JPH041002A - 酸化物超電導体の製造方法 - Google Patents
酸化物超電導体の製造方法Info
- Publication number
- JPH041002A JPH041002A JP2104305A JP10430590A JPH041002A JP H041002 A JPH041002 A JP H041002A JP 2104305 A JP2104305 A JP 2104305A JP 10430590 A JP10430590 A JP 10430590A JP H041002 A JPH041002 A JP H041002A
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- heat treatment
- oxide superconductor
- average particle
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 14
- 238000010298 pulverizing process Methods 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 abstract description 12
- 239000000463 material Substances 0.000 abstract description 10
- 239000000203 mixture Substances 0.000 abstract description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 238000003801 milling Methods 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract 1
- 238000000227 grinding Methods 0.000 description 12
- 229910052797 bismuth Inorganic materials 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 7
- 238000005491 wire drawing Methods 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910014454 Ca-Cu Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野コ
この発明は、酸化物超電導体の製造方法に関するもので
、特に、臨界電流密度の向上およびこのような特性の均
一化を図るための改良に関するものである。
、特に、臨界電流密度の向上およびこのような特性の均
一化を図るための改良に関するものである。
[従来の技術]
近年、より高い臨界温度を示す超電導材料として、セラ
ミック系のもの、すなわち酸化物超電導材料が注目され
ている。
ミック系のもの、すなわち酸化物超電導材料が注目され
ている。
なかでも、イツトリウム系は90に1ビスマス系は11
0に1タリウム系は120に程度の高い臨界温度を示す
ことから、その実用化が期待されている。
0に1タリウム系は120に程度の高い臨界温度を示す
ことから、その実用化が期待されている。
酸化物超電導体の製造方法において、酸化物超電導体と
なるべき原料を、混合し、熱処理し、粉砕した後、金属
シースにて被覆する、各ステップを含む方法がある。こ
の方法は、たとえば長尺の超電導線材を製造するとき、
有利に適用される。
なるべき原料を、混合し、熱処理し、粉砕した後、金属
シースにて被覆する、各ステップを含む方法がある。こ
の方法は、たとえば長尺の超電導線材を製造するとき、
有利に適用される。
[発明が解決しようとする課題]
超電導体をケーブルやマグネットに応用しようとするに
は、高い臨界温度に加えて、高い臨界電流密度を有して
いることか必要である。特に、使用する磁場において、
必要な臨界電流密度を確保しなければならない。また、
超電導体において、臨界電流密度のような特性が均一に
得られなければならない。たとえば、長尺の超電導線材
においては、その長手方向にわたって、特性がばらつか
ないことが必要である。
は、高い臨界温度に加えて、高い臨界電流密度を有して
いることか必要である。特に、使用する磁場において、
必要な臨界電流密度を確保しなければならない。また、
超電導体において、臨界電流密度のような特性が均一に
得られなければならない。たとえば、長尺の超電導線材
においては、その長手方向にわたって、特性がばらつか
ないことが必要である。
しかしながら、従来の酸化物超電導体は、その臨界電流
密度、特に磁場下での臨界電流密度がそれほど高くなく
、また、特性の均一性においても問題があった。
密度、特に磁場下での臨界電流密度がそれほど高くなく
、また、特性の均一性においても問題があった。
それゆえに、この発明の目的は、特に磁場下での臨界電
流密度を向上させることができるとともに、特性の均一
化を図ることができる、酸化物超電導体の製造方法を提
供しようとすることである。
流密度を向上させることができるとともに、特性の均一
