JP2884787B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2884787B2
JP2884787B2 JP3017249A JP1724991A JP2884787B2 JP 2884787 B2 JP2884787 B2 JP 2884787B2 JP 3017249 A JP3017249 A JP 3017249A JP 1724991 A JP1724991 A JP 1724991A JP 2884787 B2 JP2884787 B2 JP 2884787B2
Authority
JP
Japan
Prior art keywords
type
layer
conductivity type
epitaxial layer
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3017249A
Other languages
Japanese (ja)
Other versions
JPH04256370A (en
Inventor
啓裕 円城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3017249A priority Critical patent/JP2884787B2/en
Publication of JPH04256370A publication Critical patent/JPH04256370A/en
Application granted granted Critical
Publication of JP2884787B2 publication Critical patent/JP2884787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置に関し、特
にDSA(diffusion self−align
ed)構造の縦型MOSFETに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a DSA (diffusion self-align).
ed) The present invention relates to a vertical MOSFET having a structure.

【0002】[0002]

【従来の技術】従来の半導体装置は、図2に示すよう
に、N+ 型シリコン基板1の上に設けたドレイン耐圧を
高めるためのN- 型エピタキシャル層3と、N- 型エピ
タキシャル層3に選択的に設けてN+ 型シリコン基板1
に達するP+ 型拡散層4と、 P+ 型拡散領域4に接続し
て設けたP型チャネル領域5と、P型チャネル領域5内
に設けたN+ 型ソース領域6とを有して形成されてい
る。 ここで、P+ 型拡散層4と、N+ 型シリコン基板
1との間に形成されるPN接合により、ドレイン耐圧が
定まる。N+ 型ソース領域6およびN- 型エピタキシャ
ル層3と、P型チャネル領域5上にはゲート酸化膜7を
介して、多結晶シリコン層からなるゲート電極8が形成
されている。層間絶縁膜9は、ゲート酸化膜7及びゲー
ト電極8を被覆して形成され、その上に、ソース電極1
0が、P型チャネル領域5と、N+ 型ソース領域6に接
続して形成されている。ここで、P+型拡散層4とドレ
イン領域であるN+ 型半導体基板1が広い面積で直接接
合されているため、サージ等によりブレークダウンを生
じてもブレークダウン電流が局部的に集中せず、熱破壊
を生じ難い利点がある。
Conventional semiconductor device, as shown in FIG. 2, N to improve the drain breakdown voltage which is provided on the N + -type silicon substrate 1 - -type epitaxial layer 3, N - -type epitaxial layer 3 Selectively provided N + type silicon substrate 1
Formed with a P + type diffusion layer 4, a P type channel region 5 connected to the P + type diffusion region 4, and an N + type source region 6 provided in the P type channel region 5. Have been. Here, the drain breakdown voltage is determined by the PN junction formed between the P + type diffusion layer 4 and the N + type silicon substrate 1. A gate electrode 8 made of a polycrystalline silicon layer is formed on the N + type source region 6 and the N type epitaxial layer 3 and the P type channel region 5 via a gate oxide film 7. The interlayer insulating film 9 is formed to cover the gate oxide film 7 and the gate electrode 8, and the source electrode 1 is formed thereon.
0 is connected to the P-type channel region 5 and the N + -type source region 6. Here, since the P + -type diffusion layer 4 and the N + -type semiconductor substrate 1 serving as the drain region are directly joined to each other over a wide area, even if a breakdown occurs due to a surge or the like, the breakdown current does not concentrate locally. This has the advantage of hardly causing thermal destruction.

【0003】[0003]

【発明が解決しようとする課題】この従来の半導体装置
では、N- 型エピタキシャル層2の厚さのばらつきによ
り、熱拡散によりN- 型シリコン基板1まで押し込まれ
ているP+ 型拡散層3とN+ 型シリコン基板1との接合
部でのP+ 型拡散層3の不純物濃度がばらつき、この不
純物濃度によって支配されているN+ 型シリコン基板1
とP+ 型拡散層3とのPN接合の耐圧がばらつくといっ
た問題点があった。
In this conventional semiconductor device, the P + -type diffusion layer 3 pushed into the N -type silicon substrate 1 by thermal diffusion due to the variation in the thickness of the N -type epitaxial layer 2. The impurity concentration of the P + -type diffusion layer 3 at the junction with the N + -type silicon substrate 1 varies, and the N + -type silicon substrate 1 is dominated by the impurity concentration.
And there is a problem that the withstand voltage varies the PN junction between the P + -type diffusion layer 3.

【0004】[0004]

【課題を解決するための手段】本発明の半導体装置は、
高不純物濃度の一導電型半導体基板の一主面に設けた逆
導電型の埋込層と、前記埋込層を含む表面に設けた低不
純物濃度の一導電型エピタキシャル層と、前記エピタキ
シャル層に設けて前記埋込層に達する高不純物濃度の逆
導電型拡散層と、前記逆導電型拡散層を含む前記エピタ
キシャル層の表面に設けたゲート絶縁膜上に設けたゲー
ト電極と、前記ゲート電極に整合し且つ前記逆導電型拡
散層に接続して前記エピタキシャル層に設けた逆導電型
のチャネル領域と、前記ゲート電極に整合して前記チャ
ネル領域に設けたソース領域とを有する。
According to the present invention, there is provided a semiconductor device comprising:
A buried layer of the opposite conductivity type provided on one main surface of the one conductivity type semiconductor substrate having a high impurity concentration, a one conductivity type epitaxial layer having a low impurity concentration provided on the surface including the buried layer, and A high impurity concentration reverse conductivity type diffusion layer provided to reach the buried layer; a gate electrode provided on a gate insulating film provided on a surface of the epitaxial layer including the reverse conductivity type diffusion layer; The semiconductor device includes a channel region of the opposite conductivity type provided in the epitaxial layer so as to match and connected to the diffusion layer of the opposite conductivity type, and a source region provided in the channel region so as to match the gate electrode.

【0005】[0005]

【実施例】次に、本発明について図面を参照して説明す
る。
Next, the present invention will be described with reference to the drawings.

【0006】図1は本発明の一実施例を示す半導体チッ
プの断面図である。
FIG. 1 is a sectional view of a semiconductor chip showing one embodiment of the present invention.

【0007】図1に示すように、不純物濃度2×1018
cm-3程度にSbがドープされ比抵抗が約0.015Ω
・cmのN+ 型シリコン基板1の一主面に選択的にホウ
素をイオン注入、あるいは拡散してP型埋込層2を形成
し、P型埋込層2を含む表面にN- 型エピタキシャル層
3を形成する。30V耐圧を例にとると、N- 型エピタ
キシャル層3の不純物濃度は1.6×1015cm-3
度,比抵抗は0.4Ω・cm,厚さは約6.5μmであ
り、P型埋込層2のピーク不純物濃度は2×1016〜5
×1016cm-3に選ばれる。
As shown in FIG. 1, the impurity concentration is 2 × 10 18
Sb is doped to about cm -3 and the specific resistance is about 0.015Ω.
1 cm of N + -type silicon substrate 1 is selectively ion-implanted or diffused with boron to form P-type buried layer 2, and N -type epitaxial layer is formed on the surface including P-type buried layer 2. The layer 3 is formed. Taking a 30V breakdown voltage as an example, the impurity concentration of the N -type epitaxial layer 3 is about 1.6 × 10 15 cm −3 , the specific resistance is 0.4 Ω · cm, the thickness is about 6.5 μm, and the P-type The peak impurity concentration of the buried layer 2 is 2 × 10 16 to 5
× 10 16 cm -3 is selected.

【0008】次に、N- 型エピタキシャル層3の表面
に、選択的にホウ素イオンをドーズ量1.4×1014
-2,加速エネルギー70keVでイオン注入し、12
00℃,40分の埋込み拡散を行ない、P型埋込層2と
接続するP+ 型拡散層4を形成する。
Next, boron ions are selectively deposited on the surface of the N -type epitaxial layer 3 at a dose of 1.4 × 10 14 c.
ion implantation at m- 2 , acceleration energy 70 keV, 12
The buried diffusion is performed at 00 ° C. for 40 minutes to form a P + type diffusion layer 4 connected to the P type buried layer 2.

【0009】次に、P+ 型拡散層4を含むN- 型エピタ
キシャル層3の表面を熱酸化してゲート酸化膜7を設
け、ゲート酸化膜7の上に多結晶シリコン層を堆積して
選択的にエッチングしゲート電極8を設ける。次に、ゲ
ート電極8をマスクとしてホウ素イオンをドーズ量1×
1014cm-2,加速エネルギー70keVでイオン注入
し、1200℃,60分間の押込み拡散によりP+ 型拡
散層4と接続するP型チャネル領域5を形成する。次
に、P+ 型拡散層4の表面に選択的にリンイオンをドー
ズ量5×1015cm-2,加速エネルギー80keVでイ
オン注入し、1000℃,30分間の押込み拡散により
ゲート電極8に整合したN+ 型ソース領域6を形成す
る。
Next, the surface of the N -type epitaxial layer 3 including the P + -type diffusion layer 4 is thermally oxidized to provide a gate oxide film 7, and a polycrystalline silicon layer is deposited on the gate oxide film 7 for selection. Etching to provide a gate electrode 8. Next, using the gate electrode 8 as a mask, boron ions are dosed at a dose of 1 ×.
Ion implantation is performed at 10 14 cm -2 and an acceleration energy of 70 keV, and a P-type channel region 5 connected to the P + -type diffusion layer 4 is formed by indentation diffusion at 1200 ° C. for 60 minutes. Next, phosphorus ions are selectively implanted into the surface of the P + -type diffusion layer 4 at a dose of 5 × 10 15 cm −2 and an acceleration energy of 80 keV, and aligned with the gate electrode 8 by indentation diffusion at 1000 ° C. for 30 minutes. An N + type source region 6 is formed.

【0010】次に、ゲート電極8を含む表面にPSG膜
を形成して選択的に開孔部を設け、開孔部のN+ 型ソー
ス領域6及びP+ 型拡散層4と接続するソース電極10
を形成する。
Next, a PSG film is formed on the surface including the gate electrode 8 to selectively form an opening, and the source electrode connected to the N + type source region 6 and the P + type diffusion layer 4 in the opening. 10
To form

【0011】[0011]

【発明の効果】以上説明したように本発明は、N+ 型半
導体基板の表面にP型埋込層を設けてN- 型エピタキシ
ャル層内に設けたP+ 型拡散層と接続することにより、
- 型エピタキシャル層の厚さがばらついても、P+
拡散層の形成条件を一定にしておけばP型埋込層の不純
物濃度は変わらなく、N+ 型シリコン基板1とP型埋込
層との接合部で形成されるPN接合の耐圧を安定化でき
るという効果を有する。
As described above, according to the present invention, a P-type buried layer is provided on the surface of an N + -type semiconductor substrate and connected to a P + -type diffusion layer provided in an N -- type epitaxial layer.
N - type even if the thickness of the epitaxial layer varies, the impurity concentration of the P-type buried layer if in the constant forming conditions P + -type diffusion layer is not changed, N + -type silicon substrate 1 and the P-type buried This has the effect of stabilizing the breakdown voltage of the PN junction formed at the junction with the layer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す半導体チップの断面図
である。
FIG. 1 is a sectional view of a semiconductor chip showing one embodiment of the present invention.

【図2】従来の半導体装置の一例を示す半導体チップの
断面図である。
FIG. 2 is a cross-sectional view of a semiconductor chip showing an example of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 N+ 型シリコン基板 2 P型埋込層 3 N- 型エピタキシャル層 4 P+ 型拡散層 5 P型チャネル領域 6 N+ 型ソース領域 7 ゲート酸化膜 8 ゲート電極 9 層間絶縁膜 10 ソース電極REFERENCE SIGNS LIST 1 N + type silicon substrate 2 P type buried layer 3 N type epitaxial layer 4 P + type diffusion layer 5 P type channel region 6 N + type source region 7 Gate oxide film 8 Gate electrode 9 Interlayer insulating film 10 Source electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高不純物濃度の一導電型半導体基板の一
主面に設けた逆導電型の埋込層と、前記埋込層を含む表
面に設けた低不純物濃度の一導電型エピタキシャル層
と、前記エピタキシャル層に設けて前記埋込層に達する
高不純物濃度の逆導電型拡散層と、前記逆導電型拡散層
を含む前記エピタキシャル層の表面に設けたゲート絶縁
膜上に設けたゲート電極と、前記ゲート電極に整合し且
つ前記逆導電型拡散層に接続して前記エピタキシャル層
に設けた逆導電型のチャネル領域と、前記ゲート電極に
整合して前記チャネル領域に設けたソース領域とを有す
ることを特徴とする半導体装置。
A buried layer of the opposite conductivity type provided on one main surface of the one conductivity type semiconductor substrate having a high impurity concentration, and a low impurity concentration one conductivity type epitaxial layer provided on a surface including the buried layer. A high impurity concentration reverse conductivity type diffusion layer provided in the epitaxial layer and reaching the buried layer; and a gate electrode provided on a gate insulating film provided on the surface of the epitaxial layer including the reverse conductivity type diffusion layer. A channel region of the opposite conductivity type provided in the epitaxial layer in alignment with the gate electrode and connected to the diffusion layer of the opposite conductivity type; and a source region provided in the channel region in alignment with the gate electrode. A semiconductor device characterized by the above-mentioned.
JP3017249A 1991-02-08 1991-02-08 Semiconductor device Expired - Fee Related JP2884787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017249A JP2884787B2 (en) 1991-02-08 1991-02-08 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017249A JP2884787B2 (en) 1991-02-08 1991-02-08 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH04256370A JPH04256370A (en) 1992-09-11
JP2884787B2 true JP2884787B2 (en) 1999-04-19

Family

ID=11938679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017249A Expired - Fee Related JP2884787B2 (en) 1991-02-08 1991-02-08 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2884787B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208229A4 (en) 2007-09-21 2011-03-16 Fairchild Semiconductor Superjunction structures for power devices and methods of manufacture
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture

Also Published As

Publication number Publication date
JPH04256370A (en) 1992-09-11

Similar Documents

Publication Publication Date Title
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
JP4192281B2 (en) Silicon carbide semiconductor device
JPH0783119B2 (en) Field effect transistor
JPH09139438A (en) Semiconductor device and semiconductor manufacturing method
JPS60210861A (en) Semiconductor device
JP2884787B2 (en) Semiconductor device
JP2005191247A (en) Semiconductor substrate and semiconductor device using the same
JP2808871B2 (en) Method for manufacturing MOS type semiconductor device
JPH04206933A (en) Semiconductor device
JP2765132B2 (en) Manufacturing method of vertical field effect transistor
JP2817247B2 (en) Semiconductor device
JPH0346980B2 (en)
JP2508218B2 (en) Complementary MIS integrated circuit
JPS60140862A (en) Semiconductor memory device
JP3031282B2 (en) Semiconductor device
JPH03120836A (en) Semiconductor device
JPH0630390B2 (en) Method for manufacturing CMOS semiconductor device
JP3089755B2 (en) Semiconductor integrated circuit device
JPH0766398A (en) High withstand voltage semiconductor device
JPS61203679A (en) Mos transistor of high withstand voltage
JP2708764B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH0582786A (en) Mos-type transistor
JPS62159468A (en) Semiconductor device
JP2773159B2 (en) Semiconductor integrated circuit
JPH02272755A (en) Manufacture of bi-mos integrated circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees