JPH0357072B2 - - Google Patents

Info

Publication number
JPH0357072B2
JPH0357072B2 JP59176420A JP17642084A JPH0357072B2 JP H0357072 B2 JPH0357072 B2 JP H0357072B2 JP 59176420 A JP59176420 A JP 59176420A JP 17642084 A JP17642084 A JP 17642084A JP H0357072 B2 JPH0357072 B2 JP H0357072B2
Authority
JP
Japan
Prior art keywords
melt
single crystal
crucible
heating
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59176420A
Other languages
Japanese (ja)
Other versions
JPS6153187A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59176420A priority Critical patent/JPS6153187A/en
Priority to GB08520574A priority patent/GB2163367B/en
Priority to NL8502286A priority patent/NL193666C/en
Priority to FR8512629A priority patent/FR2569430B1/en
Priority to CA000489331A priority patent/CA1290654C/en
Priority to IT21977/85A priority patent/IT1200719B/en
Priority to AT0247085A priority patent/AT400848B/en
Priority to DE19853530231 priority patent/DE3530231A1/en
Priority to SE8503935A priority patent/SE467258B/en
Publication of JPS6153187A publication Critical patent/JPS6153187A/en
Priority to MYPI87000893A priority patent/MY101257A/en
Publication of JPH0357072B2 publication Critical patent/JPH0357072B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、結晶原料の融液を収容するるつぼ
と、前記融液を加熱するために前記るつぼの周囲
に配設された加熱手段と、前記融液から単結晶を
引上げる引上げ手段とをそれぞれ具備する単結晶
成長装置に関するものであつて、棒状の単結晶の
高速度で成長させる装置に用いて最適なものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a crucible containing a melt of a crystal raw material, a heating means disposed around the crucible for heating the melt, The present invention relates to a single crystal growth apparatus each equipped with a pulling means for pulling a single crystal from the melt, and is optimal for use in an apparatus for growing rod-shaped single crystals at high speed.

〔従来の技術〕[Conventional technology]

シリコン単結晶を引上げ成長させるには、従来
からチヨクラルスキー法(CZ法)が用いられて
いる。このCZ法によれば、第12図に示すよう
に、グラフアイト製のるつぼ1内に設けられてい
る石英製のるつぼ2内に収容した結晶原料の融液
3を上記るつぼ1を囲むように設けられている発
熱体4により加熱しつつ、種結晶5から棒状に成
長した単結晶6を、この種結晶5が保持されてい
るチヤツク7により融液3から引上げるようにな
つている。この引上げの際には、るつぼ1,2及
び単結晶6をそれぞれ軸8及びチヤツク7によつ
て例えば互いに逆方向に一定速度で回転させると
共に、融液3の液面に対して発熱体4が一定位置
となるように軸8によつてるつぼ1を上昇させて
いる。
The Czyochralski method (CZ method) has traditionally been used to pull and grow silicon single crystals. According to this CZ method, as shown in FIG. 12, a melt 3 of a crystal raw material contained in a quartz crucible 2 provided in a graphite crucible 1 is poured so as to surround the crucible 1. A single crystal 6 that has grown into a rod shape from a seed crystal 5 is pulled up from the melt 3 by a chuck 7 in which the seed crystal 5 is held while being heated by a heating element 4 provided. During this pulling, the crucibles 1 and 2 and the single crystal 6 are rotated by the shafts 8 and chucks 7 at a constant speed, for example, in opposite directions, and the heating element 4 is rotated against the surface of the melt 3. The crucible 1 is raised by a shaft 8 so as to be at a fixed position.

このCZ法により得られる単結晶6の最大成長
速度Vnaxは、この単結晶6と融液3との固液界
面が平坦でかつこの単結晶6の半径方向の温度勾
配が存在しないと仮定した場合、 Vnax=k/h・ρ(dT/dx) で与えられる。ここで、kは単結晶6の熱伝導
率、hはその融解熱、ρはその密度、(dT/dx)
は固液界面における固相(単結晶6)中の温度勾
配である。なお、xは単結晶6の軸方向の座標で
ある。上式において、k、h、ρは物質によつて
決める固有の値であるため、大きなVnaxを得る
ためには、(dT/dx)を大きくする必要がある。
ところが、上述のCZ法においては、引上げらて
た単結晶6は、融液3の表面、るつぼ2の内壁、
発熱体4等からの放射熱により熱せられるため、
上記の(dT/dx)はその分だけ小さくなり、従
つて実際に得られる成長速度も小さい。
The maximum growth rate V nax of the single crystal 6 obtained by this CZ method is based on the assumption that the solid-liquid interface between the single crystal 6 and the melt 3 is flat and that there is no temperature gradient in the radial direction of the single crystal 6. In this case, V nax = k/h・ρ(dT/dx). Here, k is the thermal conductivity of the single crystal 6, h is its heat of fusion, ρ is its density, (dT/dx)
is the temperature gradient in the solid phase (single crystal 6) at the solid-liquid interface. Note that x is the coordinate in the axial direction of the single crystal 6. In the above equation, k, h, and ρ are unique values determined by the substance, so in order to obtain a large V nax , it is necessary to increase (dT/dx).
However, in the CZ method described above, the pulled single crystal 6 is exposed to the surface of the melt 3, the inner wall of the crucible 2,
Because it is heated by radiant heat from heating element 4, etc.
The above (dT/dx) is correspondingly smaller, and therefore the actually obtained growth rate is also smaller.

