JPH036856A - 絶縁ゲート型半導体装置及びその形成方法 - Google Patents

絶縁ゲート型半導体装置及びその形成方法

Info

Publication number
JPH036856A
JPH036856A JP1141082A JP14108289A JPH036856A JP H036856 A JPH036856 A JP H036856A JP 1141082 A JP1141082 A JP 1141082A JP 14108289 A JP14108289 A JP 14108289A JP H036856 A JPH036856 A JP H036856A
Authority
JP
Japan
Prior art keywords
insulated gate
semiconductor device
semiconductor
type
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1141082A
Other languages
English (en)
Inventor
Katsuhiko Yamada
克彦 山田
Shigetoshi Sugawa
成利 須川
Hidemasa Mizutani
英正 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1141082A priority Critical patent/JPH036856A/ja
Publication of JPH036856A publication Critical patent/JPH036856A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、絶縁ゲート型半導体装置及びその形成方法に
係り、特に非晶質基板上に形成可能な絶縁ゲート型半導
体装置及びその形成方法に関する。
[従来の技術] M I S (Metal−Insulator−3e
miconductor)型半導体装置は、その構造が
簡潔であることや、入出力が高インピーダンスであるこ
と等の特徴から広く応用されており、近年高集積化及び
多機能化等の目的により■型ゲートのMOS型トランジ
スタや、縦型のトランジスタが開発されている。
第3図(a)は、■型ゲートのMOS型トランジスタの
構成を示す縦断面図である。
なお、ここで示す■型ゲートのMOS型トランジスタは
、“Appl Phys Lett Vol、45.N
o、3 PAGE。
25g−260”において開示されたものである。
同図において、n”−InP基板21にn−InP層2
2、p−GaInPAs層23、n−InPH24が形
成され、V字状に開口された面にS 10 z 、fi
F 27を介してゲート電極26が形成され、n −r
 n P /IF 24にソース電極25、n″″−I
nP基板21にドレイン電極20が形成される。
第3図(b)は、縦型のトランジスタの構成を示す縦断
面図である。
なお、ここで示す縦型のトランジスタは、JAppl 
Phys Vol、55.No、10 PAGE、38
68−3870”において開示されたものである。
同図において、n−GaAs基板31上に第1のn−G
aAs層32が形成され、その上にW等のゲート電極3
3が列状に形成され、さらに第2のn−GaAs層34
が形成される。n−GaAs基板31上にはドレイン電
極30、n−GaAs層34上にはソース電極35が形
成される。
以上説明した従来のMIS型トランジスタ等の半導体装
置に用いられる半導体層は、単結晶基板上にエピタキシ
ャル成長させることで形成されていた。たとえば、Si
単結晶基板(シリコンウェハー)上には、SL、 Ge
、 GaAs等を液相、気相または固相からエピキシャ
ル成長可能なことが知られており、また、GaAs単結
晶基板上には、GaAs、 GaAlAs等の単結晶が
エピタキシャル成長可能なことが知られている。
一方、安価なガラス等の基板上に素子をアレイ上に配列
する画像読み取り装置や液晶画素のスイッチングトラン
ジスタ等の大面積半導体装置の研究開発も年々盛んにな
り、非晶質シリコンによる縦型のトランジスタも、開発
されている。
第3図(C)は、非晶質シリコンによる縦型のトランジ
スタの構成を示す縦断面図である。
なお、ここで示す縦型のトランジスタは、“1986年
秋季応用物理学関係連合講演会講演予稿集29a−Z−
10”に開示されたものである。
同図において、S i O2基板40上には、Taのソ
ース電極41.n”多結晶シリコン層42、SiN等の
絶縁N43、n゛多結晶シリコン層42、Cr / T
 aのドレイン電極44が形成され、これらの層の側面
には、n−アモルファスシリコン層45、n−アモルフ
ァスシリコン層45を表面酸化して形成された酸化膜4
6、ゲート耐圧を増すためのCV D S i Oz層
47、Mo等のゲート電極48が形成される。
[発明が解決しようとする課題] しかしながら、上記MIS型トランジスタは、次に示す
ような問題点を有していた。
(1)第3図(a)および第3図(b)に示した単結晶
を材料とする、V型ゲートのMOS型トランジスタ、縦
型のトランジスタは、単結晶基板の製造コストが高いた
めにチップ当たりのコストが高くなる。また現在、基板
の大きさはSLウェハーで6インチ程度であるため、大
面積化が難しく、一方GaAs、サファイア基板の大型
化は更に困難であった。この結果、大面積半導体装置の
作製は困難であった。
(2)第3図(c)に示した非結晶を材料とする縦型ト
ランジスタは、絶縁体上に作製可能なために安価なガラ
ス基板等を用いることが出来るが、その結晶性に起因す
る電気的特性により高速性、S/N比等の点で単結晶材
料に劣る。
[課題を解決するための手段] 本発明の絶縁ゲート型半導体装置は、非核形成面と、該
非核形成面よりも核形成密度が太き(、且つ、結晶成長
して単結晶となる核が唯一形成するに十分微小な面積の
核形成面と、を有する基体と、 一導電型の半導体領域およびこの一導電型と反対導電型
の半導体領域を有する半導体層と、該半導体層の側面に
、絶縁体膜を介して形成されたゲート電極と、 を有することを特徴とする。
本発明の絶縁ゲート型半導体装置の形成方法は、非核形
成面と、この非核形成面よりも核形成密度が大きく、且
つ、結晶成長して単結晶となる核が唯一形成するに十分
微小な面積の核形成面と、を有する基体に半導体結晶成
長処理を気相法により行い、 前記半導体結晶成長処理の段階で、所望の不純物を含有
させ、一導電型の半導体領域およびこの一導電型と反対
導電型の半導体領域を有する半導体層を形成し、 前記半導体層の側面に、絶縁体膜を介してゲート電極を
形成することを特徴とする。
[作用] 本発明の絶縁ゲート型半導体装置及びその形成方法にお
いて用いる結晶形成方法は、非核形成面(すなわち核形
成密度の小さな面)に設けられた、この核形成面よりも
核形成密度が十分太き(、且つ、結晶成長して単結晶と
なる核が唯一形成するに十分微小な表面積の核形成面を
中心として単結晶を成長させる方法であり、本出願人に
よる欧州特許出願公開第0244,081号に開示され
た結晶形成方法である。この結晶形成方法は、プロセス
の容易さ、基板材料の自由度が大きいこと、大面積デバ
イスへの対応が可能等の長所を持っている。
本発明は、かかる結晶形成方法を用い、縦型の絶縁ゲー
ト型半導体装置を作製したものであり、例えば、絶縁ゲ
ート型トランジスタ、絶縁ゲート型インバータ等を提供
するものである。
本発明は、非核形成面に隣接して、該非核形成面よりも
該形成密度が十分大きく、且つ、結晶成長して単結晶と
なる核が唯一形成するに十分微小な面積の核形成面に形
成された核から単結晶を成長させる段階で、所望のタイ
ミングで所望の不純物を導入することで、所望の導電型
の半導体領域を、単結晶の所望の領域に所望の厚さで設
けることを可能としたものである。
なお、本発明においては、半導体領域の層厚の制御がな
され、作製された半導体層の側面に絶縁体を介してゲー
ト電極が形成されるため、ゲート長を高精度で形成する
ことが可能である。
[実施例] 以下、本発明の実施例について図面を用いて説明する。
まず、本発明の実施態様について説明する。
本発明では、例えば、金属、半導体、磁性体、圧電体あ
るいは絶縁体等の任意の基板上にソース(ドレイン)電
極となる、例えば、Mo、 W、 Ti。
Ta及び前記金属のシリサイド化合物等の導電体材料を
スパッタ法、CVD法等を用いて堆積して導電体層とし
、 この導電体層上に、例えば、NSC膜、PSG膜、熱酸
化SiO□膜等を堆積して非核形成面とし、この非核形
成面上の任意の位置にフォトリソグラフィー技術等を用
いて微小な穴をあけ、前記導電体層の一部を露出して核
形成面とする。この時、核形成面と非核形成面との核形
成密度の差は選択性よく単結晶を核形成面に形成するた
めには103倍以上あることが望ましい。
このようにして非核形成面に隣接する核形成面を作製し
た後、結晶形成処理を行なう。本願発明で用いる結晶形
成処理は、核形成面より、結晶成長して単結晶となる核
を唯一形成し、大粒径の単結晶を形成する処理である。
結晶形成処理の方法としては、例えば、CVD法、LP
E法、MOCVD法等の気相法があげられるが、もちろ
んこれらの方法以外の結晶形成処理方法を用いてもよい
。結晶成長させる材質は、例えば、Ge、 SL。
GaAs、 GaAlAsその他の化合物半導体を用い
ることができる。
以下、本発明の説明としてはSiを半導体材料とした例
で記すが本発明はSiのみに同等限定されるものではな
い。
前記結晶形成処理中において、所望の不純物を所望の時
間、所望の濃度でドーピングする事によって、厚さ及び
濃度が制御された所望の4電型の半導体層を所望の順序
で積層させる。不純物を半導体領域に導入するためのド
ーピングガスとしてはn型半導体についてはPH3やA
sHx等の周期律表第■族元素含有化合物、p型につい
てはB2H−等の周期律表第■族元素含有化合物を用い
ることができる。ここでp−n−pあるいはn−p−n
と積層すれば、縦型のM I S構造を作製することが
できる。
以上説明した方法により積層した半導体層のゲート部分
を形成する表面に1選択的にゲート絶縁体膜を形成する
。絶縁体膜としては、前記半導体層の表面に熱処理によ
る例えば、SiO□膜等の酸化膜や、CVD法等による
SiO2膜或は5isL膜等の絶縁体材料からなる膜を
用い、バターニングにはマスキング後に成膜する方法や
、成膜後にエツチングする方法等の任意の方法を用いる
ことができる。
積層した半導体層の上面のドレイン(ソース)電極及び
側面の絶縁体膜上にゲート電極を形成するための導電体
贋は、例えばポリシリコン、AlCr等をCVD法やス
パッタ法などで堆積させることで形成され、その後フォ
トリソグラフィー技術等を用いてパターニングすること
で配線が形成される。
以上説明した簡易なプロセスにより、素子分離された単
結晶に設けられた絶縁ゲート型トランジスタ等の半導体
装置が作製される。
本発明は例えば絶縁ゲート型トランジスタ等を用いた種
々の半導体装置に用いることができ、例えば、第1図に
示すように、一対の単結晶半導体層のうち一方をn−p
−nの順に積層し、他方をp−n−pの順に積1して、
側面のゲート電極を共通に配線すれば、相補型の絶縁ゲ
ート型トランジスタを形成することができる。
(実施例) 第1図(a)〜(g)は、本発明を用いた相補型MOS
インバータの製造工程を示す縦断面図である。
第2図は、相補型MOSインバータを形成する単結晶の
状態を示す平面図である。
まず、第1図(a)に示すように、SiO□からなる基
板1上に出力電極となるMoの下部電極2を通常のCV
D法を用いて0.5μm厚に堆積し、下部電極2上に通
常のCVD法にてSiO□を基板温度を400℃として
0.05μm厚に堆積して絶縁層3とした。さらに絶縁
層3上にSi、J4膜を通常のLPCVD法を用いて基
板温度を800℃として2μm厚に堆積し、その後SF
6ガスを用いた反応性イオンエツチング手法にて素子分
離用絶縁層4を形成した。
次に、第1図(b)に示すように、下部電極2が露出す
るように絶縁M3に穴5aを開けた。穴5aは、通常の
CHF3+C2H6ガスを用いた反応性イオンエツチン
グ手法にて、素子分離用絶縁層4の端面より0.5μm
程度離れた位置に、約0.5μm径に開けたものである
次に、第1図(c)に示すように、穴5aによって露出
した下部電極2を核形成面とし、絶縁層3及び素子分離
用絶縁層4を非核形成面としてSi単結晶を選択的に熱
CVD法で成長させた。ソースガスは5iHzC1a 
、キャリアガスは((2、エツチングガスはHCIを使
用した。なお、圧力は150Torrで基板温度は95
0℃とした。
なお、本実施例では、ドーピングガスを適宜変光て混入
させ、単結晶内の導電型を部分的に変化させて、第1の
半導体単結晶領域6をn型とし、第2の半導体単結晶領
域7をp型、第3の半導体単結晶領域8をn型とした。
ドーピングガスはn型に対してはPH,、p型に対して
はB、H,を使用した。
次に、第1図(d)に示すように、V’s電源配線とす
るW(タングステン)層9を、通常のスパッタ法にて作
成した後、温度1000℃のもとで熱酸化して単結晶表
面にSiO□膜10aを作成する。このようにしてpチ
ャネルMOSトランジスタ構成部Aが形成される。
次に、第1図(e)に示すように、素子分離用絶縁層4
を境にして対称な位置に穴5aの作製方法と同様の方法
を用いて穴5bを開け、前述した結晶成長処理を用いて
単結晶を積層した。その後、VOO電源配線となるW層
14とSiO□膜10bを作成した。このようにしてn
チャネルMOSトランジスタ構成部Bが形成される。な
お、単結晶内に形成される半導体領域の導電型は前記ト
ランジスタ構成部Aと前記トランジスタ構成部Bとは逆
となっており、第1の半導体単結晶領域11はp型、第
2の半導体単結晶領域12はn型、第3の半導体単結晶
領域13はp型であり、第1図(C)を用いて説明した
積層順序とは逆である。
なお、nチャネルトランジスタ構成部Bの単結晶成長過
程において、pチャネルトランジスタ構成部Aは、核形
成密度の低い材質であるW層9とSiO□層10層上0
aわれているので前記トランジスタ構成部A上には結晶
成長は行なわれない。
第2図は、形成されたpチャネルトランジスタ構成部A
およびnチャネルトランジスタ構成部Bの単結晶8,1
3の状態を示す平面図である。
なお、ゲート酸化膜としてのSiO□膜10a10bお
よび上部電極としてのW層9,14は図示していない、
また、図中の破線で区分される領域Xa、Xbは5in
s膜10a、10bの形成される領域を示し、領域Ya
、YbはW層9,14の形成される領域を示す。
次に、第1図(f)に示すように、S F sガスを用
いた反応性イオンエツチング法にて素子分離用絶縁層4
を取り除き、温度1000℃のもとで熱酸化を行い、ゲ
ート酸化膜としてのSiO□層10全10した。
最後に、第1図(g)に示すように、CVD法にてAρ
を堆積しフォトリソグラフィー法にてゲート電極15を
作成した。
以上説明したように、5iOz基板上に単結晶シリコン
によるPチャネル及びNチャネルの縦型MOSトランジ
スタを作成し共通なゲート配線を施したことにより、キ
ャリア移動度の速い単結晶からなる半導体装置を提供し
得、個々のMOSトランジスタが素子分離され、集積度
の高い相補型絶縁ゲート型インバータを作製することが
できた。
[発明の効果] 以上説明したように、本発明の絶縁ゲート型半導体装置
によれば、半導体材料の結晶性による電気的特性の低下
をきたさず、高集積化に適し、素子分離も良好な絶縁ゲ
ート型インバータやトランジスタ等の半導体装置を提供
することができる。
なお、結晶成長過程で不純物の材質、ドーピング時間等
を変えることにより、単結晶内の半導体領域の導電型を
任意に変更できるためプロセスが簡略化でき、ゲート長
しは膜厚で制御可能なためゲート部の微細制御も容易と
なる。
【図面の簡単な説明】
第1図(a)〜(g)は、本発明を用いた相補型MOS
インバータの製造工程を示す縦断面図である。 第2図は、形成されたpチャネルトランジスタ構成部A
およびnチャネルトランジスタ構成部Bの単結晶8.1
3の状態を示す平面図である。 第3図(a)は、従来のV型ゲートのMOS型トランジ
スタの構成を示す縦断面図である。 第3図(b)は、従来の縦型のトランジスタの構成を示
す縦断面図である。 第3図(C)は、従来の非晶質シリコンによる縦型のト
ランジスタの構成を示す縦断面図である。 1:基板、2:下部電極(出力電極)、3:絶縁層、4
:素子分離用絶縁層、5a、5b:穴、6.8,12:
n型半導体単結晶領域、7.11.13:p型半導体単
結晶領域、9:上部電極(V、、) 、  10 :ゲ
ート酸化膜、10a。 10 b : 5in2膜、14:上部電極(V、、)
、15:ゲート電極。

Claims (10)

    【特許請求の範囲】
  1. (1)非核形成面と、該非核形成面よりも核形成密度が
    大きく、且つ、結晶成長して単結晶となる核が唯一形成
    するに十分微小な面積の核形成面と、を有する基体と、 一導電型の半導体領域およびこの一導電型と反対導電型
    の半導体領域を有する半導体層と、該半導体層の側面に
    、絶縁体膜を介して形成されたゲート電極と、 を有することを特徴とする絶縁ゲート型半導体装置。
  2. (2)導電型の異なる2つの絶縁ゲート型半導体装置を
    同一のゲート電極で結合し相補型絶縁ゲート型半導体装
    置としたことを特徴とする請求項1記載の絶縁ゲート型
    半導体装置。
  3. (3)前記絶縁ゲート型半導体装置は、素子分離して形
    成されている請求項1記載の絶縁ゲート型半導体装置。
  4. (4)前記絶縁ゲート型半導体装置は相補型絶縁ゲート
    型インバータである請求項1記載の絶縁ゲート型半導体
    装置。
  5. (5)前記不純物は周期律表第III族の元素である請求
    項1記載の絶縁ゲート型半導体装置。
  6. (6)前記不純物は周期律表第V族の元素である請求項
    1記載の絶縁ゲート型半導体装置。
  7. (7)非核形成面と、この非核形成面よりも核形成密度
    が大きく、且つ、結晶成長して単結晶となる核が唯一形
    成するに十分微小な面積の核形成面と、を有する基体に
    半導体結晶成長処理を気相法により行い、 前記半導体結晶成長処理の段階で、所望の不純物を含有
    させ、一導電型の半導体領域およびこの一導電型と反対
    導電型の半導体領域を有する半導体層を形成し、 前記半導体層の側面に、絶縁体膜を介してゲート電極を
    形成することを特徴とする絶縁ゲート型半導体装置の形
    成方法。
  8. (8)前記基体に素子分離用絶縁層を形成する請求項7
    記載の絶縁ゲート型半導体装置の形成方法。
  9. (9)前記不純物は周期律表第III族の元素である請求
    項7記載の絶縁ゲート型半導体装置の形成方法。
  10. (10)前記不純物は周期律表第V族の元素である請求
    項7記載の絶縁ゲート型半導体装置の形成方法。
JP1141082A 1989-06-05 1989-06-05 絶縁ゲート型半導体装置及びその形成方法 Pending JPH036856A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1141082A JPH036856A (ja) 1989-06-05 1989-06-05 絶縁ゲート型半導体装置及びその形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1141082A JPH036856A (ja) 1989-06-05 1989-06-05 絶縁ゲート型半導体装置及びその形成方法

Publications (1)

Publication Number Publication Date
JPH036856A true JPH036856A (ja) 1991-01-14

Family

ID=15283791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1141082A Pending JPH036856A (ja) 1989-06-05 1989-06-05 絶縁ゲート型半導体装置及びその形成方法

Country Status (1)

Country Link
JP (1) JPH036856A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250819A (en) * 1991-04-15 1993-10-05 Canon Kabushiki Kaisha Light emitting device having stepped non-nucleation layer
JP2009088305A (ja) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250819A (en) * 1991-04-15 1993-10-05 Canon Kabushiki Kaisha Light emitting device having stepped non-nucleation layer
JP2009088305A (ja) * 2007-10-01 2009-04-23 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法

Similar Documents

Publication Publication Date Title
US5170231A (en) Silicon carbide field-effect transistor with improved breakdown voltage and low leakage current
US4609407A (en) Method of making three dimensional semiconductor devices in selectively laser regrown polysilicon or amorphous silicon layers
US6049106A (en) Large grain single crystal vertical thin film polysilicon MOSFETs
US4819037A (en) Semiconductor device
JPS5917285A (ja) 複数の縦型絶縁ゲ−ト電界効果トランジスタを有する集積回路とその製造法
US20040007737A1 (en) Ultra small size vertical MOSFET device and method for the manufacture thereof
JPS6159853A (ja) シリコン結晶体構造
US20070170471A1 (en) Three-dimensional integrated C-MOS circuit and method for producing same
KR840001605B1 (ko) 박막 트랜지스터
US3925803A (en) Oriented polycrystal jfet
JPH01722A (ja) 半導体基材の製造方法
US4868140A (en) Semiconductor device and method of manufacturing the same
JP2002100767A (ja) 半導体素子
JPH02191320A (ja) 結晶物品及びその形成方法
JPH036856A (ja) 絶縁ゲート型半導体装置及びその形成方法
JPS61104671A (ja) 電界効果トランジスタ
JPH01264254A (ja) 積層型半導体装置の製造方法
JPS60144949A (ja) 半導体装置の製造方法
JPS58121642A (ja) 半導体装置の製造方法
JPS58212178A (ja) 薄膜電界効果トランジスタおよびその製造方法
JPH0786601A (ja) 多結晶シリコンmosトランジスタ及びその製造方法
JPS6020582A (ja) Misトランジスタ及びその製造方法
JP2645663B2 (ja) 薄膜半導体装置とその製造方法
JPH0360076A (ja) 縦型電界効果トランジスタの製造方法
JPH0432264A (ja) 半導体装置及びその製造方法