JPH0380565A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0380565A
JPH0380565A JP21792489A JP21792489A JPH0380565A JP H0380565 A JPH0380565 A JP H0380565A JP 21792489 A JP21792489 A JP 21792489A JP 21792489 A JP21792489 A JP 21792489A JP H0380565 A JPH0380565 A JP H0380565A
Authority
JP
Japan
Prior art keywords
type
buried layer
layer
oxide film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21792489A
Other languages
Japanese (ja)
Inventor
Shinji Obara
伸治 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21792489A priority Critical patent/JPH0380565A/en
Publication of JPH0380565A publication Critical patent/JPH0380565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce parasitic capacitance of a depletion layer and increase signal transmission speed, by arranging a low concentration N-type region between a P-type semiconductor substrate and a high concentration N-type burried layer. CONSTITUTION:After a surface protecting oxide film is formed on a main surface of a P-type semiconductor substrate 101, phosphorus is introduced by ion-implantion method, and a low concentration N-type region 102 is formed by heat treatment. Boron is introduced by ion-implantation method, and a P-type buried layer 103 is formed by heat treatment. After that, the surface protecting oxide film is eliminated, and an N-type epitaxial layer 104 is formed. By the same means as the forming of the buried layer, phosphorus and boron are introduced, and an N-type well 105 and a P-type well 106 are formed on the buried layer. A field oxide film 107 is formed by selective oxidation method. Hence the parasitic capacitance of the buried layer part is reduced, and signal transfer delay time can be decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の構造に関し、特にBiCMO8型
半導体装置の電気的特性を改善するための構造に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a semiconductor device, and particularly to a structure for improving the electrical characteristics of a BiCMO8 type semiconductor device.

〔従来の技術〕[Conventional technology]

この種の半導体装置の従来例を第2図(a)。 FIG. 2(a) shows a conventional example of this type of semiconductor device.

(b)を用いて説明する。まず、第2図(a)に示した
ようにシリコンからなるP型半導体基板201に公知の
手段によりN型埋込層202、P型埋込層203を形成
した後に、N型エピタキシャル層204を積層する。次
に第2図(b)に示したようにN型埋込層202上にN
型ウェル205、P型埋込層203上にP型ウェル20
6を形成し、選択酸化法によりフィールド酸化膜207
を設ける。
This will be explained using (b). First, as shown in FIG. 2(a), an N-type buried layer 202 and a P-type buried layer 203 are formed on a P-type semiconductor substrate 201 made of silicon by known means, and then an N-type epitaxial layer 204 is formed. Stack. Next, as shown in FIG. 2(b), N
type well 205, P type well 20 on the P type buried layer 203
6 is formed, and a field oxide film 207 is formed by selective oxidation method.
will be established.

この後、公知の手段によりゲート酸化膜208、多結晶
シリコンによるゲート電極209、P型ソース・ドレイ
ン領域210、図には示していないN型ソース・ドレイ
ン領域、バイポーラトランジスタのコレクタ抵抗低減用
の高濃度N型領域211、ベース用P型領域212、層
間絶縁用の酸化膜213、多結晶シリコンを用いたバイ
ポーラトランジスタのエミッタ電極214、エミッタ用
のN型領域215を形成する。次に層間絶縁膜、コンタ
クト部開口、配線用アルミ電極の形成等を行なえば半導
体装置が完成する。
Thereafter, by known means, a gate oxide film 208, a gate electrode 209 made of polycrystalline silicon, a P-type source/drain region 210, an N-type source/drain region (not shown in the figure), and a height for reducing the collector resistance of the bipolar transistor are formed. A doped N-type region 211, a P-type region 212 for a base, an oxide film 213 for interlayer insulation, an emitter electrode 214 of a bipolar transistor using polycrystalline silicon, and an N-type region 215 for an emitter are formed. Next, the semiconductor device is completed by forming an interlayer insulating film, contact openings, aluminum electrodes for wiring, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置は不純物濃度101016a
to/cnt程度のP型半導体基板に高濃度(10”〜
10 ”atoms/cnt)のN型埋込層を形成して
いるため1μm程度の空乏層がP型半導体基板とN型埋
込層の間で広がっている。高濃度N型埋込層のため空乏
層の幅が狭く、寄生容量成分が生じるため信号伝達の遅
延時間を増加させる原因の一つとなっている。
The conventional semiconductor device described above has an impurity concentration of 101016a.
High concentration (10”~
Since an N-type buried layer of 10" atoms/cnt) is formed, a depletion layer of about 1 μm spreads between the P-type semiconductor substrate and the N-type buried layer. Because of the highly concentrated N-type buried layer, The width of the depletion layer is narrow and a parasitic capacitance component is generated, which is one of the causes of increasing signal transmission delay time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置はP型半導体基板に設けた高濃度の
N型埋込層と、N型埋込層の底部に設けた低濃度のN型
領域と、N型埋込層の上部に形成したN型ウェルとを有
している。このため埋込層部の寄生容量が減り、信号伝
達遅延時間を低減することができる。
The semiconductor device of the present invention includes a highly doped N-type buried layer provided in a P-type semiconductor substrate, a lightly doped N-type region provided at the bottom of the N-type buried layer, and a lightly doped N-type region formed on the top of the N-type buried layer. It has an N-type well. Therefore, the parasitic capacitance of the buried layer portion is reduced, and the signal transmission delay time can be reduced.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)、 (b)は本発明の一実施例の縦断面図
である。
FIGS. 1(a) and 1(b) are longitudinal sectional views of an embodiment of the present invention.

まず、第1図(a)に示したようにシリコンからなる抵
抗率10〜14Ω・印のP型半導体基板101の一生面
上に図には示していない表面保護用酸化膜を20〜40
nmの厚さに形成した後にイオン注入法を用いてリンを
1013〜I O”atoms/ cntの濃度で導入
し、1000℃程度の熱処理により低濃度N型領域12
0を形成する。次にイオン注入法によりヒ素を10 ′
5〜101aatoms/ cntの濃度で導入し、1
OOO℃程度の熱処理により高濃度のN型埋込層102
を形成する。この場合、ヒ素を拡散させるための熱処理
により先に導入したリンの拡散も進行するため、低濃度
N型領域120が広がり過ぎないようにリン注入後の熱
処理時間を適当に調節する必要がある。次にイオン注入
法によりポロンを1013〜10 ”atoms/cn
iの濃度で導入し、熱処理を行なってP型埋込層103
を形成する。この後、表面保護用酸化膜を除去し、N型
エピタキシャル層104を1〜2μmの厚さに形成する
。次に第1図(b)に示したように埋込層の形成と同様
の手段により1012〜10101sato/crAの
リンおよび1013〜1014atoms/cnfのポ
ロンを導入してN型ウェル105とP型ウェル106を
埋込層上に形成し、選択酸化法によりフィールド酸化膜
107を500〜600nmの厚さに設ける。この後、
公知の手段により15〜30nm厚のゲート酸化膜10
8、多結晶シリコンによるゲート電極109.P型ソー
ス・ドレイン領域110、図には示していないN型ソー
ス・ドレイン領域、バイポーラトランジスタのコレクタ
用の高濃度N型領域111、ベース用P型領域工12、
層間絶縁用の酸化膜113、多結晶シリコンを用いたバ
イポーラトランジスタのエミッタ電極114、エミッタ
用のN型領域115を形成する。しかる後に層間絶縁膜
、コンタクト部開口、配線用アルミ電極の形成等を行な
えば半導体装置が完成する。
First, as shown in FIG. 1(a), a surface protective oxide film (not shown in the figure) of 20 to 40 Ω is coated on the whole surface of a P-type semiconductor substrate 101 made of silicon and having a resistivity of 10 to 14 Ω.
After forming the N-type region 12 nm thick, phosphorus is introduced at a concentration of 1013 to 10" atoms/cnt using an ion implantation method, and a low concentration N-type region 12 is formed by heat treatment at about 1000°C.
form 0. Next, 10' of arsenic was added using the ion implantation method.
Introduced at a concentration of 5-101 aatoms/cnt, 1
A high concentration N-type buried layer 102 is formed by heat treatment at about OOO°C.
form. In this case, since the heat treatment for diffusing arsenic also progresses the diffusion of the previously introduced phosphorus, it is necessary to appropriately adjust the heat treatment time after the phosphorus implantation so that the low concentration N-type region 120 does not spread too much. Next, poron was implanted at 1013 to 10 ”atoms/cn by ion implantation method.
P-type buried layer 103 is introduced at a concentration of i and subjected to heat treatment.
form. Thereafter, the surface protective oxide film is removed, and an N-type epitaxial layer 104 is formed to a thickness of 1 to 2 μm. Next, as shown in FIG. 1(b), phosphorus at 1012 to 10101 sato/crA and poron at 1013 to 1014 atoms/cnf are introduced into the N-type well 105 and the P-type well by the same means as for forming the buried layer. 106 is formed on the buried layer, and a field oxide film 107 with a thickness of 500 to 600 nm is provided by selective oxidation. After this,
A gate oxide film 10 with a thickness of 15 to 30 nm is formed by known means.
8. Gate electrode 109 made of polycrystalline silicon. P-type source/drain region 110, N-type source/drain region (not shown), high concentration N-type region 111 for collector of bipolar transistor, P-type region for base 12,
An oxide film 113 for interlayer insulation, an emitter electrode 114 of a bipolar transistor using polycrystalline silicon, and an N-type region 115 for an emitter are formed. Thereafter, an interlayer insulating film, contact openings, wiring aluminum electrodes, etc. are formed, and the semiconductor device is completed.

本発明の別の実施例を次に説明する。Another embodiment of the invention will now be described.