この成長速度は、発熱体4の温度を全体的に下
げることによつて大きくすることが可能である
が、第9A図及び第9B図から理解されるよう
に、融液3の表面近傍の温度は中心部に比べてか
なり低くなつているため、このようにすると、融
液3のうちこの融液3の液面とるつぼ2とに隣接
する部分3aにおいて固化が起き、その結果、単
結晶6の引上げを継続することが困難になつてし
まうという欠点がある。その結果、第12図に示
す単結晶成長装置で、なんら支障なく単結晶6の
引上げを継続することのできる成長速度は、最大
でも1mm/分程度であつた。しかも、単結晶6が
大口径になるに従つて、上述の固化が起こりやす
くなるため、さらに成長速度を低下させざるを得
なかつた。なお第9A図(第10A図及び第11
A図においても同様)において、T1<T2<T3
T2T5、T3T4である。
This growth rate can be increased by lowering the overall temperature of the heating element 4, but as understood from FIGS. 9A and 9B, the temperature near the surface of the melt 3 is considerably lower than the center, so if this is done, solidification will occur in the portion 3a of the melt 3 adjacent to the liquid surface of the melt 3 and the crucible 2, and as a result, the single crystal 6 The disadvantage is that it becomes difficult to continue raising the amount of water. As a result, the growth rate at which the single crystal 6 could be continuously pulled without any problems using the single crystal growth apparatus shown in FIG. 12 was about 1 mm/min at the maximum. Moreover, as the single crystal 6 becomes larger in diameter, the above-mentioned solidification becomes more likely to occur, so that the growth rate has to be further reduced. Note that Figure 9A (Figure 10A and Figure 11)
The same applies to Figure A), T 1 < T 2 < T 3 ,
T 2 T 5 and T 3 T 4 .

なお、本発明に関連する先行文献としては、特
公昭51−47153号広報、特公昭58−1080号公報等
が挙げられ、特に後者には、融液の上方に輻射ス
クリーンを設けることにより2mm/分の成長速度
で単結晶を成長させた実施例が記載されている。
Prior documents related to the present invention include Japanese Patent Publication No. 51-47153, Japanese Patent Publication No. 58-1080, etc. In particular, in the latter, by providing a radiation screen above the melt, An example is described in which a single crystal was grown at a growth rate of 10 minutes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述の問題にかんがみ、従来の単結
晶成長装置が有する上述のような決点を是正した
単結晶成長装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a single crystal growth apparatus that corrects the above-described disadvantages of conventional single crystal growth apparatuses.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、結晶原料の融液を収容するるつぼ
と、断面積が前記融液の液面近傍に対向する部分
よりもそれより下方に位置する部分で大きくなつ
ている発熱体から成り前記融液の液面近傍に対向
する部分ではそれより下方に位置する部分よりも
高い温度で加熱する加熱手段と、前記融液から単
結晶を引き上げる引上げ手段と、前記引上げ手段
により引上げられる前記単結晶の側面と前記加熱
手段のこの側面に対向する部分との間に介在させ
た熱遮蔽手段とをそれぞれ具備し、前記加熱手段
による加熱作用と前記熱遮蔽手段による熱遮蔽作
用との共働作用によつて、前記融液の液面近傍が
前記るつぼに接する部分から前記るつぼの中心に
向うに従つて次第に低い温度となる温度分布を有
するように構成されていることを特徴とする単結
晶成長装置に係るものである。
The present invention comprises a crucible containing a melt of a crystal raw material, and a heating element whose cross-sectional area is larger in a portion located below than in a portion facing near the liquid surface of the melt. a heating means for heating a portion facing near the liquid surface at a higher temperature than a portion located below it; a pulling means for pulling up the single crystal from the melt; and a side surface of the single crystal pulled up by the pulling means. and a heat shielding means interposed between the heating means and a portion facing this side surface of the heating means, and the heating action of the heating means and the heat shielding action of the heat shielding means work together, , a single crystal growth apparatus characterized in that the temperature distribution near the liquid surface of the melt is such that the temperature gradually decreases from the part in contact with the crucible toward the center of the crucible. It is something.

〔実施例〕〔Example〕

以下、本発明に係る単結晶成長装置の一実施例
につき、図面を参照しながら説明する。なお、以
下の図面においては、第12図と同一部分には同
一の符号を付し、必要に応じてその説明を省略す
る。
Hereinafter, an embodiment of a single crystal growth apparatus according to the present invention will be described with reference to the drawings. In the following drawings, the same parts as in FIG. 12 are denoted by the same reference numerals, and the explanation thereof will be omitted as necessary.

第1図に示すように、本実施例による単結晶成
長装置においては、第12図に示す従来の単結晶
成長装置と同様に、グラフアイト製のるつぼ1内
に設けられている石英製のるつぼ2中にシリコン
の融液3が収容され、さらに、上記るつぼ1を囲
むようにグラフアイト製の発熱体4及び保温材9
がそれぞれ設けられている。そして、これら全体
を囲むように、水冷ジヤケツト10a〜10cが
設けられている。なお、この水冷ジヤケツト10
bには、引上げられた単結晶6を観察するための
窓12が設けられ、また、水冷ジヤケツト10a
の底面には、上方から水冷ジヤケツト10a〜1
0cの内側に導入される不活性ガス(雰囲気ガ
ス)を排出するための排出管13が設けられてい
る。また、るつぼ1の下部には、このるつぼ1を
回転及び昇降させるための軸8が水冷ジヤケツト
10aの底面に設けられた開口10dを通して設
けられている。さらに、発熱体4の下端はリング
板14に固定され、このリング板14の下部に
は、発熱体4を昇降させるための昇降軸15が水
冷ジヤケツト10aの底面に設けられた開口10
e,10fを通して設けられている。一方、融液
3の上方には、その底面に単結晶6よりも少し径
の大きい開口を有する例えばモリブデン製の円筒
から成る熱遮蔽体16が設けられている。さらに
その上方には、引上げ軸17の下端に取付けられ
ているチヤツク7に保持された種結晶5が設けら
れ、この種結晶5から棒状の単結晶6が成長する
ようになつている。
As shown in FIG. 1, in the single crystal growth apparatus according to this embodiment, similarly to the conventional single crystal growth apparatus shown in FIG. A silicon melt 3 is housed in the crucible 2, and a graphite heating element 4 and a heat insulating material 9 are arranged to surround the crucible 1.
are provided for each. Water cooling jackets 10a to 10c are provided to surround the entire structure. In addition, this water cooling jacket 10
b is provided with a window 12 for observing the pulled single crystal 6, and is provided with a water cooling jacket 10a.
Water cooling jackets 10a to 1 are installed from above on the bottom of the
A discharge pipe 13 is provided for discharging inert gas (atmosphere gas) introduced into the inside of 0c. Further, a shaft 8 for rotating and raising and lowering the crucible 1 is provided at the lower part of the crucible 1 through an opening 10d provided in the bottom surface of the water cooling jacket 10a. Further, the lower end of the heating element 4 is fixed to a ring plate 14, and at the lower part of the ring plate 14, a lifting shaft 15 for raising and lowering the heating element 4 is connected to an opening 10 provided in the bottom surface of the water cooling jacket 10a.
e and 10f. On the other hand, above the melt 3, a heat shield 16 is provided, which is made of a cylinder made of molybdenum, for example, and has an opening slightly larger in diameter than the single crystal 6 on its bottom surface. Further above, a seed crystal 5 held by a chuck 7 attached to the lower end of the pulling shaft 17 is provided, and a rod-shaped single crystal 6 is grown from this seed crystal 5.

上記発熱体4は、第2図に示すように、その上
部にテーパ部4aが設けられている円筒状のグラ
フアイトにその中心軸方向に延びる上部溝4b及
び下部溝4cをその周方向に等間隔にかつ交互に
設けたものである。さらに、上記下部溝4cの一
端には、この下部溝4cの中心軸に対してほぼ
45゜をなす方向に延びる溝4d,4eが形成され
ている。
As shown in FIG. 2, the heating element 4 is made of cylindrical graphite having a tapered part 4a at its upper part, and an upper groove 4b and a lower groove 4c extending in the direction of its central axis are formed equally in the circumferential direction. They are arranged at regular intervals and alternately. Further, at one end of the lower groove 4c, there is approximately a center axis of the lower groove 4c.
Grooves 4d and 4e are formed extending in a direction forming an angle of 45 degrees.

このように構成された単結晶成長装置を用いて
種結晶5にシリコンの融液3から単結晶6を成長
させるには、るつぼ1,2及び単結晶6をそれぞ
れ軸8及び引上げ軸17により例えば互いに逆方
向に回転させつつ、図示を省略した駆動機構によ
り引上げ軸17を徐々に上昇させることによつて
単結晶6の引上げを行い、かつ融液3の液面に対
して発熱体4が一定位置となるようにるつぼ1,
2を上昇させる。
In order to grow the single crystal 6 from the silicon melt 3 on the seed crystal 5 using the single crystal growth apparatus configured as described above, for example, the crucibles 1 and 2 and the single crystal 6 are moved by the shafts 8 and the pulling shaft 17, respectively. The single crystal 6 is pulled up by gradually raising the pulling shaft 17 using a drive mechanism (not shown) while rotating in opposite directions, and the heating element 4 is kept constant with respect to the liquid level of the melt 3. Place the crucible in position 1,
Raise 2.

上述の実施例によれば、次のように利点があ
る。すなわち、発熱体4の上部にはテーパ部4a
が設けられ、さらに下部溝4cの一端に溝4d,
4eが設けられているので、上記テーパ部4aに
おける発熱体4の断面積は、その下部に比べて小
さく、特に溝4d,4eの近傍においては断面積
が極めて小さくなつている。従つて、電流通電時
においては、この発熱体4のテーパ部4aが下部
に比べて高温に熱せられるので、このテーパ部4
aとほぼ同一の高さに位置する融液3の液面とる
つぼ2の内壁とにそれぞれ隣接する部分3aの温
度と融液3中の最高温度との差は、第10A図及
び第10B図に示すように、従来に比べて小さい
(なお、発熱体4全体の電気抵抗はテーパ部4a
等を設けた分だけ従来に比べて高く、従つて、同
一通電量では従来に比べて温度が高くなるので、
本実施例においては、従来よりも通電量を少し落
としており、このため、融液3中の温度は従来よ
りも多少低くなつていると考えられる)。このた
め、既述の温度勾配(dT/dx)を大きくするた
めに発熱体4の温度を下げた場合においても、上
記温度差が従来に比べて小さい分だけ、融液3の
うちのこの融液3の液面とるつぼ2の内壁とに隣
接する部分3aの固化が起きにくくなるので、そ
の分だけ発熱体4の温度を下げることができる。
従つて、単結晶6の成長速度を例えば2.0mm/分
と従来に比べて極めて大きくすることができ、し
かも、単結晶6の成長を連続して行うことができ
る。その結果、生産性が従来に比べて高く、従つ
て、単結晶6の成長コストを低減することができ
る。
The above-described embodiment has the following advantages. That is, the upper part of the heating element 4 has a tapered part 4a.
are provided at one end of the lower groove 4c, and grooves 4d,
4e, the cross-sectional area of the heating element 4 at the tapered portion 4a is smaller than that at the lower part, and especially near the grooves 4d and 4e, the cross-sectional area is extremely small. Therefore, when current is applied, the tapered part 4a of the heating element 4 is heated to a higher temperature than the lower part.
The difference between the maximum temperature in the melt 3 and the temperature of the portion 3a adjacent to the liquid level of the melt 3 located at almost the same height as the inner wall of the crucible 2, respectively, is shown in FIGS. 10A and 10B. As shown in FIG.
The temperature is higher than the conventional one due to the provision of the same amount of current.
In this example, the amount of current applied is a little lower than in the past, and it is therefore thought that the temperature in the melt 3 is somewhat lower than in the past). Therefore, even when the temperature of the heating element 4 is lowered in order to increase the temperature gradient (dT/dx) mentioned above, this molten part of the melt 3 is reduced by the smaller temperature difference than before. Since the portion 3a adjacent to the surface of the liquid 3 and the inner wall of the crucible 2 is less likely to solidify, the temperature of the heating element 4 can be lowered by that much.
Therefore, the growth rate of the single crystal 6 can be made extremely high, for example, 2.0 mm/min, compared to the conventional method, and moreover, the single crystal 6 can be grown continuously. As a result, productivity is higher than in the past, and therefore the cost of growing the single crystal 6 can be reduced.

また、従来のように1mm/分程度の成長速度で
単結晶6を成長させる場合に得られる単結晶6中
の積層欠陥密度は、第3図に示すように極めて大
きいのに対して、上述の実施例のように高速、例
えば2mm/分程度の成長速度で単結晶6を成長さ
せた場合に得られる単結晶6中の積層欠陥密度
は、同図に示すように極めて小さく、このため、
単結晶6の品質は極めて良好である。
Furthermore, the stacking fault density in the single crystal 6 obtained when growing the single crystal 6 at a growth rate of about 1 mm/min as in the conventional method is extremely large as shown in FIG. As shown in the figure, the stacking fault density in the single crystal 6 obtained when the single crystal 6 is grown at a high speed, for example, at a growth rate of about 2 mm/min as in the example, is extremely small.
The quality of the single crystal 6 is extremely good.

また、融液3の上方には、既述のように、その
底面に単結晶6よりも少し径の大きい開口を有す
る円筒から成る熱遮蔽体16を設けているので、
この融液3、発熱体4等からの放射熱により単結
晶6が加熱されるのを防止することができる。こ
のため、この分だけ温度勾配(dT/dx)を大き
くすることができ、従つて、これによつても単結
晶6の成長速度を大きくすることができる。
Further, as mentioned above, above the melt 3, there is provided a heat shield 16 made of a cylinder having an opening slightly larger in diameter than the single crystal 6 at its bottom.
It is possible to prevent the single crystal 6 from being heated by the radiant heat from the melt 3, the heating element 4, etc. Therefore, the temperature gradient (dT/dx) can be increased by this amount, and therefore, the growth rate of the single crystal 6 can also be increased.

さらに、発熱体4の上部の断面積は従来に比べ
て小さいので、この発熱体4全体の電気抵抗もそ
の分だけ高く、従つて、従来に比べて低い電力で
融液3を従来と同程度の温度に加熱することがで
きる。このため、発熱体4による消費電力を従来
に比べて低減することができる。
Furthermore, since the cross-sectional area of the upper part of the heating element 4 is smaller than that of the conventional one, the electric resistance of the entire heating element 4 is correspondingly higher. can be heated to a temperature of Therefore, the power consumption by the heating element 4 can be reduced compared to the conventional case.

本発明は上述の実施例に限定されるものではな
く、本発明の技術的思想に基づく種々の変形が可
能である。例えば、上述の実施例においては、発
熱体4の上部にテーパ部4aを設けると共に、下
部溝4cの一端に溝4d,4eを設けたが、テー
パ部4aのみを設けてもよい。さらに、例えば第
4図に示すように発熱体4を上部が薄肉となるよ
うにテーパ状としたり、第5図に示すように発熱
体4の上部に凹部4fを設けたり、第6図に示す
ように発熱体4の上部に例えばそれぞれ深さの異
なる多数の溝4gを設けたりしてもよい。さらに
また、第7図に示すように発熱体4の上部の幅t1
を下部の幅t2に比べて小さくしてもよい。
The present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention. For example, in the above-described embodiment, the tapered portion 4a is provided at the upper part of the heating element 4, and the grooves 4d and 4e are provided at one end of the lower groove 4c, but only the tapered portion 4a may be provided. Furthermore, for example, as shown in FIG. 4, the heating element 4 may be tapered so that the upper part thereof is thin, or a recess 4f may be provided in the upper part of the heating element 4 as shown in FIG. 5, or as shown in FIG. 6. For example, a large number of grooves 4g having different depths may be provided in the upper part of the heating element 4. Furthermore, as shown in FIG. 7, the width t 1 of the upper part of the heating element 4
may be smaller than the bottom width t2 .

さらに、第8図に示すように、上述の実施例ま
たは上述の種々の変形例に加えて、水冷ジヤケツ
ト10aの周囲に電磁石21を設けて、融液3に
磁場を印加しつつ単結晶6の引上げ成長を行うよ
うにしてもよい(MCZ法)。このようにすれば、
電気伝導性を有する融液3は上記磁場により電磁
気的な力を受け、その結果、熱対流が抑制され
る。このように熱対流が抑制された状態では、発
熱体4における温度分布が融液3の温度分布に忠
実に反映されるので、第11A図及び第11B図
に示すように、融液3の中心部では温度が低く、
周辺では温度が高くなると共に、融液3の液面に
隣接する部分とその中心部との温度差が上述の実
施例よりもさらに小さくなる。その結果、磁場を
印加しない場合に比べて単結晶6の成長速度をさ
らに大きくすることができる。なお磁場の印加方
向は垂直方向であつてもよい。
Furthermore, as shown in FIG. 8, in addition to the above-mentioned embodiment or the above-mentioned various modifications, an electromagnet 21 is provided around the water cooling jacket 10a to apply a magnetic field to the melt 3 while forming a single crystal 6. Pull growth may also be performed (MCZ method). If you do this,
The electrically conductive melt 3 receives electromagnetic force from the magnetic field, and as a result, thermal convection is suppressed. In this state where thermal convection is suppressed, the temperature distribution in the heating element 4 is faithfully reflected in the temperature distribution of the melt 3, so that the center of the melt 3 is The temperature is low in the
The temperature in the periphery increases, and the temperature difference between the portion of the melt 3 adjacent to the liquid surface and the center portion becomes even smaller than in the above embodiment. As a result, the growth rate of the single crystal 6 can be further increased compared to when no magnetic field is applied. Note that the direction of application of the magnetic field may be perpendicular.

具体例 1 12インチ径のるつぼ2に原料として20Kgの多結
晶シリコンを装填し、次いで、これを融解させた
後、単結晶6を引上げ成長させた。従来は、成長
速度1.2mm/分で融液3のうちのるつぼ2と液面
とに隣接する部分3aで固化が起きたのに対し
て、融液3の上方に熱遮蔽体16を設けた場合に
は、1.5mm/分の成長速度で単結晶6の成長を行
うことができた。さらに、上述の実施例のように
熱遮蔽体16を設けると共に、発熱体4にテーパ
4a及び溝4d,4eを設けた場合には、2.0
mm/分の成長速度で直径4インチの単結晶6を成
長させることができた。
Specific Example 1 A crucible 2 with a diameter of 12 inches was loaded with 20 kg of polycrystalline silicon as a raw material, and after melting it, a single crystal 6 was pulled and grown. Conventionally, solidification occurred in a portion 3a of the melt 3 adjacent to the crucible 2 and the liquid surface at a growth rate of 1.2 mm/min, whereas a heat shield 16 was provided above the melt 3. In this case, single crystal 6 could be grown at a growth rate of 1.5 mm/min. Furthermore, when the heat shield 16 is provided as in the above-mentioned embodiment, and the heating element 4 is provided with the taper 4a and the grooves 4d, 4e, 2.0
A single crystal 6 with a diameter of 4 inches could be grown at a growth rate of mm/min.

具体例 2 具体例1と同様に、12インチ径のるつぼ2に20
Kgの多結晶シリコン原料を装填して融解させ、次
いで、単結晶6の引上げを行つた。上述の実施例
のように熱遮蔽体16とテーパ部4a及び溝4
d,4eが設けられた発熱体4とを設置した場
合、成長速度2.0mm/分で単結晶6を成長させる
ことができた。さらに、第8図に示すように磁場
を印加して単結晶6の成長を行つた場合には、成
長速度2.3mm/分を達成することができた。
Specific example 2 Similar to specific example 1, 20
Kg of polycrystalline silicon raw material was loaded and melted, and then a single crystal 6 was pulled. As in the above embodiment, the heat shield 16, the tapered portion 4a and the groove 4
When the heating element 4 provided with the heating elements d and 4e was installed, the single crystal 6 could be grown at a growth rate of 2.0 mm/min. Furthermore, when the single crystal 6 was grown by applying a magnetic field as shown in FIG. 8, a growth rate of 2.3 mm/min could be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明に係る単結晶成長装置は、断面積が融液
の液面近傍に対向する部分よりもそれより下方に
位置する部分で大きくなつている発熱体から成り
前記融液の液面近傍に対向する部分ではそれより
下方に位置する部分よりも高い温度で加熱する加
熱手段と、引上げ手段により引上げられる単結晶
の側面と前記加熱手段のこの側面に対向する部分
との間に介在させた熱遮蔽手段とをそれぞれ具備
し、前記加熱手段により加熱作用と前記熱遮蔽手
段による熱遮蔽作用との共働作用によつて、前記
融液の液面近傍がるつぼに接する部分からるつぼ
の中心に向うに従つて次第に低い温度となる温度
分布を有するように構成されている。したがつ
て、前記融液の液面近傍をるつぼの中心部分で充
分に低温にすることができると共に、るつぼに接
する融液の液面近傍よりも単結晶部分を充分低温
にすることができるから、加熱手段の発熱量を比
較的低くした場合に、るつぼに接する融液の液面
近傍で固化が起きるとを効果的に防止することが
でき、このために、従来装置に比べて、大きな成
長速度で、しかも、結晶欠陥が少なくて高品質の
単結晶を成長させることができる。
The single crystal growth apparatus according to the present invention includes a heating element whose cross-sectional area is larger in a portion located below than in a portion facing near the liquid surface of the melt; a heating means that heats a portion thereof at a higher temperature than a portion located below it; and a heat shield interposed between a side surface of the single crystal to be pulled up by the pulling means and a portion of the heating means opposite to this side surface. means, and by the cooperative action of the heating action by the heating means and the heat shielding action by the heat shielding means, the vicinity of the liquid surface of the melt is directed from the part in contact with the crucible toward the center of the crucible. Therefore, it is configured to have a temperature distribution that gradually becomes lower. Therefore, the temperature near the liquid surface of the melt can be made sufficiently low at the center of the crucible, and the single crystal portion can be made sufficiently colder than the vicinity of the liquid surface of the melt in contact with the crucible. When the heating value of the heating means is made relatively low, it is possible to effectively prevent solidification near the surface of the melt in contact with the crucible. It is possible to grow high-quality single crystals at high speed and with fewer crystal defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る単結晶成長装置の一実施
例を示す断面図、第2図は第1図に示す単結晶成
長装置における発熱体の拡大斜視図、第3図は成
長された単結晶中の積層欠陥密度と酸素濃度と引
上げ速度との関係を示すグラフ、第4図〜第6図
はそれぞれ本発明の変形例を示す断面図、第7図
は本発明の変形例を示す正面図、第8図は本発明
の変形例を示す断面図、第9A図及び第9B図は
それぞれ従来の融液中の温度分布を等温線で示す
模式図及び融液の中心軸方向の温度分布を示すグ
ラフ、第10A図及び第10B図はそれぞれ本発
明の実施例についての第9A図及び第9B図と同
様な模式図及びグラフ、第11A図及び第11B
図はそれぞれ融液に磁場を印加した本発明の変形
例についての第9A図及び第9B図と同様な模式
図及びグラフ、第12図はCZ法による従来の単
結晶成長装置の要部を示す断面図である。 なお図面に用いた符号において、1,2……る
つぼ、3……融液、4……発熱体(加熱手段)、
4a……テーパ部、5……種結晶、6……単結
晶、16……熱遮蔽体(熱遮蔽手段)、17……
引上げ軸(引上げ手段)である。
FIG. 1 is a sectional view showing an embodiment of the single crystal growth apparatus according to the present invention, FIG. 2 is an enlarged perspective view of a heating element in the single crystal growth apparatus shown in FIG. A graph showing the relationship between stacking fault density, oxygen concentration, and pulling rate in a crystal, Figures 4 to 6 are cross-sectional views showing modifications of the present invention, and Figure 7 is a front view showing a modification of the present invention. 8 is a sectional view showing a modification of the present invention, and FIGS. 9A and 9B are schematic diagrams showing the temperature distribution in the conventional melt using isothermal lines, and the temperature distribution in the central axis direction of the melt, respectively. 10A and 10B are schematic diagrams and graphs similar to FIGS. 9A and 9B, and FIGS. 11A and 11B, respectively, for the embodiments of the present invention.
The figures are schematic diagrams and graphs similar to Figures 9A and 9B for modified examples of the present invention in which a magnetic field is applied to the melt, respectively, and Figure 12 shows the main parts of a conventional single crystal growth apparatus using the CZ method. FIG. In addition, in the symbols used in the drawings, 1, 2... crucible, 3... melt, 4... heating element (heating means),
4a...Tapered portion, 5...Seed crystal, 6...Single crystal, 16...Heat shield (heat shielding means), 17...
It is a pulling shaft (pulling means).

Claims (1)

【特許請求の範囲】 1 結晶原料の融液を収容するるつぼと、 断面積が前記融液の液面近傍に対向する部分よ
りもそれより下方に位置する部分で大きくなつて
いる発熱体から成り前記融液の液面近傍に対向す
る部分ではそれより下方に位置する部分よりも高
い温度で加熱する加熱手段と、 前記融液から単結晶を引き上げる引上げ手段
と、 前記引上げ手段により引上げられる前記単結晶
の側面と前記加熱手段のこの側面に対向する部分
との間に介在させた熱遮蔽手段とをそれぞれ具備
し、 前記加熱手段による加熱作用と前記熱遮蔽手段
による熱遮蔽作用との共働作用によつて、前記融
液の液面近傍が前記るつぼに接する部分から前記
るつぼの中心に向うに従つて次第に低い温度とな
る温度分布を有するように構成されていることを
特徴とする単結晶成長装置。 2 融液に磁場を印加する磁場印加手段を更に具
備することを特徴とする特許請求の範囲第1項に
記載の単結晶成長装置。
[Scope of Claims] 1. A crucible containing a melt of a crystal raw material, and a heating element whose cross-sectional area is larger in a portion located below than in a portion facing near the liquid surface of the melt. heating means for heating a portion facing near the liquid surface of the melt at a higher temperature than a portion located below; a pulling means for pulling up the single crystal from the melt; A heat shielding means is provided between a side surface of the crystal and a portion of the heating means facing the side surface, and the heating action by the heating means and the heat shielding action by the heat shielding means cooperate. Single crystal growth, characterized in that the temperature near the liquid surface of the melt is configured to have a temperature distribution that gradually decreases from the part in contact with the crucible toward the center of the crucible. Device. 2. The single crystal growth apparatus according to claim 1, further comprising a magnetic field applying means for applying a magnetic field to the melt.
JP59176420A 1984-08-24 1984-08-24 Device for growing single crystal Granted JPS6153187A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP59176420A JPS6153187A (en) 1984-08-24 1984-08-24 Device for growing single crystal
GB08520574A GB2163367B (en) 1984-08-24 1985-08-16 Crystal puffing
NL8502286A NL193666C (en) 1984-08-24 1985-08-19 Device for manufacturing a monocrystalline crystal body.
FR8512629A FR2569430B1 (en) 1984-08-24 1985-08-22 APPARATUS FOR EXTRACTING SINGLE CRYSTALS FROM A BATH OF MOLTEN SEMICONDUCTOR MATERIAL CONTAINED IN A CRUCIBLE
IT21977/85A IT1200719B (en) 1984-08-24 1985-08-23 MONOCRYSTAL GROWTH APPARATUS
CA000489331A CA1290654C (en) 1984-08-24 1985-08-23 Monocrystal growing apparatus
AT0247085A AT400848B (en) 1984-08-24 1985-08-23 DEVICE FOR BREEDING A SINGLE CRYSTAL
DE19853530231 DE3530231A1 (en) 1984-08-24 1985-08-23 DEVICE FOR DRAWING SINGLE CRYSTALS
SE8503935A SE467258B (en) 1984-08-24 1985-08-23 DEVICE FOR CULTIVATION OF A CRYSTAL WITH ORGANIZATION FOR UNIFORM HEATING
MYPI87000893A MY101257A (en) 1984-08-24 1987-06-25 Monocrystal growing apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176420A JPS6153187A (en) 1984-08-24 1984-08-24 Device for growing single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP16391692A Division JPH0660080B2 (en) 1992-05-29 1992-05-29 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JPS6153187A JPS6153187A (en) 1986-03-17
JPH0357072B2 true JPH0357072B2 (en) 1991-08-30

Family

ID=16013382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176420A Granted JPS6153187A (en) 1984-08-24 1984-08-24 Device for growing single crystal

Country Status (10)

Country Link
JP (1) JPS6153187A (en)
AT (1) AT400848B (en)
CA (1) CA1290654C (en)
DE (1) DE3530231A1 (en)
FR (1) FR2569430B1 (en)
GB (1) GB2163367B (en)
IT (1) IT1200719B (en)
MY (1) MY101257A (en)
NL (1) NL193666C (en)
SE (1) SE467258B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105998A (en) * 1985-10-31 1987-05-16 Sony Corp Production of silicon substrate
JPS62223090A (en) * 1986-03-20 1987-10-01 Shin Etsu Handotai Co Ltd Device for pulling up semiconductor single crystal
JPS6389488A (en) * 1986-09-30 1988-04-20 Toshiba Corp Production of single crystal
DE3733487C2 (en) * 1987-10-03 1997-08-14 Leybold Ag Device for pulling single crystals
US5139750A (en) * 1989-10-16 1992-08-18 Nkk Corporation Silicon single crystal manufacturing apparatus
JPH03183689A (en) * 1989-12-11 1991-08-09 Mitsubishi Materials Corp Device and method for pulling up single crystal
JP3016897B2 (en) * 1991-03-20 2000-03-06 信越半導体株式会社 Method and apparatus for producing silicon single crystal
EP0530397A1 (en) * 1991-09-04 1993-03-10 Kawasaki Steel Corporation Czochralski crystal pulling process and an apparatus for carrying out the same
US5363795A (en) * 1991-09-04 1994-11-15 Kawasaki Steel Corporation Czochralski crystal pulling process and an apparatus for carrying out the same
JP2862158B2 (en) * 1993-08-27 1999-02-24 信越半導体株式会社 Silicon single crystal manufacturing equipment
JPH1179889A (en) * 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
US6285011B1 (en) 1999-10-12 2001-09-04 Memc Electronic Materials, Inc. Electrical resistance heater for crystal growing apparatus
KR101105526B1 (en) * 2008-12-30 2012-01-13 주식회사 엘지실트론 Heater used for manufacturing single crystal ingot and single crystal ingot manufacturing apparatus having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921063A (en) * 1972-06-15 1974-02-25
JPS5341115A (en) * 1976-09-28 1978-04-14 Nec Corp High picture element density conversion device
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS59137399A (en) * 1983-01-28 1984-08-07 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus of growing low-dislocation density single crystal

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979386A (en) * 1956-08-02 1961-04-11 Shockley William Crystal growing apparatus
FR1316707A (en) * 1961-12-22 1963-02-01 Radiotechnique Improvements to devices for obtaining single crystals by pulling
DE1289950B (en) * 1963-07-24 1969-02-27 Siemens Ag Device for pulling semiconductor crystals
US3359077A (en) * 1964-05-25 1967-12-19 Globe Union Inc Method of growing a crystal
DE1769860A1 (en) * 1968-07-26 1971-11-11 Siemens Ag Device for pulling dislocation-free semiconductor single crystal rods
DE2821481C2 (en) * 1978-05-17 1985-12-05 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Device for pulling high-purity semiconductor rods from the melt
US4277441A (en) * 1979-01-15 1981-07-07 Mobil Tyco Solar Energy Corporation Apparatus for monitoring crystal growth
DE3005492C2 (en) * 1980-02-14 1983-10-27 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Process for the production of the purest single crystals by crucible pulling according to Czochralski
JPS5711897A (en) * 1980-06-27 1982-01-21 Sumitomo Electric Ind Ltd Method of pulling up single crystal and device therefor
JPS5645890A (en) * 1980-06-30 1981-04-25 Sony Corp Crystal growing apparatus
JPH0244799B2 (en) * 1981-10-26 1990-10-05 Sony Corp KETSUSHOSEICHOHOHO
JPS5964591A (en) * 1982-09-30 1984-04-12 Sumitomo Electric Ind Ltd Apparatus for pulling up single crystal
JPH0669917B2 (en) * 1982-10-08 1994-09-07 住友電気工業株式会社 Control method for multiple stage heater
JPS60103097A (en) * 1983-11-08 1985-06-07 Sumitomo Electric Ind Ltd Device for pulling up single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921063A (en) * 1972-06-15 1974-02-25
JPS5341115A (en) * 1976-09-28 1978-04-14 Nec Corp High picture element density conversion device
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS59137399A (en) * 1983-01-28 1984-08-07 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus of growing low-dislocation density single crystal

Also Published As

Publication number Publication date
GB2163367B (en) 1988-04-07
GB8520574D0 (en) 1985-09-25
DE3530231A1 (en) 1986-02-27
SE8503935D0 (en) 1985-08-23
AT400848B (en) 1996-03-25
FR2569430B1 (en) 1993-12-03
JPS6153187A (en) 1986-03-17
SE8503935L (en) 1986-02-25
NL8502286A (en) 1986-03-17
GB2163367A (en) 1986-02-26
FR2569430A1 (en) 1986-02-28
ATA247085A (en) 1995-08-15
SE467258B (en) 1992-06-22
NL193666B (en) 2000-02-01
CA1290654C (en) 1991-10-15
NL193666C (en) 2000-06-06
MY101257A (en) 1991-08-17
DE3530231C2 (en) 1991-01-17
IT1200719B (en) 1989-01-27
IT8521977A0 (en) 1985-08-23

Similar Documents

Publication Publication Date Title
JP2002517366A (en) Electric resistance heater for crystal growth equipment
JPH0357072B2 (en)
JP6302192B2 (en) Single crystal growth apparatus and method
EP0798404B1 (en) Apparatus for manufacturing single crystal of silicon
JPS6168389A (en) Apparatus for growing single crystal
JPH0315550Y2 (en)
JPH0660080B2 (en) Single crystal growth equipment
JPH0524969A (en) Crystal growing device
JPH0891980A (en) Apparatus for growing single crystal
GB2084046A (en) Method and apparatus for crystal growth
KR930007852B1 (en) Monocrystal growing apparatus
JPH0769778A (en) Equipment for single crystal growth
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH03193694A (en) Crystal growing device
JPH0259494A (en) Production of silicon single crystal and apparatus
JPH03265593A (en) Crystal growing device
JPH05294784A (en) Single crystal growth device
JPH09183690A (en) Thermal shielding body and its attaching and detaching jig
JPH03193689A (en) Production of compound semiconductor crystal
JP2000072587A (en) Device for pulling single silicon crystal and pulling of the crystal
JPH0692776A (en) Silicon single crystal pulling up device
JPH0329752B2 (en)
JPH09208360A (en) Growth of single crystal
JPH09255482A (en) Supporting member for crucible for pulling single crystal
JPS61281100A (en) Production of silicon single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term