化を図ることができる、酸化物超電導体の製造方法を提
供しようとすることである。
[課題を解決するための手段]
この発明は、酸化物超電導体となるべき原料を、混合し
、熱処理し、粉砕した後、金属シースにて被覆する、各
ステップを含む、酸化物超電導体の製造方法に向けられ
るものであって、上述した技術的課題を解決するため、
前記混合するステップを磨砕方式により実施するととも
に、前記粉砕するステップで1ミクロン以下の平均粒径
を得るようにすることを特徴としている。
、熱処理し、粉砕した後、金属シースにて被覆する、各
ステップを含む、酸化物超電導体の製造方法に向けられ
るものであって、上述した技術的課題を解決するため、
前記混合するステップを磨砕方式により実施するととも
に、前記粉砕するステップで1ミクロン以下の平均粒径
を得るようにすることを特徴としている。
好ましくは、前記粉砕するステップにおいて、乾式もし
くは湿式ボールミル、またはアトライターが用いられる
。
くは湿式ボールミル、またはアトライターが用いられる
。
また、金属シースにて被覆するステップの後に、好まし
くは、塑性加工および熱処理するステップがさらに実施
される。
くは、塑性加工および熱処理するステップがさらに実施
される。
[作用]
この発明において磨砕方式とは、いわゆる叩き潰す方式
ではなく、高圧力で押し潰す方式による混合方式である
。高圧力で押し潰すことにより、ミクロな意味での混合
が可能であり、均一な混合状態が得られる。
ではなく、高圧力で押し潰す方式による混合方式である
。高圧力で押し潰すことにより、ミクロな意味での混合
が可能であり、均一な混合状態が得られる。
磨砕方式で混合した原料は、雰囲気に応じた温度て熱処
理される。この場合の熱処理とは、仮焼結および焼結で
ある。
理される。この場合の熱処理とは、仮焼結および焼結で
ある。
この熱処理は、たとえば複数回繰返され、各々ノ熱処理
の後に粉砕が実施される。この粉砕において、原料粉末
は、その平均粒径が1ミクロン以下にされる。
の後に粉砕が実施される。この粉砕において、原料粉末
は、その平均粒径が1ミクロン以下にされる。
[発明の効果]
この発明は、イツトリウム系、ビスマス系、タリウム系
のいずれの酸化物超電導体にも適用可能であるが、ビス
マス系酸化物超電導体を例にとって説明すると、ビスマ
ス系酸化物超電導体には、臨界温度が110にの相と臨
界温度が80におよびIOKの相とがあることが知られ
ている。110に相は、B i−3r−Ca−Cuまた
はBiの一部をpbで置換した(Bi、Pb)−Sr−
Ca−Cuの組成における2223組成を有しており、
他方、80に相は、同組成における2212組成を有し
ていることが知られている。また、特にll0K相を生
成しようとするとき、必然的に非超電導相が一部におい
て現れることも知られている。
のいずれの酸化物超電導体にも適用可能であるが、ビス
マス系酸化物超電導体を例にとって説明すると、ビスマ
ス系酸化物超電導体には、臨界温度が110にの相と臨
界温度が80におよびIOKの相とがあることが知られ
ている。110に相は、B i−3r−Ca−Cuまた
はBiの一部をpbで置換した(Bi、Pb)−Sr−
Ca−Cuの組成における2223組成を有しており、
他方、80に相は、同組成における2212組成を有し
ていることが知られている。また、特にll0K相を生
成しようとするとき、必然的に非超電導相が一部におい
て現れることも知られている。
このようなビスマス系酸化物超電導体において、110
に相である2223相がa−b面を長手方向に配向させ
ているとともに、80に相である2212相を主体とす
る超電導相および非超電導相が2223相のa−b面に
沿って分散していると、これらの分散されているものが
、臨界電流密度およびその磁場特性を著しく向上させる
ことが、本件発明者によって見出された。
に相である2223相がa−b面を長手方向に配向させ
ているとともに、80に相である2212相を主体とす
る超電導相および非超電導相が2223相のa−b面に
沿って分散していると、これらの分散されているものが
、臨界電流密度およびその磁場特性を著しく向上させる
ことが、本件発明者によって見出された。
この発明によれば、上述したような構造の酸化物超電導
体を均一に得ることができる。したがって、臨界電流密
度およびその磁場特性が著しく向上され、かつ、そのよ
うな特性の均一化が図られた、酸化物超電導体が得られ
る。そのため、このような酸化物超電導体をケーブルや
マグネットに問題なく応用することが可能になる。
体を均一に得ることができる。したがって、臨界電流密
度およびその磁場特性が著しく向上され、かつ、そのよ
うな特性の均一化が図られた、酸化物超電導体が得られ
る。そのため、このような酸化物超電導体をケーブルや
マグネットに問題なく応用することが可能になる。
この発明に含まれる粉砕するステップにおいて、乾式も
しくは湿式ボールミル、またはアトライターが用いられ
ると、1ミクロン以下の平均粒径を容易に得ることがで
きる。このような1ミクロン以下の平均粒径は、臨界電
流密度の一層の向上および一層の均一化に有効である。
しくは湿式ボールミル、またはアトライターが用いられ
ると、1ミクロン以下の平均粒径を容易に得ることがで