前述の実施例と同様にP型半導体基板に低濃度のN型領
域、高濃度のN型埋込層を形成した後にP型のエピタキ
シャル層を形成する。この後、N型埋込層上にN型ウェ
ルを形成し、MOS)ランジスタおよびバイポーラトラ
ンジスタの形成を同様に行なう。この場合、P型埋込層
とP型ウェルが不要となるため、工程を大幅に減らすこ
とが可能となる。
As in the previous embodiment, after forming a lightly doped N-type region and a heavily doped N-type buried layer in a P-type semiconductor substrate, a P-type epitaxial layer is formed. Thereafter, an N-type well is formed on the N-type buried layer, and MOS transistors and bipolar transistors are formed in the same manner. In this case, since the P-type buried layer and the P-type well are not required, the number of steps can be significantly reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はP型半導体基板と高濃度N
型埋込層の間に低濃度N型領域を設けることにより、空
乏層による寄生容量を減らし、信号伝達速度を速くする
ことができる。
As explained above, the present invention utilizes a P-type semiconductor substrate and a high concentration N.
By providing a lightly doped N-type region between the type buried layers, parasitic capacitance due to the depletion layer can be reduced and signal transmission speed can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)は本発明の実施例の縦断面図、
第2図(a)、 (b)は従来例の縦断面図である。 101.201・・・・・・P型半導体基板、102゜
202・・・・・・N型埋込層、103,203・・・
・・・P型埋込層、104,204・・・・・・N型エ
ピタキシャル層、105,205・・・・・・N型ウェ
ル、106゜206・・・・・・P型ウェル、120・
・・・・・低濃度N型領域、109,209・・・・・
・ゲート電極、114゜214・・・・・・エミッタ電
極。
FIGS. 1(a) and 1(b) are longitudinal sectional views of an embodiment of the present invention,
FIGS. 2(a) and 2(b) are longitudinal sectional views of a conventional example. 101.201...P-type semiconductor substrate, 102°202...N-type buried layer, 103,203...
...P type buried layer, 104,204...N type epitaxial layer, 105,205...N type well, 106°206...P type well, 120・
...Low concentration N-type region, 109,209...
・Gate electrode, 114°214...Emitter electrode.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板の少なくとも一部に設けた第2導
電型の高不純物密度の第1半導体領域と、該第1半導体
領域を内部に含むように設けた第2導電型の低不純物密
度の第2半導体領域と、前記第1導電型半導体基板上に
設けたエピタキシャル層と、前記第1半導体領域の少な
くとも1つに接するように前記エピタキシャル層内に形
成した第2導電型の第3半導体領域とを含むことを特徴
とする半導体装置。
A first semiconductor region of a second conductivity type with a high impurity density provided in at least a portion of a first conductivity type semiconductor substrate; a second semiconductor region, an epitaxial layer provided on the first conductivity type semiconductor substrate, and a third semiconductor region of a second conductivity type formed in the epitaxial layer so as to be in contact with at least one of the first semiconductor region. A semiconductor device comprising:
JP21792489A 1989-08-23 1989-08-23 Semiconductor device Pending JPH0380565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21792489A JPH0380565A (en) 1989-08-23 1989-08-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21792489A JPH0380565A (en) 1989-08-23 1989-08-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0380565A true JPH0380565A (en) 1991-04-05

Family

ID=16711865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21792489A Pending JPH0380565A (en) 1989-08-23 1989-08-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0380565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448085B1 (en) * 1997-05-21 2004-12-03 삼성전자주식회사 Semiconductor device with reduced parasitic capacitance of pad to improve input impedance characteristic when high frequency signal is inputted or outputted in analog integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448085B1 (en) * 1997-05-21 2004-12-03 삼성전자주식회사 Semiconductor device with reduced parasitic capacitance of pad to improve input impedance characteristic when high frequency signal is inputted or outputted in analog integrated circuit

Similar Documents

Publication Publication Date Title
JPH04266047A (en) Soi type semiconductor device and preparation thereof equivalent to production of a buried layer
US4841347A (en) MOS VLSI device having shallow junctions and method of making same
JPH0693494B2 (en) Method for manufacturing semiconductor integrated circuit device
JP3307112B2 (en) Method for manufacturing semiconductor device
JPH0738447B2 (en) MOS semiconductor device
US5204274A (en) Method of fabricating semiconductor device
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JPH0380565A (en) Semiconductor device
JP2569171B2 (en) Semiconductor device
JP2509708B2 (en) SOI type semiconductor device and manufacturing method thereof
JP2884787B2 (en) Semiconductor device
JP2633559B2 (en) Method for manufacturing bipolar CMOS semiconductor device
JPH067556B2 (en) MIS type semiconductor device
JPS5837990B2 (en) Manufacturing method of semiconductor device
JP2890509B2 (en) Method for manufacturing semiconductor device
JP3158404B2 (en) Method for manufacturing semiconductor device
JP2773159B2 (en) Semiconductor integrated circuit
JPH0580155B2 (en)
JPS6031268Y2 (en) Planar thyristor
JPS60128656A (en) Semiconductor device
JPH0521446A (en) Semiconductor device and its manufacture
JPH02164060A (en) Semiconductor integrated circuit
JPH02265247A (en) Semiconductor device
JPS63164356A (en) Manufacture of semiconductor integrated circuit
JPH0350739A (en) Manufacture of semiconductor device