JPH0397654A - 酸化物系超電導焼結成型体の製法 - Google Patents
酸化物系超電導焼結成型体の製法Info
- Publication number
- JPH0397654A JPH0397654A JP1232387A JP23238789A JPH0397654A JP H0397654 A JPH0397654 A JP H0397654A JP 1232387 A JP1232387 A JP 1232387A JP 23238789 A JP23238789 A JP 23238789A JP H0397654 A JPH0397654 A JP H0397654A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- sintered
- silver
- oxide
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002887 superconductor Substances 0.000 claims abstract description 21
- 229910052709 silver Inorganic materials 0.000 claims abstract description 18
- 239000004332 silver Substances 0.000 claims abstract description 18
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 14
- 238000001354 calcination Methods 0.000 claims abstract description 3
- 238000000748 compression moulding Methods 0.000 claims abstract 2
- 238000010304 firing Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 22
- 238000009792 diffusion process Methods 0.000 abstract description 6
- 238000002425 crystallisation Methods 0.000 abstract description 5
- 230000008025 crystallization Effects 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 3
- 238000005304 joining Methods 0.000 abstract description 2
- 238000005245 sintering Methods 0.000 abstract description 2
- 150000003378 silver Chemical class 0.000 abstract 1
- 238000000034 method Methods 0.000 description 23
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910001923 silver oxide Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、酸化物系超電導焼結戒型体の製法に関し、特
に銀溶融体の特性の利用により目的製品における超電導
特性の劣化を防止しながら高い臨界電流値を有する超電
導焼結成型体を得る方法に関する。
に銀溶融体の特性の利用により目的製品における超電導
特性の劣化を防止しながら高い臨界電流値を有する超電
導焼結成型体を得る方法に関する。
[従来技術コ
従来、Y(イットリウム)系酸化物超電導体の製造にお
いて、高い臨界電流値(J c)を有する焼結成型体を
得る方法としては、酸化物超電導体の原料粉末や合成粉
末を金型ブレスあるいは静水圧プレス等で戊型した後、
適当な焼成条件下で焼成して焼結成型体を得る方法が一
般的である。
いて、高い臨界電流値(J c)を有する焼結成型体を
得る方法としては、酸化物超電導体の原料粉末や合成粉
末を金型ブレスあるいは静水圧プレス等で戊型した後、
適当な焼成条件下で焼成して焼結成型体を得る方法が一
般的である。
しかしながらこの方法で焼結成型体をつくる場合には、
超電導体の結晶粒間でジョセフソン結合を作り易いため
、高い臨界電流値を持つものを得ることができなかった
。
超電導体の結晶粒間でジョセフソン結合を作り易いため