きる。このような1ミクロン以下の平均粒径は、臨界電
流密度の一層の向上および一層の均一化に有効である。
また、金属シースにて被覆するステップの後に、塑性加
工および熱処理するステップが実施されることは、高い
臨界電流密度を得るのに効果的である。
工および熱処理するステップが実施されることは、高い
臨界電流密度を得るのに効果的である。
[実施例]
この発明は、たとえば、次のように実施される。
酸化物超電導体1なるべき酸化物または炭酸塩などの原
料が、磨砕方式で混合される。このように、磨砕方式を
採用することにより、ミクロな意味での混合が可能であ
る。
料が、磨砕方式で混合される。このように、磨砕方式を
採用することにより、ミクロな意味での混合が可能であ
る。
次に、熱処理が複数回繰返され、熱処理の各々の後に粉
砕が実施される。
砕が実施される。
熱処理では、熱処理雰囲気により、最適な温度が選択さ
れる。たとえば、熱処理雰囲気において酸素分圧を低く
する場合、温度は、通常より低めとなる。
れる。たとえば、熱処理雰囲気において酸素分圧を低く
する場合、温度は、通常より低めとなる。
上述の粉砕により、平均粒径が1ミクロン以下の粉末と
される。このとき、ボールミルまたはアトライターを用
いてサブミクロンの平均粒径とされる。最大粒径は、2
ミクロン以下にするのが望ましい。このように、粒度を
調節することにより、均一な混合とあいまって、不可避
的に生成する非超電導相を微細に分散させることができ
、均一な特性を得ることができる。
される。このとき、ボールミルまたはアトライターを用
いてサブミクロンの平均粒径とされる。最大粒径は、2
ミクロン以下にするのが望ましい。このように、粒度を
調節することにより、均一な混合とあいまって、不可避
的に生成する非超電導相を微細に分散させることができ
、均一な特性を得ることができる。
次に、上述の原料粉末は、金属シースに充填される。金
属シースは、超電導材料と反応せず、かつ加工性が良好
である、という条件を満足する材料であれば、どのよう
な材料から構成されてもよい。たとえば、銀、銀合金、
金、または金合金からなるシースが用いられる。また、
超電導材料と接触する面のみがこれらの金属のいずれか
からなる層で被覆された金藁シースを用いてもよい。ま
た、金属シースは、超電導体の使用条件で安定化材とし
て機能するものが望ましい。
属シースは、超電導材料と反応せず、かつ加工性が良好
である、という条件を満足する材料であれば、どのよう
な材料から構成されてもよい。たとえば、銀、銀合金、
金、または金合金からなるシースが用いられる。また、
超電導材料と接触する面のみがこれらの金属のいずれか
からなる層で被覆された金藁シースを用いてもよい。ま
た、金属シースは、超電導体の使用条件で安定化材とし
て機能するものが望ましい。
上述のように原料が充填された金属シースに対しては、
さらに、塑性加工および熱処理が施されることが好まし
い。この熱処理における温度は、熱処理雰囲気により最
適な条件が選択される。たとえば、熱処理雰囲気の酸素
分圧を低くする場合には、熱処理温度は、通常より低め
とされる。
さらに、塑性加工および熱処理が施されることが好まし
い。この熱処理における温度は、熱処理雰囲気により最
適な条件が選択される。たとえば、熱処理雰囲気の酸素
分圧を低くする場合には、熱処理温度は、通常より低め
とされる。
また、塑性加工には、たとえば、伸線加工、圧延加工な
どがある。臨界電流密度を向上させるためには、伸線加
工においては、その加工度が80%以上であることが望
ましく、圧延加工においても、その加工度が80%以上
であることが望ましい。このような塑性加工および熱処
理を施すステップは、複数回繰返されることが、臨界電
流密度の一層の向上に効果的である。たとえば、圧延加
工が複数回実施される場合、1パスの加工度が40%以
上であることが望ましい。熱処理が実施された後、再度
、圧延加工または伸線加工が行なわれる場合、このよう
な加工における加工度は10%ないし30%程度で十分
である。圧延加工は、たとえば、ロールまたはプレスを
用いて実施される。
どがある。臨界電流密度を向上させるためには、伸線加
工においては、その加工度が80%以上であることが望
ましく、圧延加工においても、その加工度が80%以上
であることが望ましい。このような塑性加工および熱処
理を施すステップは、複数回繰返されることが、臨界電
流密度の一層の向上に効果的である。たとえば、圧延加
工が複数回実施される場合、1パスの加工度が40%以
上であることが望ましい。熱処理が実施された後、再度
、圧延加工または伸線加工が行なわれる場合、このよう
な加工における加工度は10%ないし30%程度で十分
である。圧延加工は、たとえば、ロールまたはプレスを
用いて実施される。
たとえば、ビスマス系酸化物超電導体を製造する場合、
2212相を主体とする超電導相と非超電導相とからな
る、2223組成を基本とする粉末を、銀パイプに充填
し、伸線加工と圧延加工とを施し、熱処理した後、再度
、圧延加工と熱処理または伸線加工と熱処理を施すこと
により、好ましい特性を有するビスマス系酸化物超電導
体が得られる。このとき、2212相が残存し、また非
超電導相が残存するように、成分を調整しておいてもよ
い。この場合、熱処理の温度を、2223相を支配的に
生成する温度よりも、若干高めとすることにより、優れ
た特性を有するビスマス系酸化物超電導体を得ることが
できる。
2212相を主体とする超電導相と非超電導相とからな
る、2223組成を基本とする粉末を、銀パイプに充填
し、伸線加工と圧延加工とを施し、熱処理した後、再度
、圧延加工と熱処理または伸線加工と熱処理を施すこと
により、好ましい特性を有するビスマス系酸化物超電導
体が得られる。このとき、2212相が残存し、また非
超電導相が残存するように、成分を調整しておいてもよ
い。この場合、熱処理の温度を、2223相を支配的に
生成する温度よりも、若干高めとすることにより、優れ
た特性を有するビスマス系酸化物超電導体を得ることが
できる。
このようにして得られたビスマス系酸化物超電導体にお
いては、2223相がa−b面を長平方向に配向させ、
2212相および/または非超電導相がa−b面に沿っ
て配向しており、臨界電流密度の磁場特性に優れたもの
となっている。
いては、2223相がa−b面を長平方向に配向させ、
2212相および/または非超電導相がa−b面に沿っ
て配向しており、臨界電流密度の磁場特性に優れたもの
となっている。
以下に、この発明に基づき実施した実験例について説明
する。
する。
実験例I
B i203 、Pbo、S rcOa 、CaC0a
およびCuOを用いて、Bi:Pb:Sr:Ca:Cu
−1,82+0. 40+2. 00:2. 19+3
.01の組成比になるように、これらを配合した。この
配合したものを、磨砕方式により、1時間混合した。
およびCuOを用いて、Bi:Pb:Sr:Ca:Cu
−1,82+0. 40+2. 00:2. 19+3
.01の組成比になるように、これらを配合した。この
配合したものを、磨砕方式により、1時間混合した。
次いで、この原料粉末を、700℃で12時間、次いで
800℃で8時間、さらに855℃で8時間の順に熱処
理した。各熱処理後において、それぞれ、湿式ボールミ
ルにより粉砕を行ない、サブミクロンの粉末を得た。
800℃で8時間、さらに855℃で8時間の順に熱処
理した。各熱処理後において、それぞれ、湿式ボールミ
ルにより粉砕を行ない、サブミクロンの粉末を得た。
この粉末を、減圧雰囲気において、700℃で40分間
、脱ガス処理した。
、脱ガス処理した。
この粉末は、2212相を主体とするものであり、非超
電導相を含むものであった。非超電導相としては、(C
a、S r)−Pb−0,5r−Ca−Cu−0、Ca
−Cu−0の組成のものが認められた。
電導相を含むものであった。非超電導相としては、(C
a、S r)−Pb−0,5r−Ca−Cu−0、Ca
−Cu−0の組成のものが認められた。
この粉末を、直径(外径)12mmの銀バイブに充填し
、直径1mmになるまで伸線加工を施し、さらに、厚さ
0.17mmになるまで圧延加工を施した。
、直径1mmになるまで伸線加工を施し、さらに、厚さ
0.17mmになるまで圧延加工を施した。
次いで、845℃で50時間の熱処理を施し、その後、
厚さ0.13mmになるまで、再度、圧延加工を施し、
さらに、840℃で50時間の熱処理を施した。
厚さ0.13mmになるまで、再度、圧延加工を施し、
さらに、840℃で50時間の熱処理を施した。
このようにして得られたテープ状線材の液体窒素温度に
おける臨界電流密度は、35000’A/Cm2であり
、50cmでの特性のばらつきは、5%と良好であった
。
おける臨界電流密度は、35000’A/Cm2であり
、50cmでの特性のばらつきは、5%と良好であった
。
上述した工程において、原料粉末の混合を、通常の自動
乳鉢を用い、粉砕も、同じ自動乳鉢で実施したことを除
いて、同様の工程により、比較例を作製した。
乳鉢を用い、粉砕も、同じ自動乳鉢で実施したことを除
いて、同様の工程により、比較例を作製した。
この比較例では、臨界電流密度が、20000A/Cm
2と低く、また、50cmでの特性のばらつきも、30
%と良くなかった。
2と低く、また、50cmでの特性のばらつきも、30
%と良くなかった。
実験例2
(1) 磨砕方式による混合および湿式ボールミルによ
る粉砕(試料1) (2) 自動乳鉢による混合および湿式ボールミルによ
る粉砕(試料2) (3) 磨砕方式による混合および自動乳鉢による粉砕
(試料3) をそれぞれ行なって得た各試料を比較した。特に指摘し
ない条件については、上記実験例1と同様である。
る粉砕(試料1) (2) 自動乳鉢による混合および湿式ボールミルによ
る粉砕(試料2) (3) 磨砕方式による混合および自動乳鉢による粉砕
(試料3) をそれぞれ行なって得た各試料を比較した。特に指摘し
ない条件については、上記実験例1と同様である。
得られたテープ状線材において、試料1は、上記実験例
1で示したように、高い臨界電流密度を示しかつ均一な
特性を示していたが、試料2では、臨界電流密度が22
000A/cm2、ばらつきが30%、試料3では、2
100OA/am2ばらつきが27%と、いずれも、試
料1に比べて劣っていた。
1で示したように、高い臨界電流密度を示しかつ均一な
特性を示していたが、試料2では、臨界電流密度が22
000A/cm2、ばらつきが30%、試料3では、2
100OA/am2ばらつきが27%と、いずれも、試
