JPH0379370B2 - - Google Patents

Info

Publication number
JPH0379370B2
JPH0379370B2 JP57177613A JP17761382A JPH0379370B2 JP H0379370 B2 JPH0379370 B2 JP H0379370B2 JP 57177613 A JP57177613 A JP 57177613A JP 17761382 A JP17761382 A JP 17761382A JP H0379370 B2 JPH0379370 B2 JP H0379370B2
Authority
JP
Japan
Prior art keywords
resin
epoxy resin
epoxy
phenol
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57177613A
Other languages
Japanese (ja)
Other versions
JPS5967660A (en
Inventor
Hirotoshi Iketani
Micha Azuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57177613A priority Critical patent/JPS5967660A/en
Publication of JPS5967660A publication Critical patent/JPS5967660A/en
Publication of JPH0379370B2 publication Critical patent/JPH0379370B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の属する技術分野] 本発明は、封止用エポキシ樹脂組成物及びこれ
を用いた樹脂封止型半導体装置に関する。 [発明の技術的背景とその問題点] 樹脂封止型半導体装置は、例えば、集積回路
(IC)、大規模集積回路(LSI)、トランジスタ、
ダイオード等の半導体素子を、外部雰囲気や機械
的衝撃から保護するために、熱硬化性樹脂を用い
て封止して成るものである。 半導体素子の封止技術として、従来は、金属や
セラミツクス等を用いるハーメチツク封止が採用
されていたが、最近では、経済的に有利であると
いう理由から、樹脂封止が主流を占めている。 かかる半導体封止用樹脂としては、大量生産に
適する低圧トランスフア成形法に使用可能な、低
圧成形用エポキシ樹脂組成物が一般に広く使用さ
れている。しかしながら、例えば、エポキシ樹
脂、ノボラツク型フエノール樹脂硬化剤、イミダ
ゾール酸化促進剤等から成るエポキシ樹脂組成物
を、トランスフア成形して得られる従来の樹脂封
止型半導体装置には次のような欠点がある。即
ち、 (1) 耐湿性が劣るために、アルミニウム電極など
が腐食劣化すること、 (2) 高温時における電気特性が劣り、特にリーク
電流が増加するために、半導体素子の機能が低
下すること、 である。これらのうち(1)について説明すると、樹
脂封止型半導体装置は高温高湿雰囲気下で使用ま
たは保存することがあるので、そのような条件下
においても信頼性を保証しなければならない。耐
湿性の品質保証のための信頼性評価試験として
は、85℃または120℃の飽和水蒸気中に暴露する
加速評価法が行なわれている。最近では電圧を印
加して更に加速性を高めたバイアス印加型の評価
試験も実施されている。 しかしエポキシ樹脂組成物を用いた樹脂封止型
半導体装置では、封止樹脂が吸湿性を有するため
に、水分が外部雰囲気から封止樹脂層を介して、
或いは封止樹脂とリードフレームの界面を通つて
内部に侵入し、半導体素子の表面にまで到達す
る。この水分と封止樹脂内に存在する不純物等の
作用の結果として樹脂封止型半導体装置はアルミ
ニウム電極、配線等の腐食による不良を発生す
る。またバイアス電圧を印加した場合には、その
電気化学的作用によつてアルミニウム電極、配線
の腐食による不良が特に著しく多発する。 次に(2)について説明すると、樹脂封止型半導体
装置は高温条件下で使用することがあるので、そ
のような条件においても信頼性を保証しなければ
ならない。そのための評価試験としては80℃〜
150℃でバイアス電圧を印加して信頼性を評価す
る加速試験が一般的である。 このような試験において例えば、半導体表面が
外部電荷に鋭敏なMOS構造を有する素子や、逆
バイアスが印加されたPN接合を有する素子等に
特に著しく多発する不良として、チヤネリングに
よるリーク電流の増加する現象がある。この現象
は、電圧が印加された素子の表面に接している封
止樹脂層に電界が作用することにより発生するも
のと考えられる。 従来の樹脂封止型半導体装置は上記欠点を有す
るものであるために、その改良が求められてい
た。 [発明の目的] 本発明の目的は、このような従来の樹脂封止型
半導体装置の欠点を改良することにあり、優れた
耐湿性と高温な電気特性を有する高信頼性の封止
用エポキシ樹脂組成物及びこれを用いた樹脂封止
型半導体装置を提供することにある。 [発明の概要] 上記目的を達成するために本発明者らが鋭意研
究を重ねた結果、次に示すエポキシ樹脂組成物が
半導体装置の封止用樹脂として、従来のエポキシ
樹脂組成物に較べ優れた特性を有することを見出
し、さらにこれを用いることによつて耐湿性およ
び高温電気特性に優れた樹脂封止型半導体装置が
得られることを見出した。 すなわち本発明は、 (a) エポキシ樹脂 (b) フエノールアラルキル樹脂および (c) 有機ホスフイン化合物 を含むことを特徴とする封止用樹脂組成物であ
る。 また本発明は 半導体装置をエポキシ樹脂組成物で封止して成
る樹脂封止型半導体装置において、該エポキシ樹
脂組成物が、 (a) エポキシ樹脂 (b) フエノールアラルキル樹脂および (c) 有機ホスフイン化合物 を含むことを特徴とする樹脂封止型半導体装置で
ある。 本発明において用いられるエポキシ樹脂は通常
知られているものであり、特に限定されない。例
えばビスフエノールA型エポキシ樹脂、フエノー
ルノボラツク型エポキシ樹脂、クレゾールノボラ
ツク型エポキシ樹脂などグリシジルエーテル型エ
ポキシ樹脂、グリシジルエステル型エポキシ樹
脂、グリシジルアミン型エポキシ樹脂、線状脂肪
族エポキシ樹脂、脂環式エポキシ樹脂、複素環型
エポキシ樹脂、ハロゲン化エポキシ樹脂など一分
子中にエポキシ基を2個以上有するエポキシ樹脂
が挙げられる。しかしてこれらエポキシ樹脂は1
種もしくは2種以上の混合系で用いてもよい。 本発明において用いられる更に好ましいエポキ
シ樹脂は、エポキシ当量170〜300のノボラツク型
エポキシ樹脂であつて、たとえばフエノールノボ
ラツク型エポキシ樹脂、クレゾールノボラツク型
エポキシ樹脂、ハロゲン化フエノールノボラツク
型エポキシ樹脂などである。これらエポキシ樹脂
は、塩素イオンの含有量が10ppm以下、加水分解
性塩素の含有量が0.1重量%以下のものが望まし
い。その理由は10ppmを超える塩素イオンあるい
は0.1重量%を超える加水分解塩素が含まれると、
封止された半導体素子のアルミニウム電極が腐食
されやすくなるためである。 本発明においてエポキシ樹脂の硬化剤として用
いられるフエノールアラルキル樹脂は一般式
[]で示すことができる。 ただしnは1以上の整数である。上記フエノー
ルアラルキル樹脂は、一般的にフエノールとα,
α′−ジメトキシパラキシレンとをフリーデルクラ
フツ反応により縮合させることによつて得ること
ができる。またザイロツクという商品名で市販さ
れているので容易に入手することができる。上記
[]式において、好ましいnの値、または好ま
しい平均のnの値はn=2〜20である。 エポキシ樹脂とフエノールアラルキル樹脂の配
合比については、エポキシ樹脂のエポキシ基1に
対し、フエノールアラルキル樹脂のフエノール性
水酸基の数が0.5〜15であるように配合すること
が望ましい。上記範囲外では特性劣化をまねきや
すくなるためである。 このフエノールアラルキル樹脂は、エポキシ樹
脂の硬化剤として単独で使用してもよいが、他の
硬化剤と併用することもできる。こうした他の硬
化剤としては、1分子中に2個以上のフエノール
性水酸基を有するフエノール化合物、酸無水物お
よびアミン系化合物等、エポキシ樹脂の硬化剤と
して知られているものを使用できる。これらの中
でも1分子中に2個以上のフエノール性水酸基を
有するフエノール化合物が好ましい。 1分子中に2個以上のフエノール性水酸基を有
するフエノール化合物としては、フエノール、ク
レゾール、キシレノール、ヒドロキノン、レゾル
シン、カテコール、ビスフエノールA、ビスフエ
ノールFなどのフエノール類とアルデヒド類を縮
合反応させて得られるノボラツク型フエノール樹
脂、レゾール型フエノール樹脂、ポリヒドロキシ
スチレン、トリス(ヒドロキシフエニル)メタ
ン、テトラキス(ヒドロキシフエニル)エタン、
ビスフエノールA、ビスフエノールA、ビスフエ
ノールFなどが挙げられる。 このフエノール化合物の配合比については、エ
ポキシ樹脂のエポキシ基の数1に対し、フエノー
ルアラルキル樹脂およびフエノール化合物のフエ
ノール性水酸基の総和が0.5〜1.5となるように配
合することが好ましい。上記範囲外では特性劣化
をまねきやすくなるためである。またフエノール
アラルキル樹脂とフエノール化合物の配合比は、
フエノールアラルキル樹脂1重量部に対し、フエ
ノール化合物が0.01〜100重量部の範囲内にある
ように配合することが望ましい。0.01未満ではフ
エノール化合物の添加の効果が認め難く、100重
量部以上ではフエノールアラルキル樹脂の効果が
減殺されるためである。フエノールアラルキル樹
脂とフエノール化合物を効果的に混合するため
に、前もつて両者の溶融混合物をつくり、これを
用いてもよい。 一方本発明においては、硬化促進剤として有機
ホスフイン化合物を用いることによつて、従来の
イミダゾールやアミン等の硬化促進剤を用いた場
合に比較して、樹脂封止型半導体装置の耐湿性や
高温電気特性を著しく改善することができる。 本発明において用いられる有機ホスフイン化合
物としては、式[]: においてR1〜R3がすべて有機基である第3ホス
フイン化合物、R3のみ水素である第2ホスフイ
ン化合物、R2,R3がともに水素である第1ホス
フイン化合物がある。具体的にはトリフエニルホ
スフイン、トリブチルホスフイン、トリシクロヘ
キシルホスフイン、メチルジフエニルホスフイ
ン、ブチルフエニルホスフイン、ジフエニルホス
フイン、フエニルホスフイン、オクチルホスフイ
ンなどである。またR1が有機ホスフインを含む
有機基であつてもよい。たとえば1,2−ビス
(ジフエニルホスフイノ)エタン,ビス(ジフエ
ニルホスフイノ)メタンなどがある。これらの中
でもアリールホスフインが好ましく、特にトリフ
エニルホスフイン等のトリアリールホスフインが
好ましい。またこれらの有機ホスフイン化合物は
1種もしくは2種以上の混合系で用いてもよい。 しかしてこの有機ホスフイン化合物の配合量は
一般に樹脂成分(エポキシ樹脂と硬化剤)の
0.001〜20重量%の範囲内でよいが特に好ましい
特性は0.01〜5重量%の範囲内で得られる。有機
ホスフイン化合物の配合量を特にこの範囲とする
ことにより、優れた特性の封止用エポキシ樹脂組
成物を得ることができる。配合量が0.001重量%
未満では添加の効果が認めがたく、エポキシ樹脂
組成物の硬化を長時間を要する欠点があり、20重
量%を越えると品質に悪影響を及ぼす。 本発明に係るエポキシ樹脂組成物には、必要に
応じて無機質充てん剤を配合することができる
が、特に集積回路やトランジスタなどの半導体素
子をトランスフア成形する用途の場合には、無機
質充てん剤を配合することが好ましい。その理由
は、ひとつには成形性を改善するため、また他の
理由として素子やボンデイングワイヤやリードフ
レーム等の封止される部分と封止樹脂の熱膨張係
数の差を小さくし、たとえばボンデイングワイヤ
切れのような熱膨張係数の差が大きいために発生
する不良を少なくするためである。 本発明において用いられる無機質充てん剤とし
ては、石英ガラス粉末、結晶性シリカ粉末、ガラ
ス繊維、タルク、アルミナ粉末、ケイ酸カルシウ
ム粉末、炭酸カルシウム粉末、硫酸バリウム粉
末、マグネシア粉末などであるが、これらの中で
石英ガラス粉末や、結晶性シリカ粉末が、高純度
と低熱膨張係数の点で最も好ましい。しかしてこ
れら無機質充てん剤の配合量はエポキシ樹脂、硬
化剤および無機質充てん剤の種類によつても異る
が、たとえばトランスフア成形に用いる場合には
エポキシ樹脂と硬化剤の総量に対して重量比で
1.5倍〜4倍程度でよい。無機質充てん剤の粒度
分布については、粗い粒子と細い粒子を組み合せ
て分布を均一にすることによつて成形性を改善す
ることができる。 本発明に係るエポキシ樹脂組成物は必要に応じ
て、例えば天然ワツクス類、合成ワツクス類、直
鎖脂肪酸の金属塩、酸アミド類、エステル類もし
くはパラフイン類などの離型剤、塩素化パラフイ
ン、ブロムトルエン、ヘキサムブロムベンゼン、
三酸化アンチモンなどの難燃剤、カーボンブラツ
クなどの着色剤、シランカツプリング剤などを適
宜0.01〜10重量%程度添加配合しても差しつかえ
ない。 本発明に係るエポキシ樹脂組成物を成形材料と
して調整する場合の一般的な方法としては、所定
の組成比に選んだ原料組成分を例えばミキサーに
よつて充分混合後、さらに熱ロールによる溶融混
合処理、またはニーダーなどによる混合処理を加
えることにより容易にエポキシ樹脂成形材料を得
ることができる。 本発明の樹脂封止型半導体装置は、上記エポキ
シ樹脂組成物または成形材料を用いて半導体装置
を封止することにより容易に製造することができ
る。封止の最も一般的な方法としては、低圧トラ
ンスフア成形法があるが、インジエクシヨン成
形、圧縮成形、注型などによる封止も可能であ
る。特殊な封止法としては溶剤型あるいは非溶剤
型の組成物を用いて半導体表面を被覆する方法
や、いわゆるジヤンクシヨンコーテイングとして
の局部的な封止の用途にも用いることができる。
またダイボンデイング用の樹脂組成物として用い
ることもできる。 エポキシ樹脂組成物または成形材料は封止の際
に加熱して硬化させ、最終的にはこの組成物また
は成形材料の硬化物によつて封止された樹脂封止
型半導体装置を得ることができる。硬化に際して
は150℃以上に加熱することが望ましい。 本発明でいう半導体装置とは集積回路、大規模
集積回路、トランジスタ、サイリスタ、ダイオー
ドなどであつて特に限定されるものではない。 [発明の実施例] 次に本発明の合成例を記載する。 合成例 1 水酸基当量174のフエノールアラルキル樹脂、
水酸基当量104のフエノールノボラツク樹脂を各
100重量部混合し、160℃に加熱して相溶させ、溶
融混合物を得た。これを冷却して粉砕してエポキ
シ樹脂組成物の原料とした。 次に本発明の実施例を説明する。 実施例 1〜5 エポキシ当量220のクレゾールノボラツク型エ
ポキシ樹脂(エポキシ樹脂A)、エポキシ当量290
の臭素過エポキシノボラツク樹脂(エポキシ樹脂
B)、水酸基当量174のフエノールアラルキル樹
脂、フエノール化合物Aとして水酸基当量104の
フエノールノボラツク樹脂、合成例1の溶融混合
物、トリフエニルホスフイン、2−メチルイミダ
ゾール、ジメチルアミノメチルフエノール、石英
ガラス粉末、三酸化アンチモン、カルナバワツク
ス、カーボンブラツク、シランカツプリング剤
(γ−グリシドキシプロピルトリメトキシシラン)
を第1表に示す組成(重量部)に選び、各組成物
をミキサーによる混合、加熱ロールによる混練を
行うことによつて、比較例を含め10種のトランス
フア成形材料を調整した。
[Technical field to which the invention pertains] The present invention relates to an epoxy resin composition for sealing and a resin-encapsulated semiconductor device using the same. [Technical background of the invention and its problems] Resin-sealed semiconductor devices are, for example, integrated circuits (ICs), large-scale integrated circuits (LSIs), transistors,
In order to protect semiconductor elements such as diodes from external atmosphere and mechanical shock, they are sealed using thermosetting resin. Conventionally, hermetic sealing using metals, ceramics, etc. has been employed as a sealing technique for semiconductor elements, but recently resin sealing has become mainstream because it is economically advantageous. As such semiconductor encapsulating resins, low-pressure molding epoxy resin compositions that can be used in low-pressure transfer molding methods suitable for mass production are generally widely used. However, conventional resin-encapsulated semiconductor devices obtained by transfer molding an epoxy resin composition consisting of an epoxy resin, a novolac-type phenolic resin curing agent, an imidazole oxidation promoter, etc. have the following drawbacks. be. That is, (1) aluminum electrodes etc. deteriorate due to corrosion due to poor moisture resistance; (2) electrical properties at high temperatures are poor, and in particular, leakage current increases, resulting in a decline in the functionality of semiconductor elements; It is. Regarding (1) among these, resin-sealed semiconductor devices are sometimes used or stored in high-temperature, high-humidity environments, so reliability must be guaranteed even under such conditions. As a reliability evaluation test for quality assurance of moisture resistance, an accelerated evaluation method in which the product is exposed to saturated steam at 85°C or 120°C is used. Recently, bias application type evaluation tests have also been conducted in which a voltage is applied to further improve acceleration. However, in a resin-encapsulated semiconductor device using an epoxy resin composition, since the encapsulating resin has hygroscopic properties, moisture can be absorbed from the external atmosphere through the encapsulating resin layer.
Alternatively, it penetrates into the interior through the interface between the sealing resin and the lead frame and reaches the surface of the semiconductor element. As a result of the action of this moisture and impurities present in the sealing resin, resin-sealed semiconductor devices develop defects due to corrosion of aluminum electrodes, wiring, etc. Furthermore, when a bias voltage is applied, defects due to corrosion of aluminum electrodes and wiring occur particularly frequently due to its electrochemical action. Next, regarding (2), since resin-sealed semiconductor devices are sometimes used under high-temperature conditions, reliability must be guaranteed even under such conditions. The evaluation test for this purpose is 80℃~
Accelerated tests that evaluate reliability by applying a bias voltage at 150°C are common. In such tests, for example, a phenomenon in which leakage current increases due to channeling occurs, which occurs particularly frequently in devices with a MOS structure where the semiconductor surface is sensitive to external charges, or devices with a PN junction to which a reverse bias is applied. There is. This phenomenon is thought to be caused by an electric field acting on the sealing resin layer that is in contact with the surface of the element to which voltage is applied. Since conventional resin-sealed semiconductor devices have the above-mentioned drawbacks, improvements have been sought. [Object of the Invention] The object of the present invention is to improve the drawbacks of conventional resin-encapsulated semiconductor devices, and to provide a highly reliable encapsulating epoxy that has excellent moisture resistance and high-temperature electrical properties. An object of the present invention is to provide a resin composition and a resin-sealed semiconductor device using the same. [Summary of the Invention] As a result of extensive research by the present inventors to achieve the above object, the following epoxy resin composition has been found to be superior to conventional epoxy resin compositions as a sealing resin for semiconductor devices. Furthermore, they have found that by using the same, a resin-sealed semiconductor device with excellent moisture resistance and high-temperature electrical properties can be obtained. That is, the present invention is a sealing resin composition characterized by containing (a) an epoxy resin, (b) a phenol aralkyl resin, and (c) an organic phosphine compound. The present invention also provides a resin-encapsulated semiconductor device in which a semiconductor device is sealed with an epoxy resin composition, wherein the epoxy resin composition comprises (a) an epoxy resin, (b) a phenol aralkyl resin, and (c) an organic phosphine compound. A resin-sealed semiconductor device characterized by comprising: The epoxy resin used in the present invention is commonly known and is not particularly limited. For example, bisphenol A type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin, glycidyl ether type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, linear aliphatic epoxy resin, alicyclic type Examples include epoxy resins having two or more epoxy groups in one molecule, such as epoxy resins, heterocyclic epoxy resins, and halogenated epoxy resins. However, these epoxy resins are 1
It may be used as a species or as a mixture of two or more types. More preferred epoxy resins used in the present invention are novolak type epoxy resins having an epoxy equivalent of 170 to 300, such as phenol novolak type epoxy resins, cresol novolak type epoxy resins, and halogenated phenol novolak type epoxy resins. be. These epoxy resins desirably have a chlorine ion content of 10 ppm or less and a hydrolyzable chlorine content of 0.1% by weight or less. The reason is that if more than 10 ppm of chlorine ions or more than 0.1% by weight of hydrolyzed chlorine is contained,
This is because the aluminum electrodes of the sealed semiconductor element are likely to be corroded. The phenol aralkyl resin used as a curing agent for epoxy resin in the present invention can be represented by the general formula [ ]. However, n is an integer of 1 or more. The above phenolic aralkyl resin is generally composed of phenol and α,
It can be obtained by condensing α'-dimethoxyparaxylene with Friedel-Crafts reaction. It is also easily available as it is commercially available under the trade name Zairoku. In the above formula [ ], a preferable value of n or a preferable average value of n is n=2 to 20. Regarding the blending ratio of the epoxy resin and the phenol aralkyl resin, it is desirable that the number of phenolic hydroxyl groups in the phenol aralkyl resin is 0.5 to 15 per 1 epoxy group in the epoxy resin. This is because outside the above range, characteristics tend to deteriorate. This phenol aralkyl resin may be used alone as a curing agent for epoxy resins, but it can also be used in combination with other curing agents. As such other curing agents, those known as curing agents for epoxy resins, such as phenol compounds having two or more phenolic hydroxyl groups in one molecule, acid anhydrides, and amine compounds, can be used. Among these, phenol compounds having two or more phenolic hydroxyl groups in one molecule are preferred. Phenol compounds having two or more phenolic hydroxyl groups in one molecule include those obtained by condensing phenols such as phenol, cresol, xylenol, hydroquinone, resorcinol, catechol, bisphenol A, and bisphenol F with aldehydes. Novolak type phenolic resin, resol type phenolic resin, polyhydroxystyrene, tris(hydroxyphenyl)methane, tetrakis(hydroxyphenyl)ethane,
Bisphenol A, bisphenol A, bisphenol F and the like can be mentioned. Regarding the blending ratio of the phenol compound, it is preferable to blend the phenol aralkyl resin and the phenolic compound so that the total number of phenolic hydroxyl groups of the phenol aralkyl resin and the phenol compound is 0.5 to 1.5 to 1 of the epoxy groups of the epoxy resin. This is because outside the above range, characteristics are likely to deteriorate. In addition, the blending ratio of phenol aralkyl resin and phenol compound is
It is desirable that the phenol compound be blended in a range of 0.01 to 100 parts by weight per 1 part by weight of the phenol aralkyl resin. This is because if it is less than 0.01, the effect of the addition of the phenol compound is difficult to recognize, and if it is more than 100 parts by weight, the effect of the phenol aralkyl resin is diminished. In order to effectively mix the phenolic aralkyl resin and the phenolic compound, a molten mixture of the two may be prepared in advance and used. On the other hand, in the present invention, by using an organic phosphine compound as a curing accelerator, the moisture resistance and high temperature properties of resin-sealed semiconductor devices are improved compared to the case where conventional curing accelerators such as imidazole and amines are used. Electrical properties can be significantly improved. The organic phosphine compound used in the present invention has the formula []: There are a tertiary phosphine compound in which R 1 to R 3 are all organic groups, a second phosphine compound in which only R 3 is hydrogen, and a first phosphine compound in which R 2 and R 3 are both hydrogen. Specifically, they include triphenylphosphine, tributylphosphine, tricyclohexylphosphine, methyldiphenylphosphine, butylphenylphosphine, diphenylphosphine, phenylphosphine, octylphosphine, and the like. Further, R 1 may be an organic group containing an organic phosphine. Examples include 1,2-bis(diphenylphosphino)ethane and bis(diphenylphosphino)methane. Among these, arylphosphines are preferred, and triarylphosphines such as triphenylphosphine are particularly preferred. Further, these organic phosphine compounds may be used alone or in a mixed system of two or more. However, the amount of the organic phosphine compound used in the lever is generally determined based on the resin components (epoxy resin and curing agent).
It may be within the range of 0.001 to 20% by weight, but particularly preferred properties are obtained within the range of 0.01 to 5% by weight. By particularly setting the blending amount of the organic phosphine compound within this range, an epoxy resin composition for sealing with excellent properties can be obtained. Compounding amount is 0.001% by weight
If it is less than 20% by weight, the effect of the addition is difficult to recognize, and the epoxy resin composition has the disadvantage of requiring a long time to cure, and if it exceeds 20% by weight, it will have a negative effect on quality. An inorganic filler can be added to the epoxy resin composition according to the present invention if necessary, but in particular, in the case of transfer molding of semiconductor elements such as integrated circuits and transistors, an inorganic filler is not necessary. It is preferable to mix them. This is partly to improve moldability, and another reason is to reduce the difference in thermal expansion coefficient between the parts to be sealed, such as elements, bonding wires, and lead frames, and the sealing resin. This is to reduce defects that occur due to large differences in thermal expansion coefficients, such as cuts. Inorganic fillers used in the present invention include quartz glass powder, crystalline silica powder, glass fiber, talc, alumina powder, calcium silicate powder, calcium carbonate powder, barium sulfate powder, magnesia powder, etc. Among them, quartz glass powder and crystalline silica powder are most preferred in terms of high purity and low coefficient of thermal expansion. However, the blending amount of these inorganic fillers varies depending on the type of epoxy resin, curing agent, and inorganic filler, but for example, when used in transfer molding, the proportion by weight to the total amount of epoxy resin and curing agent is in
It may be about 1.5 times to 4 times. Regarding the particle size distribution of the inorganic filler, moldability can be improved by making the distribution uniform by combining coarse particles and fine particles. The epoxy resin composition according to the present invention may be used, as necessary, with release agents such as natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, or paraffins, chlorinated paraffin, bromine, etc. Toluene, hexambromobenzene,
A flame retardant such as antimony trioxide, a coloring agent such as carbon black, a silane coupling agent, etc. may be appropriately added in an amount of about 0.01 to 10% by weight. A general method for preparing the epoxy resin composition according to the present invention as a molding material is to thoroughly mix the raw material components selected at a predetermined composition ratio, for example, using a mixer, and then melt-mix them using hot rolls. Alternatively, an epoxy resin molding material can be easily obtained by adding a mixing treatment using a kneader or the like. The resin-sealed semiconductor device of the present invention can be easily manufactured by sealing the semiconductor device using the epoxy resin composition or molding material. The most common method for sealing is low-pressure transfer molding, but sealing by injection molding, compression molding, casting, etc. is also possible. As a special sealing method, a method of coating a semiconductor surface using a solvent type or non-solvent type composition, and a method of local sealing as so-called juncture coating can also be used.
It can also be used as a resin composition for die bonding. The epoxy resin composition or molding material is heated and cured during sealing, and finally a resin-sealed semiconductor device can be obtained which is sealed with the cured product of this composition or molding material. . During curing, it is desirable to heat to 150°C or higher. The semiconductor device in the present invention includes an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, etc., and is not particularly limited. [Examples of the Invention] Next, synthesis examples of the present invention will be described. Synthesis Example 1 Phenolaralkyl resin with hydroxyl equivalent of 174,
Each phenol novolac resin with a hydroxyl equivalent of 104
100 parts by weight were mixed and heated to 160°C to make them compatible, to obtain a molten mixture. This was cooled and pulverized to be used as a raw material for an epoxy resin composition. Next, embodiments of the present invention will be described. Examples 1 to 5 Cresol novolac type epoxy resin with epoxy equivalent weight 220 (epoxy resin A), epoxy equivalent weight 290
Brominated perepoxy novolak resin (epoxy resin B), phenol aralkyl resin with a hydroxyl equivalent of 174, phenol novolak resin with a hydroxyl equivalent of 104 as phenol compound A, molten mixture of Synthesis Example 1, triphenylphosphine, 2-methylimidazole , dimethylaminomethylphenol, quartz glass powder, antimony trioxide, carnauba wax, carbon black, silane coupling agent (γ-glycidoxypropyltrimethoxysilane)
The compositions (parts by weight) shown in Table 1 were selected, and each composition was mixed using a mixer and kneaded using heated rolls to prepare 10 types of transfer molding materials, including comparative examples.

【表】 このようにして得た成形材料を用いてトランス
フア成形することにより、MOS型集積回路を樹
脂封止した。封止は高周波予熱器で90℃に加熱し
た成形材料を175℃で2分間モールドし、更に200
℃で8時間アフタキユアすることにより行つた。
上記樹脂封止型半導体装置各100個について次の
試験を行つた。 (1) 120℃、2気圧の水蒸気中で10V印加してア
ルミニウム配線の腐食による断線不良を調べる
耐湿試験(バイアスPCT)を行い、その結果
を第2表に示した。 (2) 100℃のオーブン中でオフセツトゲート
MOSFET回路にドレイン電圧5V、オフセツト
ゲート電圧5Vを印加して電気特性の劣化によ
るリーク電流不良を調べる試験(MOS−BT試
験)を行い、リーク電流が初期値の100倍以上
に増加した場合を不良と判定してその結果を第
3表に示した。
[Table] A MOS type integrated circuit was resin-sealed by transfer molding using the molding material thus obtained. For sealing, the molding material was heated to 90℃ using a high-frequency preheater, then molded at 175℃ for 2 minutes, and then heated to 200℃.
This was done by after-curing at ℃ for 8 hours.
The following tests were conducted on 100 of each of the above resin-sealed semiconductor devices. (1) A moisture resistance test (bias PCT) was conducted in water vapor at 120°C and 2 atm, applying 10V to check for breakage due to corrosion of the aluminum wiring, and the results are shown in Table 2. (2) Offset gate in oven at 100℃
A test (MOS-BT test) is performed to check for leakage current defects due to deterioration of electrical characteristics by applying a drain voltage of 5V and an offset gate voltage of 5V to the MOSFET circuit, and if the leakage current increases to more than 100 times the initial value, It was judged as defective and the results are shown in Table 3.

【表】【table】

【表】【table】

【表】 実施例 6〜8 エポキシ樹脂として次式で表わされる化合物
(エポキシ樹脂C)、 (ただしn=2、エポキシ当量160) フエノール化合物としてビスフエノールAとアル
デヒドの縮合反応によるノボラツク型フエノール
樹脂(フエノール化合物B、水酸基当量120)、ト
リス(ヒドロキシフエニル)メタン(フエノール
化合物C、水酸基当量98)、ポリヒドロキシスチ
レン(フエノール化合物D、水酸基当量120)を
用いた他は実施例1〜5と同様の原料を用いて第
4表に示す組成(重量部)の組成物を形成した。
[Table] Examples 6 to 8 Compounds represented by the following formula as epoxy resins (epoxy resin C), (However, n = 2, epoxy equivalent: 160) Novolac type phenol resin (phenol compound B, hydroxyl equivalent: 120), tris(hydroxyphenyl)methane (phenol compound C, hydroxyl equivalent: 120) produced by condensation reaction of bisphenol A and aldehyde as phenol compounds Compositions having the compositions (parts by weight) shown in Table 4 were formed using the same raw materials as in Examples 1 to 5, except that polyhydroxystyrene (phenol compound D, hydroxyl equivalent: 120) was used.

【表】【table】

【表】 これらの組成物を用いて、実施例1〜5と同様
な方法で樹脂封止型半導体装置の評価試験を行つ
た。その結果を第5表及び第6表に示した。
[Table] Using these compositions, evaluation tests for resin-sealed semiconductor devices were conducted in the same manner as in Examples 1 to 5. The results are shown in Tables 5 and 6.

【表】【table】

【表】 [発明の効果] 上記本発明の目的、概要の記載および実施例に
おいて明らかなように、本発明のエポキシ樹脂組
成物を用いて、半導体を封止して成る樹脂封止型
半導体装置は、バイアスPCTにおいて水分によ
るアルミニウム配線の腐食断線が著しく低いこと
に示されるように耐湿性に優れ、またMOS−BT
試験において、リーク電流が著しく低いことに示
されるように高温電気特性に優れている。従つて
本発明によつて高信頼性の樹脂封止型半導体装置
を得ることができる。
[Table] [Effects of the Invention] As is clear from the purpose of the present invention, the description of the outline, and the examples, there is a resin-sealed semiconductor device in which a semiconductor is encapsulated using the epoxy resin composition of the present invention. MOS-BT has excellent moisture resistance, as shown by the extremely low corrosion disconnection of aluminum wiring due to moisture in bias PCT, and MOS-BT
In tests, it has excellent high-temperature electrical properties, as shown by extremely low leakage current. Therefore, according to the present invention, a highly reliable resin-sealed semiconductor device can be obtained.

Claims (1)

【特許請求の範囲】 1 (a) エポキシ樹脂 (b) フエノールアラルキル樹脂および (c) 有機ホスフイン化合物 を含むことを特徴とする封止用エポキシ樹脂組成
物。 2 半導体装置をエポキシ樹脂組成物で封止して
成る樹脂封止型半導体装置において、該エポキシ
樹脂組成物が、 (a) エポキシ樹脂 (b) フエノールアラルキル樹脂および (c) 有機ホスフイン化合物 を含むことを特徴とする樹脂封止型半導体装置。
[Scope of Claims] 1. An epoxy resin composition for sealing, comprising (a) an epoxy resin, (b) a phenol aralkyl resin, and (c) an organic phosphine compound. 2. In a resin-encapsulated semiconductor device formed by encapsulating a semiconductor device with an epoxy resin composition, the epoxy resin composition contains (a) an epoxy resin, (b) a phenolaralkyl resin, and (c) an organic phosphine compound. A resin-sealed semiconductor device characterized by:
JP57177613A 1982-10-12 1982-10-12 Resin sealed type semiconductor device Granted JPS5967660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57177613A JPS5967660A (en) 1982-10-12 1982-10-12 Resin sealed type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57177613A JPS5967660A (en) 1982-10-12 1982-10-12 Resin sealed type semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7180550A Division JP2654376B2 (en) 1995-06-26 1995-06-26 Epoxy resin composition for encapsulation and resin-encapsulated semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPS5967660A JPS5967660A (en) 1984-04-17
JPH0379370B2 true JPH0379370B2 (en) 1991-12-18

Family

ID=16034063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57177613A Granted JPS5967660A (en) 1982-10-12 1982-10-12 Resin sealed type semiconductor device

Country Status (1)

Country Link
JP (1) JPS5967660A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105018A (en) * 1982-12-07 1984-06-18 Toshiba Chem Corp Sealing resin composition
JPS59105019A (en) * 1982-12-07 1984-06-18 Toshiba Chem Corp Sealing resin composition
JPH0791523B2 (en) * 1987-12-25 1995-10-04 エヌオーケー株式会社 Vulcanized adhesive compound
JPH04300914A (en) * 1991-03-29 1992-10-23 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP2654376B2 (en) * 1995-06-26 1997-09-17 株式会社東芝 Epoxy resin composition for encapsulation and resin-encapsulated semiconductor device using the same
JP4327756B2 (en) 2005-03-22 2009-09-09 トヨタ自動車株式会社 Hydraulic circuit device and hybrid drive device using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123800A (en) * 1974-03-08 1975-09-29
JPS51132267A (en) * 1975-04-18 1976-11-17 Hitachi Ltd An epoxy resin composition for sealing semi-conductor elements
JPS52132100A (en) * 1976-04-28 1977-11-05 Hitachi Ltd Epoxy resin molding materials for sealing semiconductors
JPS5458795A (en) * 1977-10-19 1979-05-11 Hitachi Ltd Preparation of curing agent for epoxy resin
JPS54110297A (en) * 1978-02-17 1979-08-29 Hitachi Ltd Epoxy resin composition for encapsulating semiconductor device
JPS5645491A (en) * 1979-08-08 1981-04-25 M & T Chemicals Inc Novel organosilicon compound and manufacture thereof
JPS5659841A (en) * 1979-10-19 1981-05-23 Hitachi Ltd Epoxy resin composition
JPS5684717A (en) * 1979-12-14 1981-07-10 Hitachi Ltd Epoxy resin molding material
JPS572329A (en) * 1980-06-05 1982-01-07 Toshiba Corp Epoxy resin type composition and semiconductor device of resin sealing type
JPS57153022A (en) * 1981-03-18 1982-09-21 Toshiba Corp Resin-sealed semiconductor device
JPS57153454A (en) * 1981-03-18 1982-09-22 Toshiba Corp Resin molded type semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123800A (en) * 1974-03-08 1975-09-29
JPS51132267A (en) * 1975-04-18 1976-11-17 Hitachi Ltd An epoxy resin composition for sealing semi-conductor elements
JPS52132100A (en) * 1976-04-28 1977-11-05 Hitachi Ltd Epoxy resin molding materials for sealing semiconductors
JPS5458795A (en) * 1977-10-19 1979-05-11 Hitachi Ltd Preparation of curing agent for epoxy resin
JPS54110297A (en) * 1978-02-17 1979-08-29 Hitachi Ltd Epoxy resin composition for encapsulating semiconductor device
JPS5645491A (en) * 1979-08-08 1981-04-25 M & T Chemicals Inc Novel organosilicon compound and manufacture thereof
JPS5659841A (en) * 1979-10-19 1981-05-23 Hitachi Ltd Epoxy resin composition
JPS5684717A (en) * 1979-12-14 1981-07-10 Hitachi Ltd Epoxy resin molding material
JPS572329A (en) * 1980-06-05 1982-01-07 Toshiba Corp Epoxy resin type composition and semiconductor device of resin sealing type
JPS57153022A (en) * 1981-03-18 1982-09-21 Toshiba Corp Resin-sealed semiconductor device
JPS57153454A (en) * 1981-03-18 1982-09-22 Toshiba Corp Resin molded type semiconductor device

Also Published As

Publication number Publication date
JPS5967660A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
JPH0445982B2 (en)
KR20080027966A (en) Epoxy resin composition and semiconductor device
JPS6153321A (en) Epoxy resin composition for sealing semiconductor and semiconductor device of resin sealed type using same
JPH0379370B2 (en)
JP2004067717A (en) Epoxy resin composition and semiconductor device
JPS6219066B2 (en)
JPH0520447B2 (en)
JPS6181426A (en) Epoxy resin composition for encapsulatingj semiconductor
JP2626377B2 (en) Epoxy resin composition and semiconductor device
JPS583382B2 (en) Resin-encapsulated semiconductor device
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2654376B2 (en) Epoxy resin composition for encapsulation and resin-encapsulated semiconductor device using the same
JPS6219070B2 (en)
JPS61221220A (en) Epoxy resin sealing composition and semiconductor device sealed therewith
JPS61151234A (en) Epoxy resin composition for sealing semiconductor
JP2002053732A (en) Epoxy resin composition and semiconductor device
JPS6054458A (en) Resin-sealed semiconductor device
JP2576726B2 (en) Epoxy resin composition
JPS58119655A (en) Resin sealed type semiconductor device
JP2004339292A (en) Resin composition for sealing and semiconductor
JPH0549696B2 (en)
KR930008189B1 (en) Epoxy resin composition for encapsulating semiconductor
JP2991847B2 (en) Resin composition for semiconductor encapsulation
JPH0319707B2 (en)
JPS6219069B2 (en)