、高い臨界電流値を持つものを得ることができなかった
。
他の方法として、使用する酸化物超電導体粉末の表面を
前処理段階で予め酸エッチング、またはアルカリエッチ
ングで処理することにより表面の未反応相を取り除いた
合成粉末を金型プレスあるいは静水圧プレス等で成型し
た後、適当な焼成条件下で焼成して戒型体を得る方法も
公知である。
前処理段階で予め酸エッチング、またはアルカリエッチ
ングで処理することにより表面の未反応相を取り除いた
合成粉末を金型プレスあるいは静水圧プレス等で成型し
た後、適当な焼成条件下で焼成して戒型体を得る方法も
公知である。
しかしながら、この方法で得られる焼結成型体は、結晶
粒子間にジョセフソン接合ができてしまい、臨界電流値
が低下することが知られている。
粒子間にジョセフソン接合ができてしまい、臨界電流値
が低下することが知られている。
更に他の方法として、酸化物超電導体の原料粉末または
合成粉末をるつぼに入れ、1,200℃〜1,500℃
の温度で部分的に、あるいは全体的に溶融させた後に、
冷却し、次いで900〜1.000℃で超電導結晶を包
晶反応で生或させて成型体を得る方法も知られている。
合成粉末をるつぼに入れ、1,200℃〜1,500℃
の温度で部分的に、あるいは全体的に溶融させた後に、
冷却し、次いで900〜1.000℃で超電導結晶を包
晶反応で生或させて成型体を得る方法も知られている。
しかしながらこの方法によって得られる成型体は、臨界
電流値に関しては好ましい値を示すが、原料粉としてY
1 B a 2 C u 3 07−1を用いた場合に
は、これがptるつぼと1,200℃付近で反応するこ
とによって、YI B a 2 C 11 3 P t
O1oが生成して非超電導体となるほか、MgOある
いはAN20iるつぼを用いた場合には、酸化物超電導
体がるつぼに拡散したり、あるいは逆にるつぼ材が超電
導材に拡散したりするためにるつぼと接合したり、超電
導特性の劣化が生じたりする。
電流値に関しては好ましい値を示すが、原料粉としてY
1 B a 2 C u 3 07−1を用いた場合に
は、これがptるつぼと1,200℃付近で反応するこ
とによって、YI B a 2 C 11 3 P t
O1oが生成して非超電導体となるほか、MgOある
いはAN20iるつぼを用いた場合には、酸化物超電導
体がるつぼに拡散したり、あるいは逆にるつぼ材が超電
導材に拡散したりするためにるつぼと接合したり、超電
導特性の劣化が生じたりする。
[発明が解決しようとする課題]
上述のように高い臨界電流値を持つ焼結成型体の得られ
る溶融法や部分溶融法は、るつぼとの接合や拡散がなけ
れば優れた焼結成型法の一つであるが、現状ではこの接
合等を防止することが困難であるため、何らかの解決策
が求められていた。
る溶融法や部分溶融法は、るつぼとの接合や拡散がなけ
れば優れた焼結成型法の一つであるが、現状ではこの接
合等を防止することが困難であるため、何らかの解決策
が求められていた。
〔課題を解決するための手段]
本発明者は斯る課題を解決するために鋭意研究したとこ
ろにより、るつぼ内に予め配置した銀を接合防止材とし
て使用することによって酸化物超電導体の仮焼体とるつ
ぼとが接合せずに、しかも超電導特性を損なわずに高い
臨界電流値を持つ成型体を得ることができることを見い
出して本発明を達成することができた。
ろにより、るつぼ内に予め配置した銀を接合防止材とし
て使用することによって酸化物超電導体の仮焼体とるつ
ぼとが接合せずに、しかも超電導特性を損なわずに高い
臨界電流値を持つ成型体を得ることができることを見い
出して本発明を達成することができた。
すなわち本発明は、酸化物超電導体の焼結成型体を製造
する方法において、酸化物超電導体粉末を予め成型して
仮焼した後、該仮焼体を銀浴中あるいは銀浴上に配置し
て焼或することにより高い臨界電流値を有する焼結或型
体を得ることを特徴とする酸化物系超電導焼結成型体の
製法に関するものである。
する方法において、酸化物超電導体粉末を予め成型して
仮焼した後、該仮焼体を銀浴中あるいは銀浴上に配置し
て焼或することにより高い臨界電流値を有する焼結或型
体を得ることを特徴とする酸化物系超電導焼結成型体の
製法に関するものである。
[作 用]
本発明法においては、酸化物超電導体粉末としてY(イ
ットリウム)系酸化物のY,Ba2Cu 3 0 7−
x粉を用い、溶融法あるいは部分溶融法で臨界電流値の
向上を図っている。すなわち、YH B a 2 C
u 3 07−!を1,300℃以上で完全な溶融状態
とする溶融法によって、あるいは1.200℃以下でY
2Bat Cu.0,の固相と残部の液相とを生ぜしめ
た部分溶融状態から900〜1 , 000℃の温度で
包晶反応を行い、固相表面でのY,B a 2 C u
3 07−1の結晶化を図る部分溶融法によって所望
の臨界電流値をもつ焼結成型体の製造を図っている。従
来行われてきた通常の溶融法あるいは部分溶融法ではこ
の段階でるつぼ材の材料の一部がYI Ba2 Cu3
0t−tへ拡散したり、また、取出し時にるつぼ自体
と酸化物超電導体とが接合して分離不可能になったりす
るが、本発明法においてはるつぼ中に銀材を予め配置し
て接合防止材として働くようにしているため上記のよう
な問題は生じない。
ットリウム)系酸化物のY,Ba2Cu 3 0 7−
x粉を用い、溶融法あるいは部分溶融法で臨界電流値の
向上を図っている。すなわち、YH B a 2 C
u 3 07−!を1,300℃以上で完全な溶融状態
とする溶融法によって、あるいは1.200℃以下でY
2Bat Cu.0,の固相と残部の液相とを生ぜしめ
た部分溶融状態から900〜1 , 000℃の温度で
包晶反応を行い、固相表面でのY,B a 2 C u
3 07−1の結晶化を図る部分溶融法によって所望
の臨界電流値をもつ焼結成型体の製造を図っている。従
来行われてきた通常の溶融法あるいは部分溶融法ではこ
の段階でるつぼ材の材料の一部がYI Ba2 Cu3
0t−tへ拡散したり、また、取出し時にるつぼ自体
と酸化物超電導体とが接合して分離不可能になったりす
るが、本発明法においてはるつぼ中に銀材を予め配置し
て接合防止材として働くようにしているため上記のよう
な問題は生じない。
尚、本発明法において使用する銀材として本明細書に例
示したものは、金属銀あるいは銀酸化物であるが、他の
形態の銀含有物質であっても上記処理温度で溶融して接
合防止材となり得るものであれば当然に使用できる。
示したものは、金属銀あるいは銀酸化物であるが、他の
形態の銀含有物質であっても上記処理温度で溶融して接
合防止材となり得るものであれば当然に使用できる。
これらの銀材は、酸化物超電導体粉末をプレス成型した
ものを1.200℃以上で焼成する際、該成型体とるつ
ぼ材との間にあって、るつぼ材と超電導体材との相互拡
散を防ぐ役割をするばかりでなく、900〜i.ooo
℃の間で行う結晶化反応時の際もるつぼ材との接合を防
止する働きをする。
ものを1.200℃以上で焼成する際、該成型体とるつ
ぼ材との間にあって、るつぼ材と超電導体材との相互拡
散を防ぐ役割をするばかりでなく、900〜i.ooo
℃の間で行う結晶化反応時の際もるつぼ材との接合を防
止する働きをする。
このようにして得られた結晶化したY,Ba2”307
−xの焼結材(バルク材)を取り出すには、970℃で
銀を融かして取り除き、徐冷する。
−xの焼結材(バルク材)を取り出すには、970℃で
銀を融かして取り除き、徐冷する。
これによって容易に超電導焼結体を取り出すことができ
る。
る。
以下、実施例をもって詳細に説明する。
[実施例1]
Yl B a 2 C u 3 07−!の50uII
+アンダー粉ヲ用いて金型プレスで1 ton/cII
I2の圧力をかけ、1インチペレットを作製した。
+アンダー粉ヲ用いて金型プレスで1 ton/cII
I2の圧力をかけ、1インチペレットを作製した。
次いでANzOiるつぼに酸化銀1[10gを入れ、そ
の上に上記の1インチベレットを置いて、加熱炉中にて
1,200℃で1時間加熱した。
の上に上記の1インチベレットを置いて、加熱炉中にて
1,200℃で1時間加熱した。
次いで炉内温度を950℃にして、50時間保持して、
Y 1 B a 2 C u 3 0 i−tの結晶化
を図った。
Y 1 B a 2 C u 3 0 i−tの結晶化
を図った。
?晶化が終了した後、温度を970℃に上昇させてるつ
ぼ内の銀を溶融させた後、炉外にるつぼを取り出して、
銀をるつぼ外に除去した。
ぼ内の銀を溶融させた後、炉外にるつぼを取り出して、
銀をるつぼ外に除去した。
次いで、残ったるつぼ内のY,Ba2Cu,07−8の
焼結体をるつぼと共に再度炉内に入れて、1℃/win
の割合で徐冷し、600℃の温度に達せしめた後、さら
にその温度に20時間、酸素雰囲気の条件下で保持した
後、炉外へるつぼを取り出してY IB a 2 C
tJ 3 0 7−xの焼結体を取り出した。
焼結体をるつぼと共に再度炉内に入れて、1℃/win
の割合で徐冷し、600℃の温度に達せしめた後、さら
にその温度に20時間、酸素雰囲気の条件下で保持した
後、炉外へるつぼを取り出してY IB a 2 C
tJ 3 0 7−xの焼結体を取り出した。
焼結体は容易にるつぼから取り出すことができた。
この焼結体には、るつぼ材であるAN 2 0*の拡散
が少量しか認められず、また該焼結体の臨界電流値は6
00A/cα2であり、Y系酸化物超電導体としては優
れた焼結体であることが確認された。
が少量しか認められず、また該焼結体の臨界電流値は6
00A/cα2であり、Y系酸化物超電導体としては優
れた焼結体であることが確認された。
[比較例1コ
実施例1と同様に作製したYIBa2Cu30 7−t
の1インチベレットを直mAD 2 0 3るつぼ内に
入れて、加熱炉中で1,200℃の温度で1時間加熱し
たところ、るつぼにY,Ba2Cu,07■のベレット
が融着してしまい取れなくなってしまった。
の1インチベレットを直mAD 2 0 3るつぼ内に
入れて、加熱炉中で1,200℃の温度で1時間加熱し
たところ、るつぼにY,Ba2Cu,07■のベレット
が融着してしまい取れなくなってしまった。
また、冷却後取り外したY,Ba2Cu=07−8の焼
結体をEPMAで調べたところ、焼結体中にAf)2
03が拡散しているのが認められた。
結体をEPMAで調べたところ、焼結体中にAf)2
03が拡散しているのが認められた。
この焼結体の臨界電流値は80A/cm”であった。
[実施例2コ
B 1 1,t P bo.5 S r2Ca2 Cu
3 0xの50珈アンダー扮を用いて、金型ブレス内で
t ton/cI12の圧力をかけ、1インチベレット
を予め作製した。
3 0xの50珈アンダー扮を用いて、金型ブレス内で
t ton/cI12の圧力をかけ、1インチベレット
を予め作製した。
次いでAfl20sるつぼに酸化銀100gを入れ、こ
の上に上記1インチペレットを置いて、加熱炉中にて1
,200℃で1時間加熱した。
の上に上記1インチペレットを置いて、加熱炉中にて1
,200℃で1時間加熱した。
次いで温度を970℃付近にして銀の溶融物をるつぼ外
に取り出した。
に取り出した。
次いでるつぼ内のB i 1,7 Pba.,S r2
Ca2Cu,Otの焼結体を再度炉内に入れて、850
℃にて60時間保持して結晶化を図った後に、炉外へる
つぼを取り出し、焼結体を回収した。この焼結体にはる
つぼ材であるA(1 2 03の拡散が少量しか認めら
れなかった。該焼結体の臨界電流値はIOOA/c+g
2であり、Bi系酸化物超電導体としては優れた焼結体
であることが確認された。
Ca2Cu,Otの焼結体を再度炉内に入れて、850
℃にて60時間保持して結晶化を図った後に、炉外へる
つぼを取り出し、焼結体を回収した。この焼結体にはる
つぼ材であるA(1 2 03の拡散が少量しか認めら
れなかった。該焼結体の臨界電流値はIOOA/c+g
2であり、Bi系酸化物超電導体としては優れた焼結体
であることが確認された。
[発明の効果]
本発明法では、上述のように予めるつぼ中に入れておい
た銀材を接合と拡散防止のための隔離媒体として利用す
るため、酸化物超電導体とるつぼ材との接合および材質
の相互拡散を防止することができるばかりでなく、得ら
れた焼結体の劣化がなく高い臨界電流値を有する焼結或
型体が得られる。
た銀材を接合と拡散防止のための隔離媒体として利用す
るため、酸化物超電導体とるつぼ材との接合および材質
の相互拡散を防止することができるばかりでなく、得ら
れた焼結体の劣化がなく高い臨界電流値を有する焼結或
型体が得られる。
Claims (1)
- 酸化物超電導体粉末を予め圧縮成型して仮焼した後、
該仮焼体を銀浴中あるいは銀浴上に配置して焼成するこ
とにより高い臨界電流値を有する成型体を得ることを特
徴とする酸化物系超電導焼結成型体の製法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1232387A JPH0397654A (ja) | 1989-09-07 | 1989-09-07 | 酸化物系超電導焼結成型体の製法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1232387A JPH0397654A (ja) | 1989-09-07 | 1989-09-07 | 酸化物系超電導焼結成型体の製法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0397654A true JPH0397654A (ja) | 1991-04-23 |
Family
ID=16938438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1232387A Pending JPH0397654A (ja) | 1989-09-07 | 1989-09-07 | 酸化物系超電導焼結成型体の製法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0397654A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0530370A1 (en) * | 1991-03-14 | 1993-03-10 | International Superconductivity Technology Center | Process for producing oxide superconductor |
-
1989
- 1989-09-07 JP JP1232387A patent/JPH0397654A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0530370A1 (en) * | 1991-03-14 | 1993-03-10 | International Superconductivity Technology Center | Process for producing oxide superconductor |
JPH05229820A (ja) * | 1991-03-14 | 1993-09-07 | Kokusai Chodendo Sangyo Gijutsu Kenkyu Center | 酸化物超電導体の製造方法 |
EP0530370A4 (en) * | 1991-03-14 | 1993-11-24 | International Superconductivity Technology Center | Method of making oxide superconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1034247C (zh) | 高温超导体的制造方法及其制成的超导体成型体 | |
Shi et al. | 110 k superconductivity in crystallized Bi-Sr-Ca-Cu-O glasses | |
CN1033897A (zh) | 片状氧化物超导体及其制造方法 | |
CN1039498A (zh) | 铋类氧化物超导体制造方法 | |
JPH0397654A (ja) | 酸化物系超電導焼結成型体の製法 | |
JP3010363B2 (ja) | 酸化物系超電導焼結成型体の製造法 | |
JP2677882B2 (ja) | ビスマス系酸化物超電導体の製造方法 | |
JP2545443B2 (ja) | 酸化物超電導体の製造方法 | |
Holesinger et al. | Melt processing of the Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub y/superconductor in oxygen and argon atmospheres | |
JPH02141423A (ja) | タリウム系超電導体の製造方法 | |
JPH06211588A (ja) | Y系酸化物超電導体結晶の作製方法 | |
JP3709999B2 (ja) | 高温超電導接合体の製造法 | |
JPH01242419A (ja) | Bi−Pb−Ca−Sr−Cu−O系超電導物質 | |
US5059585A (en) | Method of making a sputtering target for a bismuth based superconductor | |
JPH0238359A (ja) | 超電導体の製造方法 | |
JP2555734B2 (ja) | 超電導物質の製法 | |
JP4153651B2 (ja) | 酸化物超電導材料の種結晶及びこれを用いた酸化物超電導材料の製造方法 | |
JP3174847B2 (ja) | 超電導ウィスカーおよびその製造方法 | |
JPH0397653A (ja) | 酸化物超電導体成型物の製造方法 | |
JPH01201060A (ja) | 超電導体の製造方法 | |
JPH0532415A (ja) | 酸化物超電導体の製造方法 | |
JPH04119922A (ja) | Bi系酸化物超電導体の製造方法 | |
JPH03265516A (ja) | イツトリウム系酸化物超電導体の製法 | |
JPH03290307A (ja) | 酸化物超電導体厚膜テープ材料の製造方法 | |
JPH08725B2 (ja) | ビスマス系超電導体の製造法 |