料1に比べて劣っていた。
また、これらの線材の磁場印加状態での臨界電流密度を
測定したところ、1テスラにおいて、試料1では500
0A/cm2であり、試料2では280 OA / c
m 2であり、試料3では2500A/cm2であり
、試料1が最も優れていることがわかった。
測定したところ、1テスラにおいて、試料1では500
0A/cm2であり、試料2では280 OA / c
m 2であり、試料3では2500A/cm2であり
、試料1が最も優れていることがわかった。
Claims (3)
- (1)酸化物超電導体となるべき原料を、混合し、熱処
理し、粉砕した後、金属シースにて被覆する、各ステッ
プを含む、酸化物超電導体の製造方法において、 前記混合するステップを磨砕方式により実施するととも
に、 前記粉砕するステップで1ミクロン以下の平均粒径を得
るようにする、 ことを特徴とする、酸化物超電導体の製造方法。 - (2)前記粉砕するステップにおいて、乾式もしくは湿
式ボールミル、またはアトライターが用いられる、請求
項1に記載の酸化物超電導体の製造方法。 - (3)前記金属シースにて被覆するステップの後に、塑
性加工および熱処理するステップが実施される、請求項
1または2に記載の酸化物超電導体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104305A JP2995796B2 (ja) | 1990-04-18 | 1990-04-18 | 酸化物超電導体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2104305A JP2995796B2 (ja) | 1990-04-18 | 1990-04-18 | 酸化物超電導体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH041002A true JPH041002A (ja) | 1992-01-06 |
JP2995796B2 JP2995796B2 (ja) | 1999-12-27 |
Family
ID=14377214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2104305A Expired - Lifetime JP2995796B2 (ja) | 1990-04-18 | 1990-04-18 | 酸化物超電導体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2995796B2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240116A (ja) * | 1991-01-24 | 1992-08-27 | Natl Inst For Res In Inorg Mater | ビスマス系超電導酸化物の高臨界温度相への転化法 |
WO1993002460A1 (fr) * | 1991-07-24 | 1993-02-04 | Sumitomo Electric Industries, Ltd. | Procede de fabrication d'un materiau supraconducteur filaire en oxyde a base de bismuth |
WO1994019295A1 (en) * | 1993-02-24 | 1994-09-01 | American Superconductor Corporation | A coated precursor powder for oxide superconductors |
JPH07291625A (ja) * | 1994-04-25 | 1995-11-07 | Korea Atom Energ Res Inst | 粉末法を利用して製造した銀−高温超伝導複合材及びその製造方法 |
EP1187233A2 (en) * | 2000-08-29 | 2002-03-13 | Sumitomo Electric Industries, Ltd. | Method of preparing oxide superconducting wire |
JP2009513471A (ja) * | 2005-10-28 | 2009-04-02 | エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド | 立方晶系窒化ホウ素成形体 |
-
1990
- 1990-04-18 JP JP2104305A patent/JP2995796B2/ja not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04240116A (ja) * | 1991-01-24 | 1992-08-27 | Natl Inst For Res In Inorg Mater | ビスマス系超電導酸化物の高臨界温度相への転化法 |
WO1993002460A1 (fr) * | 1991-07-24 | 1993-02-04 | Sumitomo Electric Industries, Ltd. | Procede de fabrication d'un materiau supraconducteur filaire en oxyde a base de bismuth |
WO1994019295A1 (en) * | 1993-02-24 | 1994-09-01 | American Superconductor Corporation | A coated precursor powder for oxide superconductors |
US5455223A (en) * | 1993-02-24 | 1995-10-03 | American Superconductor Corporation | Coated precursor powder for oxide superdonductors |
JPH07291625A (ja) * | 1994-04-25 | 1995-11-07 | Korea Atom Energ Res Inst | 粉末法を利用して製造した銀−高温超伝導複合材及びその製造方法 |
EP1187233A2 (en) * | 2000-08-29 | 2002-03-13 | Sumitomo Electric Industries, Ltd. | Method of preparing oxide superconducting wire |
EP1187233A3 (en) * | 2000-08-29 | 2005-05-11 | Sumitomo Electric Industries, Ltd. | Method of preparing oxide superconducting wire |
JP2009513471A (ja) * | 2005-10-28 | 2009-04-02 | エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド | 立方晶系窒化ホウ素成形体 |
US8382868B2 (en) | 2005-10-28 | 2013-02-26 | Iain Patrick Goudemond | Cubic boron nitride compact |
Also Published As
Publication number | Publication date |
---|---|
JP2995796B2 (ja) | 1999-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3074753B2 (ja) | ビスマス系酸化物超電導体の製造方法 | |
JP3008453B2 (ja) | ビスマス系超電導体の製造方法 | |
CA2063281C (en) | Method of preparing oxide superconducting wire | |
CA2059453C (en) | Method of preparing bismuth oxide superconducting wire | |
US5910222A (en) | Bismuth oxide superconductor and method of preparing the same | |
JPH041002A (ja) | 酸化物超電導体の製造方法 | |
JP2006290639A (ja) | ビスマス系酸化物超電導体、およびその製造方法 | |
JP2622123B2 (ja) | フレーク状酸化物超電導体の製造方法 | |
JP3089641B2 (ja) | ビスマス系酸化物超電導体およびその製造方法 | |
EP0676817A1 (en) | Method of preparing high-temperature superconducting wire | |
JP3102010B2 (ja) | タリウム系酸化物超電導線材 | |
JP3044732B2 (ja) | ビスマス系酸化物超電導体の製造方法 | |
JP3008440B2 (ja) | ビスマス系酸化物超電導体の製造方法 | |
KR940005010B1 (ko) | 열적-기계적 공정을 이용한 고온초전도 선재의 가공방법 | |
KR100232296B1 (ko) | Tl-1223상 고온초전도 복합선재 및 그 제조방법 | |
JPH0448518A (ja) | ビスマス系超電導導体の製造方法 | |
JPS63282152A (ja) | 超電導体結晶の配向方法 | |
JPH04292814A (ja) | ビスマス系酸化物超電導線材の製造方法 | |
JP2971504B2 (ja) | Bi基酸化物超電導体の製造方法 | |
JPH0818840B2 (ja) | 酸化物超電導体 | |
JPH03208211A (ja) | 酸化物超電導線材の製造方法 | |
JPH04160711A (ja) | 酸化物超電導体帯状線材の製造方法 | |
JPH08217442A (ja) | 炭素を含有する金属酸化物線材及びその製造方法 | |
JPH02116623A (ja) | 酸化物超伝導材料 | |
JPH01224261A (ja) | 超電導材料の製造方法及び超電導材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 11 |