JP3102010B2 - タリウム系酸化物超電導線材 - Google Patents

タリウム系酸化物超電導線材

Info

Publication number
JP3102010B2
JP3102010B2 JP02016542A JP1654290A JP3102010B2 JP 3102010 B2 JP3102010 B2 JP 3102010B2 JP 02016542 A JP02016542 A JP 02016542A JP 1654290 A JP1654290 A JP 1654290A JP 3102010 B2 JP3102010 B2 JP 3102010B2
Authority
JP
Japan
Prior art keywords
powder
wire
superconductor
thallium
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02016542A
Other languages
English (en)
Other versions
JPH03222213A (ja
Inventor
史一 細野
雅宏 清藤
正 梅沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP02016542A priority Critical patent/JP3102010B2/ja
Publication of JPH03222213A publication Critical patent/JPH03222213A/ja
Application granted granted Critical
Publication of JP3102010B2 publication Critical patent/JP3102010B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はタリウム(Tl)系の酸化物超電導体を活用し
た金属被覆超電導線材に関するものである。
[従来の技術] 近時、超電導状態に遷移する臨界温度が液体窒素温度
(77K)以上の高い値を示す酸化物超電導材料が種々発
表されている。
その中でもTl−Ba/Sr−Ca−Cu−OのようなTl系の超
電導体を活用したテープ状金属被覆線材は比較的高い値
を示すことが報告されている。
そのテープ状線材の主な製造方法としては次のような
方法が知られている。
まず、共沈法(化学的性質のいくぶん似た溶質が共存
する溶液から同時に主沈澱と共に沈澱させる方法)によ
って得られた所定組成比の原料混合粉末を乾燥後、圧粉
成形して800〜900℃の温度で熱処理し、液体窒素温度の
臨界温度を有する酸化物超電導体、例えば2223相、2212
相を合成する。そして微細に粉砕した後、金属、例えば
銀のパイプ中に充填し、引抜き、スウェージング等によ
り細線化し、更に圧延によりテープ状に成形する。最後
に芯部となる超電導粒子を結合させるために850℃前後
の温度で2時間程度の焼結熱処理を行なって金属被覆酸
化物超電導線材とする。
このようにして製造されたテープ状線材の臨界電流密
度(Jc)は、線材の厚さが薄いほど高い値を示し、厚さ
0.07mmの線材で8000〜10000A/cm2が得られている。
[発明が解決しようとする課題] 前記したJc値は零磁場でのものであり、磁界中てはそ
の低下が著しく、外部磁界が0.1T(テスラ)のとき、零
磁界のときの1/10〜1/20の値となる。
さらに高磁界側の1Tのときは1/100オーダーまでJcが
低下する傾向を示す。このように磁場中でのJc特性が低
下する理由としては、芯部を構成する酸化物超電導体の
結晶粒間の結合の弱さによって微小磁界(0〜0.01T)
であっても粒界への磁束の侵入があることと、高磁界側
(0.1〜1T)では磁束をトラップできるだけのピンニン
グ力が得られないことが挙げられる。したがって、Jc特
性を改善するためには、粒子間の弱結合の改善と粒子内
のピンニング力の向上が必要である。
また、芯部を構成する超電導体部は空隙が多く、電流
パスが少ない。これを解決するためには焼結熱処理温度
を高めることが必要であるが、そうすると径や厚さが小
さい線材では芯部に含まれるタリウムの蒸発量が多くな
るため、900〜920℃程度の比較的高温の熱処理では特性
が出ないという問題もある。
したがって、本発明の目的は、前記した従来技術の欠
点を解消し、磁場中のJc特性を増加させることのできる
改良されたタリウム系酸化物超電導線材を提供すること
にある。
[課題を解決するための手段] 本発明の要旨は、芯部となる超電導体として、タリウ
ム系超電導体の粉末にCaO、Ca2CuO3、CaCu2O3等のCa又
はCa−Cuの酸化物を添加した粉末を900℃以上で焼結熱
処理してなる超電導体を芯部としたテープ状の金属被覆
線材であって、厚さを0.2mm以上とすることにより、線
材の磁場中におけるJc特性を大幅に向上させたものであ
る。
この場合、タリウム(Tl)系超電導体の粉末として
は、77K以上の臨界温度を有する超電導体、例えば2223
相、2212相を主体とするTl−Ba−Ca−Cu−O、Tl−Ba/S
r−Ca−Cu−O等の焼成処理後の粉砕工程を経た微粉末
をいう。焼成処理前の原料粉末の粒径が大きいと、焼成
処理後の粉砕工程を経た後も結晶粒の十分な微細化がで
きないが、原料粉末の粒径が5μm程度以下、好ましく
は1μm以下とすれば粉末の微細化と均質化の効果が得
られ、超電導特性に好い影響を与える。したがって、焼
成処理前の原料粉末としては、比較的容易に微粉末から
得られる共沈法を用いて製作したものであることが望ま
しい。
そのようなタリウム系超電導体の微粉末に対するCa又
はCa−Cuの酸化物の添加量は、タリウム系超電導体の粉
末に含まれるCa量の10%程度を添加し、粉末全体の組成
比がTl−Ba−Ca−Cuの場合、CaOのときTl2Ba2Ca2.2Cu3O
x、Ca2CuO3のときTl2Ba2Ca2.2Cu3.1Ox、CaCu2OのときTl
2Ba2Ca2.2Cu3.4Ox等、Tl−Ba/Sr−Ca−Cuの場合、CaOの
ときTl2Ba1.6Sr0.4Ca2.2Cu3Ox、Ca2CuOのときTl2BA1.6S
r0.4Ca2.2Cu3.1Ox、CaCu2O3のときTl2BA1.6Sr0.4Ca2.2C
u3.4Ox等となるようにすることが望ましい。その他のタ
リウム系、例えばTlBa2Ca3Cu4Oxの場合、CaOのときTlBa
2Ca3.3Cu4Ox、Ca2CuO3のときTlBa2Ca3.3Cu4.15Ox、CaCu
2O3のときTlBa2Ca3.3Cu4.6Ox等となるようにすることが
望ましい。
そのような酸化物超電導体の単芯又は多芯を収容する
金属被覆としては、銀以外の金属、例えばAg−Pd合金、
Ag−Mg合金、Au、Au−Pd合金、Cu、SUS等であっても同
様の効果が期待できる。
なお、本発明に係る線材は、テープ状に限らず、線
状、棒状等であっても差し支えない [作用] CaO、Ca2CuO3、CaCu2O3等のCa又はCa−Cuの酸化物を
添加したタリウム系超電導体の粉末を活用した場合、芯
部となる超電導体の粒子を結合させるために比較的高
温、例えば900〜920℃で焼結熱処理したときに、CaO等
が半溶融状態で微細に分散し、さらにはそれが包晶反応
によって超電導結晶粒内にトラップされると同時に、結
晶粒界への異相生成の抑制となるためピンニング力が強
くなり、磁場中でのJc特性を改善することができる。
[実 施 例] 以下に、Tl−Ba/Sr−Ca−Cu−O粉末を原料とした銀
被覆多芯状テープ線材の例を説明する。
原料粉末としてTl(NO3、Ba(NO3、Sr(N
O3、Ca(NO3、及びCu(NO3の各粉末を2.0:
1.6:0.4:2.0:3.0(=Tl:Ba:Sr:Ca:Cu)の比率となるよ
うに秤量して混合した後、それを溶媒(水)中に溶解
し、そのpHを9〜10に調整して共沈させた。その沈澱し
た粉末を500℃で10時間乾燥した後、その圧粉成形体を8
70℃で10時間大気中で熱処理して微粉末に粉砕した。
粉末は平均粒径が1〜2μmで、交流磁化率法により
その臨界温度(Tc:on set)=120Kを確認した。
その超電導体粉末に、CaOを超電導体粉末に含まれるC
a量の10%を添加し、粉末全体の組成比がTl2Ba1.6Sr0.4
Ca2.2Cu3Oとなるようにしてよく混合した。その後、こ
の粉末を外形6.0mmの銀パイプ中に充填し、スウェージ
ャ及びダイス引きにより外径1.2mmの銀被覆シングル線
材とした後、定尺に切断し、その複数本を外径10mmの銀
パイプの中に組込んでスウェージャ及びダイス引きによ
り外径2.0mmの銀被覆サブマルチ線材とした。次に、そ
のサブマルチ線材を定尺に切断し、その複数本を銀パイ
プに組込んで再度減面加工して外径2.0mm、36芯の銀被
覆マルチ線材とした。その後、ロール圧延により厚さの
異なる4種類のテープ状線材を得た。
最後に各テープ状線材の芯部の粒子間を接合させるた
め、夫々900〜920℃で2時間、酸素雰囲気中で熱処理し
て銀被覆酸化物超電導線材とした。
得られた各線材の零磁場中のJcを第1表に、また磁場
中のJcを第2表に示す。
本発明による線材ではテープ厚さが0.1mm、または0.0
7mmと薄い場合は効果を発揮しないために割愛した。
なお、比較例は、CaOを添加しない平均粒径が5〜6
μmの実施例と同様の超電導粉末を用いて同様に加工し
た後、845℃で2時間の焼結熱処理を行った線材の例で
ある。
表の結果から、本発明による線材における零磁場中の
Jcは、厚さ0.2mm及び0.5mmの線材は共に比較例に比べて
2〜3倍向上した。これは焼結温度が高くなったこと
と、より微細な粉末を用いたことによって超電導体が緻
密になったことによるものと思われる。
また、第2表の比較例で、零磁界で104A/cm2が得られ
た線材も、外部磁界1TのときのJcは100A/cm2であるのに
対し、本発明による線材の場合、テープ厚さが0.2mmの
線材を例にとると、零磁界中のJcは低い値ではあるが、
外部磁界1Tのとき1500A/cm2と飛躍的に向上している。
これは超電導粉末に非超電導相のCaOを添加したことに
より900〜920℃と比較的高温で熱処理したときに半溶融
状態でCaOが微細に分散し、さらには包晶反応によって
超電導結晶粒内にCaOがトラップされると同時に、結晶
粒界への異相生成の抑制となってピンニング力が強くな
り、磁場中のJcが改善されたものと推定される。
[発明の効果] 以上の説明から明らかなように、本発明によれば、Ca
またはCa−Cuの酸化物を混合した超電導粉末を活用した
ものであるから、比較的高温の熱処理が可能で、磁場中
でのJc特性を向上させることができる効果があり、マグ
ネットコイル用導体、電線ケーブル等広範囲に利用する
ことが可能である。
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01B 12/10 H01B 13/00

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】タリウム系酸化物超電導体の粉末にCa又は
    Ca−Cuの酸化物を混合した粉末体を900℃以上で焼結熱
    処理してなる超電導体を芯部としたテープ状の金属被覆
    線材であって、厚さが0.2mm以上であることを特徴とす
    るタリウム系酸化物超電導線材。
  2. 【請求項2】タリウム系酸化物超電導体の粉末が共沈法
    を用いて製作したものである、前記第1項記載の線材。
JP02016542A 1990-01-26 1990-01-26 タリウム系酸化物超電導線材 Expired - Fee Related JP3102010B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02016542A JP3102010B2 (ja) 1990-01-26 1990-01-26 タリウム系酸化物超電導線材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02016542A JP3102010B2 (ja) 1990-01-26 1990-01-26 タリウム系酸化物超電導線材

Publications (2)

Publication Number Publication Date
JPH03222213A JPH03222213A (ja) 1991-10-01
JP3102010B2 true JP3102010B2 (ja) 2000-10-23

Family

ID=11919156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02016542A Expired - Fee Related JP3102010B2 (ja) 1990-01-26 1990-01-26 タリウム系酸化物超電導線材

Country Status (1)

Country Link
JP (1) JP3102010B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ275163A (en) * 1993-11-03 1999-01-28 Ind Res Ltd Preparation of high temperature superconductive components based on thallium strontium calcium (barium) copper oxide by containment and then deformation
JP6286275B2 (ja) * 2013-10-17 2018-02-28 中部電力株式会社 熱電変換材料

Also Published As

Publication number Publication date
JPH03222213A (ja) 1991-10-01

Similar Documents

Publication Publication Date Title
EP0467237B1 (en) Method of preparing oxide superconducting wire
EP0449161A2 (en) Method of preparing bismuth oxide superconductor
JP2839415B2 (ja) 希土類系超電導性組成物の製造方法
JP3008453B2 (ja) ビスマス系超電導体の製造方法
JP3149441B2 (ja) ビスマス系酸化物超電導線材の製造方法
JP2636049B2 (ja) 酸化物超電導体の製造方法および酸化物超電導線材の製造方法
EP0504909B1 (en) Method of preparing oxide superconducting wire
JPH06196031A (ja) 酸化物超電導線材の製造方法
JP3102010B2 (ja) タリウム系酸化物超電導線材
JP2995796B2 (ja) 酸化物超電導体の製造方法
Tanaka et al. Improved J/sub c/property of Bi2223 tapes made using AgCu alloy-sheath doped with Ti, Zr, Hf or Au
WO1993002460A1 (fr) Procede de fabrication d'un materiau supraconducteur filaire en oxyde a base de bismuth
JPH06176637A (ja) Bi系酸化物超電導線の製造方法
JP2855869B2 (ja) ビスマス系酸化物超電導線材の製造方法
JP2569413B2 (ja) Bi系酸化物超電導線材の製造方法
JP3149170B2 (ja) ビスマス系酸化物超電導体の製造方法
JP3089641B2 (ja) ビスマス系酸化物超電導体およびその製造方法
JP2966134B2 (ja) Bi系酸化物超電導々体の製造方法
JP3692657B2 (ja) 酸化物超電導線材
JP3109076B2 (ja) 酸化物超電導線材の製造方法
JP2822559B2 (ja) タリウム系酸化物超電導線材の製造方法
JP3044732B2 (ja) ビスマス系酸化物超電導体の製造方法
JP2749194B2 (ja) Bi−Sr−Ca−Cu−O系超電導体の製法
JP3450488B2 (ja) ホウ素を含有する金属酸化物超伝導線材
JP3149429B2 (ja) 超電導体の製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees