
Furthermore, in the method of the present invention, it is preferable to employ steel having an Al content of 0.03% by mass or less obtained in a refining furnace of a normal steelmaking process as a raw iron source. Other raw materials are boron sources such as boron oxide and boric acid, and carbon-based reducing agents such as coke, charcoal and pulverized coal, and these materials are charged into a smelting reduction furnace to produce ferroboron. As the smelting reduction furnace, an electric furnace is preferably used in terms of productivity and cost.
[0018]
Since inexpensive electrolytic steel is not used for the iron source and inexpensive mass-produced steel can be used, inexpensive ferroboron can be manufactured. The steel used may be a slab cast by continuous casting or the like after passing through a refining furnace such as a converter or electric furnace, or may be a hot rolled or cold rolled plate. The iron source steel can be used as long as the Al content is 0.03% by mass or less, even if the steel is Al deoxidized. Low Al steel deoxidized with Si or Mn may be used.
[0019]
According to the experimental results, even when Mn deoxidized steel having an Al content of 0.001% by mass is used as an iron source, the Al content of the ferroboron obtained is in the order of 0.02% by mass due to mixing from a reducing agent or the like. May rise. Then, if high purity ferroboron using steel with an Al content of 0.03% by mass or less as an iron source is used as a raw material, an iron-based amorphous alloy having excellent magnetic properties and mechanical properties can be stably produced. be able to.
In addition, the high-purity ferroboron obtained by the method of the present invention can also be used as a raw material for magnetic materials, steelmaking additives, and the like.
[0020]
Next, the method for producing a master alloy for an iron-based amorphous alloy according to the present invention is a method for adjusting the components by adding a diluted iron source and auxiliary materials to the high-purity ferroboron produced by the above-described method of the present invention. As the diluted iron source, mass-produced steel obtained by a steelmaking process refining furnace can be used without using expensive electrolytic iron. In that case, the Al content of the steel is 0.006% by mass or less. Is preferred. The auxiliary raw material is a raw material of a constituent component of the target iron-based amorphous alloy such as Si or C. As the high-purity ferroboron, a molten one obtained by the above method can be used, or a solid one can be dissolved. A high frequency induction furnace or the like can be used for melting.
[0021]
The component composition of the mother alloy is substantially the same as the component composition of the target iron-based amorphous alloy. At the time of manufacture, raw materials whose composition is known are blended so as to have this predetermined component composition. According to the experimental result, the analysis result of the manufactured mother alloy is not substantially deviated from the predetermined component composition set in advance.
[0022]
When setting the composition of the mother alloy, the raw material blending ratio is determined for the main components such as Fe and B. At this time, the Al content is set to be equal to or less than an allowable amount for stably obtaining an amorphous alloy having excellent characteristics. In that case, the Al content of the high-purity ferroboron does not exceed the maximum content of 0.03% of the steel used as the iron source, so this is diluted so that the Al content of the master alloy is less than the above allowable amount. Thus, the Al content of the diluted iron source can be determined.
According to the experimental results, even if Al is contained in the steel of the diluted iron source, if it is 0.006% by mass or less, stable and excellent characteristics can be obtained for most target iron-based amorphous alloys. It is done.
[0023]
Next, in the method for producing an iron-based amorphous alloy according to the present invention, the molten metal of the mother alloy produced by the method of the present invention is cast by a rapid solidification method. The molten mother alloy may be a solid mother alloy remelted with a high frequency induction furnace or the like, or may be a molten state produced as described above.
[0024]
According to the method of the present invention, for example, in an Fe-B-Si-P-based iron-based amorphous alloy, a ribbon having an Al content of 0.005 mass% or less can be cast. This ribbon had excellent magnetic properties.
As the rapid solidification method, a single roll method, a twin roll method, or the like can be employed.
Excellent AC soft magnetic properties.
[0025]
【Example】
Example 1
In order to obtain the lower limit temperature at which de-B does not occur during the production of low-C ferroboron, an oxygen blowing experiment was conducted in an induction melting furnace. Steel type A shown in Table 1, ferroboron having a B content of 18% by mass, and a carbon material were charged into a crucible and melted in an induction melting furnace. The initial molten metal weight was 1000 g, and the initial composition was blended so that the B content was 4.0% by mass and the C content was 2.4% by mass. The molten metal temperature was maintained at three levels of 1500 ° C., 1600 ° C., and 1700 ° C., and pure oxygen gas was supplied from the top at 1 liter / min and blown. Samples were taken from the melt every 5 minutes for chemical analysis.
[0026]
In FIG. 1, transition of content of B and C in the molten metal with respect to oxygen blowing time is shown. At 1500 ° C., B and C decrease simultaneously. Therefore, it was found that the temperature at which the thermodynamic stability of B and C is reversed is in this vicinity. At 1600 ° C. and 1700 ° C., de-C progresses, but the B content is constant and de-B reaction does not proceed.
[0027]
(Example 2)
In order to confirm that ferroboron having a low C and Al content can be produced at low cost, ferroboron was produced by an electric furnace method, and this was subjected to oxygen blowing.
Four types of iron sources shown in Table 1, boron oxide, and a carbon-based reducing agent were dissolved in an electric furnace to produce ferroboron. Each iron source is steel produced from pig iron obtained in a blast furnace through a de-S step, a de-Si step, and a de-P and de-C step by oxygen blowing in a converter. Steel type A was deoxidized with Si and Mn, steel types B and D were deoxidized with Mn, and steel type C was deoxidized with Al. Each steel type was made into a slab by continuous casting, and then hot rolled into hot rolled coils with a plate thickness of about 3 mm, and each hot rolled coil cut into a few centimeters square with a shear was charged into an electric furnace. .
[0028]
As the electric furnace, a three-phase Eru type electric furnace having an electric capacity of 600 KVA was used. The furnace operation was continued for 16 days. Ferroboron having a B content of 15 to 16% by mass was produced for 8 days in the previous period, and the iron source was switched in the order of B, D, A, and C every two days. In the latter 8 days, ferroboron having a B content of about 9% by mass was produced, and the iron source was switched in the order of B, D, A, and C every 2 days.
The molten ferroboron tapped from the electric furnace was received in a ladle, held at 1600 ° C. by high frequency induction, and subjected to oxygen blowing.
[0029]
The average operating conditions for the previous eight days were a voltage of 45 V, a current of 4000 to 5000 A, a tapping interval of about 2 hours, a daily production of 2 t / day, and a power consumption of 4.3 kWh / kg-FeB. The average operating conditions in the latter eight days were a voltage of 45 V, a current of 4000 to 5000 A, a tapping interval of about 1 and a half hours, a daily output of 2.2 t / day, and a power consumption rate of 3.9 kWh / kg-FeB.
[0030]
Table 2 shows the analysis results of ferroboron before oxygen blowing, and Table 3 shows the analysis results of ferroboron after oxygen blowing. The C content is reduced in all samples. Furthermore, a secondary effect that the content of Al or Ti is also reduced can be confirmed. T. in the table. Al represents the total value of metal Al and compound Al.
[0031]
From this example, it can be seen that the C content reduction by oxygen gas spraying is applicable to molten ferroboron supplied from an electric furnace. In addition, as an iron source used for the electric furnace method, any of steel types A to D by the converter method can be adopted. In addition, it can be seen from the power unit per product weight that a lower B concentration in ferroboron is advantageous in terms of power cost.
[0032]
(Example 3)
After tapping the ferroboron obtained by the electric furnace method, it was confirmed that even if it was once solidified, it could be removed by re-dissolving and blowing oxygen gas. That is, 8 types of ferroboron shown in Table 2 obtained in Example 2 were remelted, held at 1600 ° C. and sprayed with oxygen gas. Also in this case, the C content could be 0.1% by mass or less without reducing the B content in ferroboron.
[0033]
(Example 4)
In order to confirm that the ferroboron produced by the method of the present invention is suitable for the production of a master alloy for an iron-based amorphous alloy, and further an iron-based amorphous alloy, a diluted iron source and auxiliary materials are added to ferroboron, A mother alloy was produced.
For the Fe-B-Si-P-based iron-based amorphous alloy, ferroboron obtained in Example 2, diluted iron source, FeP, carbonaceous material and Si as auxiliary materials were dissolved in a high-frequency induction furnace. A mother alloy was produced. The ferroboron that was tapped and solidified in Example 2 was used after pulverization. Steel types A to D in Table 1 were used as the diluted iron source.
[0034]
In a high-frequency induction furnace, the raw materials are blended so that the main component composition of the master alloy becomes a predetermined value, the temperature is raised until it is completely dissolved, held until it is uniform, solidified, pulverized, and part of it Sampled and analyzed.
Table 4 shows an example of blending raw materials when ferroboron FeB-A9-O in Table 3 is used as a raw material. The master alloy FeB-A9-OA is an example in which the steel type A is used as a diluted iron source, and the master alloy FeB-A9-OC is an example in which the steel type C is used as a diluted raw material.
[0035]
Table 5 shows the component analysis results of the master alloy obtained in this blending example. The analysis values in Table 5 were not substantially deviated from the predetermined values set in advance, and it was confirmed that the composition according to the raw material composition was obtained.
The mother alloy FeB-A9-OA has a low Al content as an impurity and is suitable for an iron-based amorphous alloy. However, the master alloy FeB-A9-O-C using the steel type C having a high Al content as the diluted iron source has a high Al content and a high Ti content, and is not suitable for an iron-based amorphous alloy.
[0036]
When the diluted iron source is steel type A, steel type B, and steel type D, the Al content of the obtained master alloy is 0.0050 mass% or less regardless of the ferroboron in Table 3, and the iron-based amorphous Suitable for quality alloys. However, when the diluted iron source was steel type C, the Al content of the obtained master alloy was high, and it was not suitable for the iron-based amorphous mother alloy.
[0037]
(Example 5)
In order to confirm that the ferroboron produced by the method of the present invention and the mother alloy for the iron-based amorphous alloy are suitable for the production of the iron-based amorphous alloy, the amorphous alloy is obtained by rapid solidification from the mother alloy. Manufactured.
The master alloy FeB-A9-OA obtained in Example 4 was redissolved and rapidly solidified by a single roll method to produce a ribbon, and the magnetic properties as an iron core material were evaluated. As a result of analyzing the components of the ribbon, there was no component deviation from the mother alloy. Even when additional auxiliary materials were added at the time of re-dissolving to adjust the components, a ribbon similar to the blended components was obtained.
[0038]
When evaluating the magnetic properties, the ribbon was cut into a length of 120 mm, annealed in a magnetic field at 360 ° C. for 1 hour in a nitrogen atmosphere, and then subjected to B 80 and iron loss using an SST (single plate magnetometer). Was measured. B 80 is the maximum magnetic flux density when the maximum applied magnetic field is 80 A / m, and the iron loss is the value at the maximum magnetic flux density of 1.3T. The measurement frequency is 50 Hz.
As a result of the measurement, a high magnetic flux density of B 80 = 1.44T was exhibited, the iron loss was as low as 0.063 W / kg, and it had excellent alternating current soft magnetic properties and could be sufficiently put into practical use.
[0039]
[Table 1]
Figure 0004256617
[0040]
[Table 2]
Figure 0004256617
[0041]
[Table 3]
Figure 0004256617
[0042]
[Table 4]
Figure 0004256617
[0043]
[Table 5]
Figure 0004256617
[0044]
【The invention's effect】
According to the method of the present invention, high-purity ferroboron with a reduced C content can be produced at low cost while increasing the B recovery efficiency from a boron source such as boron oxide. Further, high-purity ferroboron can be produced using mass-produced steel such as Al deoxidized steel without using expensive electrolytic iron. Furthermore, an iron-based amorphous alloy master alloy and an iron-based amorphous alloy having excellent characteristics can be produced using ferroboron as a raw material. By using mass-produced steels with appropriate Al contents for the iron source for ferroboron and the diluted iron source for the master alloy, for example, for iron cores with excellent magnetic properties with high magnetic flux density and low iron loss. An iron-based amorphous alloy ribbon can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a graph for explaining a method of the present invention.

Claims (6)

フェロボロンの溶湯が、硼素源と鉄源と炭素系還元剤を電気炉に装入し溶融還元して得られた溶湯であり、かつ前記溶湯中のB含有量を10質量%以下とし、該溶湯温度1600℃以上で酸素ガスを吹き脱炭することを特徴とする高純度フェロボロンの製造方法。 Molten ferroboron is a melt obtained by charged boron source and an iron source and the carbonaceous reducing agent into an electric furnace smelting reduction, and the B content in the melt is 10 mass% or less, the molten metal A method for producing high-purity ferroboron, characterized in that oxygen gas is blown and decarburized at a temperature of 1600 ° C or higher. 前記溶湯が、硼素源と鉄源と炭素系還元剤を電気炉に装入し溶融還元したのち固体化したフェロボロンを再溶融した溶湯であることを特徴とする請求項1記載の高純度フェロボロンの製造方法。   2. The high purity ferroboron according to claim 1, wherein the molten metal is a molten metal in which a boron source, an iron source, and a carbon-based reducing agent are charged into an electric furnace and melted and reduced, and then solidified ferroboron is remelted. Production method. 前記鉄源が、製鋼プロセスの精錬炉により得られた鋼であり、該鋼のAl含有量が0.03質量%以下であることを特徴とする請求項1 または2記載の高純度フェロボロンの製造方法。Wherein the iron source is a steel obtained by refining furnace steelmaking process, the production of high purity ferroboron according to claim 1 or 2, wherein the Al content of the steel is not more than 0.03 wt% Method. 請求項1〜記載の方法により製造された高純度フェロボロンに希釈鉄源と副原料を加えて成分調整することを特徴とする鉄基非晶質合金用母合金の製造方法。A method for producing a master alloy for an iron-based amorphous alloy, comprising adding a diluted iron source and auxiliary materials to the high-purity ferroboron produced by the method according to claims 1 to 3 to adjust the components. 前記希釈鉄源が製鋼プロセスの精錬炉により得られた鋼であり、該鋼のAl含有量が0.006質量%以下であることを特徴とする請求項記載の鉄基非晶質合金用母合金の製造方法。The iron-based amorphous alloy according to claim 4, wherein the diluted iron source is steel obtained by a refining furnace of a steelmaking process, and the Al content of the steel is 0.006% by mass or less. A method for producing a mother alloy. 請求項4または5記載の方法により製造された鉄基非晶質合金用母合金の溶湯を、急冷凝固法により鋳造することを特徴とする鉄基非晶質合金の製造方法。A method for producing an iron-based amorphous alloy, characterized in that a molten metal of a mother alloy for an iron-based amorphous alloy produced by the method according to claim 4 or 5 is cast by a rapid solidification method.
JP2002090650A 2002-03-28 2002-03-28 High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy Expired - Fee Related JP4256617B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002090650A JP4256617B2 (en) 2002-03-28 2002-03-28 High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy
TW095120437A TWI315347B (en) 2002-03-28 2003-03-27 A high-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
US10/401,063 US20030183041A1 (en) 2002-03-28 2003-03-27 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
TW092106953A TWI281504B (en) 2002-03-28 2003-03-27 A high-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
KR10-2003-0019265A KR100533129B1 (en) 2002-03-28 2003-03-27 High-purity ferroboron, master alloy for fe-base amorphous alloy and fe-base amorphous alloy and methods for producing the same
CNB031211860A CN1286998C (en) 2002-03-28 2003-03-27 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
US11/513,452 US7704450B2 (en) 2002-03-28 2006-08-30 High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090650A JP4256617B2 (en) 2002-03-28 2002-03-28 High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy

Publications (2)

Publication Number Publication Date
JP2003286534A JP2003286534A (en) 2003-10-10
JP4256617B2 true JP4256617B2 (en) 2009-04-22

Family

ID=29235929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090650A Expired - Fee Related JP4256617B2 (en) 2002-03-28 2002-03-28 High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy

Country Status (1)

Country Link
JP (1) JP4256617B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333097C (en) * 2004-12-24 2007-08-22 钢铁研究总院 Intermediate alloy suitable for alloy steel material containing boron
KR101053999B1 (en) * 2008-12-30 2011-08-03 주식회사 포스코 Manufacturing method of amorphous alloy using molten iron
CN110586947B (en) * 2019-08-28 2023-01-24 中航迈特粉冶科技(北京)有限公司 Preparation method of spherical amorphous alloy powder

Also Published As

Publication number Publication date
JP2003286534A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
KR101053220B1 (en) Manufacturing method of iron-based amorphous material
US3960616A (en) Rare earth metal treated cold rolled, non-oriented silicon steel and method of making it
CN106636982B (en) A kind of Fe-based amorphous alloy and preparation method thereof
US2558104A (en) Procedure for making nickel-iron alloys having rectangular hysteresis loops
US7704450B2 (en) High-purity ferroboron, a mother alloy for iron-base amorphous alloy, an iron-base amorphous alloy, and methods for producing the same
CN111001767B (en) High-saturation magnetic induction intensity iron-based amorphous soft magnetic alloy and preparation method thereof
JP2003286533A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
JP4256617B2 (en) High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2001316716A (en) Method for producing base material for amorphous iron alloy
EP1262567B1 (en) Molten steel producing method
US4229214A (en) Process for combined production of ferrosilicozirconium and zirconium corundum
JP3105525B2 (en) Melting method of silicon steel material
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JPH07122090B2 (en) Method of melting directional silicon steel material
CN112375961A (en) Method for producing high-purity industrial pure iron by adopting intermediate frequency furnace duplex method
JP5215327B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
CN1029775C (en) Regenerating technique for waste material of silicon sheet
CN100434539C (en) Rare earth silicon manganese aluminium iron alloy for steel liquid deoxidation and its preparation process
JP3179530B2 (en) Melting method of extremely low Ti steel
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
JP2002206144A (en) Fe-Ni BASED ALLOY HAVING EXCELLENT SURFACE PROPERTY AND PRODUCTION METHOD THEREFOR
JP2003286549A (en) High-purity ferroboron and production method therefor
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
CN117265370A (en) High-purity silicon-manganese alloy for silicon steel and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees