JPH0356292B2 - - Google Patents
Info
- Publication number
- JPH0356292B2 JPH0356292B2 JP60021774A JP2177485A JPH0356292B2 JP H0356292 B2 JPH0356292 B2 JP H0356292B2 JP 60021774 A JP60021774 A JP 60021774A JP 2177485 A JP2177485 A JP 2177485A JP H0356292 B2 JPH0356292 B2 JP H0356292B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- strength
- weight
- conductivity
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 description 38
- 239000000956 alloy Substances 0.000 description 38
- 239000010936 titanium Substances 0.000 description 26
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 25
- 239000000463 material Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- 229910002593 Fe-Ti Inorganic materials 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 229910000906 Bronze Inorganic materials 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 239000010974 bronze Substances 0.000 description 6
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
〔産業上の利用分野〕
本発明は耐熱性、電気および熱伝導性、はんだ
付け性、めつき性、機械的強度、ばね特性、くり
返し曲げ性などの総合特性が要求される半導体用
リード材、コネクター・スイツチなどの導電部材
に好適な銅合金に関する。
〔従来技術〕
一般に半導体のリード材としては、従来よりセ
ラミツクパツケージとの封止性が良好であるとい
う観点から高強度、高耐熱性の42合金(Fe−42
%Ni合金)が使用されてきた。しかし、樹脂パ
ツケージの普及と低コスト化の進展により銅合金
の使用も急増しており、主にCDA194合金とりん
青銅が使用されている。一方、近年のICの高集
積化の進展からは高導電性材料が望まれており、
また実装密度向上のための小型化や薄肉化の進展
からは強度の向上・くり返し曲げ特性の向上が望
まれている。
また一方、コネクター、スイツチなどの電気部
品用銅合金は、CDA194合金、りん青銅等が使用
されてきたが、部品の小型、薄肉化によるコスト
低減のためには、更に高い強度、導電率、ばね特
性などの総合特性を有することが望まれている。
しかし、CDA194合金は導電性と強度が良好で
あるものの、ばね特性、耐熱性がやや低く、りん
青銅は強度、ばね特性、くり返し曲げ特性に優れ
るものの、耐熱性、導電率が低いなど一長一短が
ある。
一般に半導体用リード材及びコネクター等の電
気部品の小型、薄肉化の進展に伴い銅合金に要求
される特性には次の様なものがある。
(1) 熱と電気の伝導性にすぐれること(熱伝導性
電気伝導性でおよそ評価できる)、
(2) 薄肉化をはかつた場合ねじりや曲がりがおこ
らない様高強度であること、
(3) ダイボンデイング時の高温加熱に耐え軟化し
にくいこと、
(4) リード材としてのくり返し曲に耐えること、
(5) ハンダ付けが良好であること。
これらの特性のうち、強度、導電率の要求を満
たすものとして、例えば特開昭341253号公報に開
示されているとおり、FeとTi、FeとSiあるいは
FeとNiの金属間化合物の析出を利用して製造さ
れる強力導電性銅合金が知られている。ここで
Cu−Fe−Ti系の三元合金ではそのすぐれた強度
と導電性を得るには1000℃での溶体化、水焼入れ
処理が不可欠であり複雑な操作が要求される。
〔発明が解決しようとする問題点〕
本発明の目的は1000℃での溶体化、水焼入れ処
理を必要とせず、通常の熱間圧延とこれに続くシ
ヤワー水冷及び冷間加工と時効析出処理(焼鈍)
を施すことにより、導電率を向上させるか、又は
導電率の低下を極力抑えた上で強度を大きく改良
し、更にばね特性、くり返し曲げ特性、耐熱性を
向上させた半導体用リード材及び電気部品など好
適な銅合金を提供することにある。
〔問題点を解決するための手段〕
本発明に従つて、0.1〜1重量%のFe、0.05〜
0.5重量%のTi、及び0.5重量%を超え2重量%ま
でのSnを含有し、残部が実質的にCuであり、Fe
とTiの重量比Fe/Tiが1.4〜2.8であることを特徴
とする導電性、強度、耐熱性、くり返し曲げ性に
優れた導電部材用銅合金が提供される。
また、本発明にしたがつて、0.1〜1重量%の
Fe、0.05〜0.5重量%のTi、0.5重量%を超え2重
量%までのSn、及び0.005〜0.2重量%のMgを含
有し、残部が実質的にCuであり、FuとTiの重量
比Fe/Tiが1.4〜2.8であることを特徴とする導電
性、強度、耐熱性、くり返し曲げ性に優れた導電
部材用銅合金が提供される。
以下の記載において、百分率は全て重量%であ
るが、単に%と記載する。
次に合金の成分の添加理由と成分範囲の限定理
由を説明する。FeとTiは相乗効果により本発明
の目的である特性(強度、導電性)を向上させ
る。これはFeとTiがFe2Tiという化合物を生成
し、熱処理によつてマトリツクス中に微細に析出
するためである。
なお本発明合金の優れた特性は基本的にはFe
とTiの化合物の析出により得られることからFe
とTiの比については適正な比率があり、Fe/Ti
(重量比)で1.4〜2.8、更には1.7〜2.4が好まし
い。この重量比に関してはCu−Fe−Ti3元素に
つき本発明者らは研究し第1図に示した結果に代
表されるFe/Tiの時効析出処理後の導電率およ
び強度との関係に関する知見を得ている、Fe/
Tiが1.4未満では、過剰Tiのマトリツクスへの固
溶量が増して導電率の低下が大きくなり、2.8を
超えると過剰Feのマトリツクスへの固溶量が増
して導電率も低下するが、特に引張強さの低下が
大きくなる。
Ti0.05%、Fe0.1%未満では、Fe2Ti析出物に
よる強度と耐軟化性の向上効果が少なく、Ti0.5
%、Fe1%を超えて添加しても特性向上はほとん
ど飽和してしまう。
SnはCu−Fe−Ti合金に固溶し、固溶体硬化作
用によつて、Cu−Fe−Ti合金強度を向上させる
とともに、くり返し曲げ性や耐熱性、ばね特性を
向上させるものである。ここでSnの添加量が0.5
%以下では曲げ特性や耐熱強度の向上効果が小さ
く、一方2%を超えると導電率の低下が大きくな
る。
MgはSnと同様Cu−Fe−Ti合金に固溶し、強
度を向上させるとともに耐熱性、ばね特性を向上
させる。Mgは0.005%未満ではこれらの効果が小
さく0.2%を超えて添加しても強度は飽和してし
まい、導電率の低下が大きくなる。
次に本実施例について説明する。
実施例
高周波溶解炉を用いて電気銅をアルミナルツボ
中で、湯面を木炭粉で被覆しながら溶解し、電解
鉄、スポンジTi、Sn地金、Cu−50%Mg母合金
などを添加して内径150mmφの金型に鋳込み、寸
法150mmφ×100mmのビレツトを溶製した。これ
らの合金ならびに比較合金の組成を表1に示す。
このビレツトを950℃に加熱し、熱間押出しによ
り8.5mmφの押出線を作つた。さらにこの線を中
間焼鈍を施さずに0.9mmφまで伸線した。この時
の冷間加工は途中の線切れもなく良好であつた。
0.9mmφの線は500℃で3時間の焼鈍(時効析出処
理)を行ない、焼鈍前後の引張強さ、伸び、導電
率を調査した。この結果を表1に合わせて示す。
また焼鈍材について90℃くり返し曲げ試験を行な
つた。このくり返し曲げ試験は上記の線を鉛直に
保持具に保持し該線の下端に1Kgの錘をつり下
げ、保持具を90度下り曲げたのち元の位置に戻し
これを1回と数える。折り曲げ方向は一方向のみ
である。この操作をくり返し、破断に至るまでの
回数を測定した。この結果を第1表に合わせて示
す。
なお本発明の合金のその性能の比較を行なうた
め、市販のCDA194合金とりん青銅の厚さ0.25
mm、質別(H:硬質)の板についても加工材(H
材のまま)と焼鈍材(500℃、3Hr焼鈍)の特性
を測定し、結果を第1表に示す。ただしくり返し
曲げ試験は行なわなかつた。
さらに本発明合金(No.1〜5)と比較合金(No.
6〜9)について各温度で1時間の焼鈍を行ない
引張強さが初期引張強さと完全軟化後の引張強さ
の和の1/2の値なる時の温度(半軟化温度)を調
べた。この半軟化温度を第1表に合わせて示す。
この半軟化温度は耐熱性の指標となるものであ
る。
[Industrial Field of Application] The present invention is applicable to lead materials for semiconductors that require comprehensive properties such as heat resistance, electrical and thermal conductivity, solderability, plating properties, mechanical strength, spring properties, and repeated bendability. This invention relates to a copper alloy suitable for conductive members such as connectors and switches. [Prior art] In general, 42 alloy (Fe-42
%Ni alloy) have been used. However, with the spread of resin packages and progress in cost reduction, the use of copper alloys is rapidly increasing, and CDA194 alloy and phosphor bronze are mainly used. On the other hand, with the recent progress toward higher integration of ICs, highly conductive materials are desired.
In addition, with the progress of miniaturization and thinning to improve packaging density, improvements in strength and repeated bending characteristics are desired. On the other hand, CDA194 alloy, phosphor bronze, etc. have been used as copper alloys for electrical parts such as connectors and switches, but in order to reduce costs by making parts smaller and thinner, higher strength, conductivity, and springs are required. It is desired to have comprehensive characteristics such as characteristics. However, although CDA194 alloy has good conductivity and strength, its spring properties and heat resistance are somewhat low. Phosphor bronze has excellent strength, spring properties, and repeated bending properties, but has advantages and disadvantages, such as low heat resistance and low conductivity. . In general, as electric components such as semiconductor lead materials and connectors become smaller and thinner, the following properties are required of copper alloys. (1) It has excellent thermal and electrical conductivity (approximately evaluated by thermal conductivity and electrical conductivity), (2) It has high strength so that it will not twist or bend when thinned, ( 3) Must be able to withstand high temperature heating during die bonding and not easily soften; (4) Must be able to withstand repeated bending as a lead material; (5) Must have good soldering properties. Among these properties, as disclosed in JP-A-341253, Fe and Ti, Fe and Si or
Strongly conductive copper alloys manufactured using the precipitation of intermetallic compounds of Fe and Ni are known. here
For Cu-Fe-Ti ternary alloys, solution treatment at 1000°C and water quenching are essential to obtain their excellent strength and conductivity, and complex operations are required. [Problems to be Solved by the Invention] The purpose of the present invention is to eliminate the need for solution treatment at 1000°C and water quenching treatment, and to eliminate the need for ordinary hot rolling followed by shower water cooling, cold working, and aging precipitation treatment ( annealing)
Semiconductor lead materials and electrical components that have improved conductivity or greatly improved strength by minimizing the decrease in conductivity, and also improved spring characteristics, repeated bending characteristics, and heat resistance. The object of the present invention is to provide suitable copper alloys such as the following. [Means for solving the problem] According to the present invention, 0.1-1% by weight of Fe, 0.05-1% by weight
Contains 0.5% by weight of Ti, and more than 0.5% by weight and up to 2% by weight of Sn, with the remainder being substantially Cu and Fe.
Provided is a copper alloy for conductive members that has excellent conductivity, strength, heat resistance, and repeated bendability, and has a weight ratio Fe/Ti of 1.4 to 2.8. Further, according to the present invention, 0.1 to 1% by weight of
Contains Fe, 0.05 to 0.5 wt% Ti, more than 0.5 wt% to 2 wt% Sn, and 0.005 to 0.2 wt% Mg, the balance being substantially Cu, and the weight ratio of Fu to Ti is Fe. Provided is a copper alloy for conductive members that has excellent conductivity, strength, heat resistance, and repeated bendability, and is characterized in that /Ti is 1.4 to 2.8. In the following description, all percentages are by weight, but they are simply written as %. Next, the reason for adding the alloy components and the reason for limiting the range of the components will be explained. Fe and Ti improve the properties (strength, conductivity) that are the object of the present invention due to their synergistic effect. This is because Fe and Ti form a compound called Fe 2 Ti, which is finely precipitated in the matrix by heat treatment. The excellent properties of the alloy of the present invention are basically due to the Fe
Since it is obtained by precipitation of a compound of Ti and
There is an appropriate ratio of Fe/Ti.
(weight ratio) of 1.4 to 2.8, more preferably 1.7 to 2.4. Regarding this weight ratio, the present inventors studied the Cu-Fe-Ti3 elements and obtained knowledge about the relationship between Fe/Ti conductivity and strength after aging precipitation treatment, as typified by the results shown in Figure 1. It is Fe/
When Ti is less than 1.4, the amount of excess Ti dissolved in the matrix increases and the conductivity decreases significantly.When it exceeds 2.8, the amount of excess Fe dissolved in the matrix increases and the conductivity decreases, but especially The decrease in tensile strength increases. When Ti is less than 0.05% and Fe is less than 0.1%, the effect of improving strength and softening resistance due to Fe 2 Ti precipitates is small;
%, and even if Fe is added in excess of 1%, the improvement in properties is almost saturated. Sn dissolves in the Cu-Fe-Ti alloy and improves the strength of the Cu-Fe-Ti alloy through solid solution hardening, as well as its repeated bendability, heat resistance, and spring characteristics. Here, the amount of Sn added is 0.5
If it is less than 2%, the effect of improving bending properties and heat resistance strength will be small, while if it exceeds 2%, the electrical conductivity will decrease significantly. Like Sn, Mg forms a solid solution in Cu-Fe-Ti alloys, improving strength, heat resistance, and spring properties. If Mg is added in an amount less than 0.005%, these effects will be small, and even if it is added in an amount exceeding 0.2%, the strength will be saturated and the conductivity will decrease significantly. Next, the present embodiment will be explained. Example: Using a high-frequency melting furnace, electrolytic copper was melted in an aluminium crucible while covering the surface with charcoal powder, and electrolytic iron, sponge Ti, Sn ingot, Cu-50% Mg master alloy, etc. were added. It was cast into a mold with an inner diameter of 150 mm, and a billet with dimensions of 150 mm and 100 mm was produced. The compositions of these alloys and comparative alloys are shown in Table 1.
This billet was heated to 950°C and hot extruded to produce an extruded wire of 8.5 mmφ. Furthermore, this wire was drawn to 0.9 mmφ without intermediate annealing. The cold working at this time was good with no line breaks on the way.
The 0.9 mmφ wire was annealed at 500°C for 3 hours (aging precipitation treatment), and the tensile strength, elongation, and electrical conductivity before and after annealing were investigated. The results are also shown in Table 1.
A 90°C repeated bending test was also conducted on the annealed material. In this repeated bending test, the above wire is held vertically in a holder, a 1 kg weight is suspended from the lower end of the wire, the holder is bent down 90 degrees, and then returned to its original position and this is counted as one test. The bending direction is only one direction. This operation was repeated and the number of times until breakage occurred was measured. The results are also shown in Table 1. In addition, in order to compare the performance of the alloy of the present invention, commercially available CDA194 alloy and phosphor bronze with a thickness of 0.25
mm, tempered (H: hard) plate is also processed material (H
The properties of the raw material) and the annealed material (annealed at 500°C for 3 hours) were measured, and the results are shown in Table 1. However, repeated bending tests were not performed. Furthermore, the present invention alloys (No. 1 to 5) and the comparative alloy (No.
6 to 9) were annealed at each temperature for 1 hour, and the temperature at which the tensile strength becomes 1/2 of the sum of the initial tensile strength and the tensile strength after complete softening (semi-softening temperature) was investigated. This semi-softening temperature is also shown in Table 1. This semi-softening temperature is an index of heat resistance.
【表】
次に本発明の効果について第1表を参照して説
明する。
(1) 強度特性:本発明合金(No.1〜5)の加工材
および焼鈍材(時効析出処理材)は比較合金No.
8(CDA194合金)の加工材に比較し強度は著
しく大きく、比較合金No.9(りん青銅)の加工
材に比較し、Fe、Ti、Snが低濃であるNo.1、
2を除き同等もしくは大幅に上まわつている。
次にCu−Fe−Ti系合金で特性を比較する場
合、Ti量の多少により諸特性値が変動するた
め、同一量のTiを含有する合金どうしで比較
する必要がある。本発明の合金No.3、4とほぼ
同一Ti量を含有するが、Sn、Mgを含有しない
No.6を比較すると、Sn、Mgを含有させたNo.
3、4の特性の向上は著しい。また比較含金No.
7はFe/Ti比が5.3であり本発明で規定された
Fe/Ti比(1.4〜2.8)より大きくはずれている
ため焼鈍材の強度低下が著しい。
(2) 耐熱性:本発明合金の半軟化温度は550℃以
上であるのに対し比較合金No.8、9はこれより
はるかに低くそれぞれ480℃、380℃である。ま
たCu−Fe−Ti系の比較合金No.6、7は焼鈍時
の強度低下が著るしく半軟化温度は各520℃、
480℃である。
(3) :熱電気の伝導性:本発明合金はFeとTiの
析出を利用しているため、焼鈍により導電率は
著るしく向上するが、Snの添加量が増すに従
い導電率は低下する。しかしながら1.54%Snを
含む本発明合金No.5は比較合金No.9(りん青銅)
を上まわつており良好な導電性を示している。
Tiをそれぞれ0.15%、0.14%、またSnをそれぞ
れ0.21%、0.22%含む本発明合金No.1、2の焼
鈍材は比較合金No.8(CDA194合金)の加工材
と同等以上の特性を有している。
(4)くり返し曲げ性:本発明合金のくり返し曲げ数
はSnを含まない比較合金No.6、7に比較して
1〜4回もの向上が見られる。
なお本発明合金(No.1〜7)のはんだ付け性
は本発明合金を230℃のはんだ浴(Sn60−
Pb40)に5秒間浸漬し、はんだ付着状況を観
察したが問題はなかつた。また同じ試料につい
てAgメツキも実施してみたが全く問題はなか
つた。
以上の様に、本発明合金は改善された高強度
と、耐熱性、くり返し曲げ性を有するとともに、
導電率も良好で、はんだ付け性も問題ないことか
ら、半導体用リード材ならびにコネクター、スイ
ツチ等の電気部品などに広く利用でき、部品の高
性能化、小型化、薄肉化に大いに貢献するもので
ある。[Table] Next, the effects of the present invention will be explained with reference to Table 1. (1) Strength properties: The processed materials and annealed materials (aging precipitation treated materials) of the invention alloys (Nos. 1 to 5) are comparative alloy No.
Compared to the processed material of comparative alloy No. 8 (CDA194 alloy), the strength is significantly greater, and compared to the processed material of comparative alloy No. 9 (phosphor bronze), No. 1, which has lower concentrations of Fe, Ti, and Sn,
With the exception of 2, the results are the same or significantly higher. Next, when comparing the properties of Cu-Fe-Ti alloys, it is necessary to compare alloys containing the same amount of Ti, since the various property values vary depending on the amount of Ti. Contains almost the same amount of Ti as alloys No. 3 and 4 of the present invention, but does not contain Sn or Mg
Comparing No. 6, No. 6 contains Sn and Mg.
The improvements in characteristics 3 and 4 are remarkable. Comparative metal-containing No.
7 has an Fe/Ti ratio of 5.3 and is defined in the present invention.
Since the Fe/Ti ratio deviates greatly from the ratio (1.4 to 2.8), the strength of the annealed material is significantly reduced. (2) Heat resistance: The semi-softening temperature of the alloy of the present invention is 550°C or higher, whereas that of comparative alloys No. 8 and 9 is much lower, at 480°C and 380°C, respectively. In addition, comparative alloys No. 6 and 7 of the Cu-Fe-Ti system showed a remarkable decrease in strength during annealing, and the semi-softening temperature was 520℃, respectively.
The temperature is 480℃. (3) : Thermoelectric conductivity: Since the alloy of the present invention utilizes the precipitation of Fe and Ti, the electrical conductivity is significantly improved by annealing, but the electrical conductivity decreases as the amount of Sn added increases. . However, the invention alloy No. 5 containing 1.54% Sn is comparative alloy No. 9 (phosphor bronze).
, indicating good conductivity.
The annealed materials of alloys No. 1 and 2 of the present invention containing 0.15% and 0.14% of Ti and 0.21% and 0.22% of Sn, respectively, have properties equivalent to or better than the processed material of comparative alloy No. 8 (CDA194 alloy). are doing. (4) Repeated bendability: The number of repeated bendings of the alloy of the present invention is improved by 1 to 4 times compared to comparative alloys No. 6 and 7 that do not contain Sn. The solderability of the alloys of the present invention (Nos. 1 to 7) was determined by applying the alloys of the present invention to a solder bath (Sn60-
I immersed it in Pb40) for 5 seconds and observed the solder adhesion, but no problems were found. I also performed Ag plating on the same sample, but there were no problems at all. As described above, the alloy of the present invention has improved high strength, heat resistance, and repeated bendability, and
Because it has good electrical conductivity and no problems with solderability, it can be widely used in semiconductor lead materials and electrical parts such as connectors and switches, greatly contributing to higher performance, smaller size, and thinner parts. be.
添付図面はCu−Fe−Ti系三元合金における
Fe/Ti重量比と時効析出処理後の導電率及び強
度との関係を示すグラフである。
The attached drawing shows the Cu-Fe-Ti ternary alloy.
It is a graph showing the relationship between the Fe/Ti weight ratio and the electrical conductivity and strength after aging precipitation treatment.
Claims (1)
及び0.5重量%を超え2重量%までのSnを含有し、
残部が実質的にCuであり、FeとTiの重量比Fe/
Tiが1.4〜2.8であることを特徴とする導電性、強
度、耐熱性、くり返し曲げ性に優れた導電部材用
銅合金。 2 0.1〜1重量%のFe、0.05〜0.5重量%のTi、
0.5重量%を超え2重量%までのSn、及び0.005〜
0.2重量%のMgを含有し、残部が実質的にCuで
あり、FeとTiの重量比Fe/Tiが1.4〜2.8である
ことを特徴とする導電性、強度、耐熱性、くり返
し曲げ性に優れた導電部材用銅合金。[Claims] 1 0.1 to 1% by weight of Fe, 0.05 to 0.5% by weight of Ti,
and contains Sn in an amount of more than 0.5% by weight and up to 2% by weight,
The remainder is essentially Cu, and the weight ratio of Fe and Ti is Fe/
A copper alloy for conductive members that has Ti of 1.4 to 2.8 and has excellent conductivity, strength, heat resistance, and repeated bendability. 2 0.1-1% by weight of Fe, 0.05-0.5% by weight of Ti,
More than 0.5% by weight and up to 2% by weight of Sn, and 0.005~
Contains 0.2% by weight of Mg, the balance is substantially Cu, and the weight ratio of Fe and Ti is 1.4 to 2.8.It has excellent conductivity, strength, heat resistance, and repeated bendability. Copper alloy for excellent conductive parts.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2177485A JPS61183427A (en) | 1985-02-08 | 1985-02-08 | High strength copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2177485A JPS61183427A (en) | 1985-02-08 | 1985-02-08 | High strength copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61183427A JPS61183427A (en) | 1986-08-16 |
JPH0356292B2 true JPH0356292B2 (en) | 1991-08-27 |
Family
ID=12064413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2177485A Granted JPS61183427A (en) | 1985-02-08 | 1985-02-08 | High strength copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61183427A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6115649B2 (en) | 2013-10-18 | 2017-04-19 | 日産自動車株式会社 | Intake passage structure of internal combustion engine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039139A (en) * | 1983-08-12 | 1985-02-28 | Mitsui Mining & Smelting Co Ltd | Softening resistant copper alloy with high conductivity |
JPS60218440A (en) * | 1984-04-13 | 1985-11-01 | Furukawa Electric Co Ltd:The | Copper alloy for lead frame |
JPS60245752A (en) * | 1984-05-22 | 1985-12-05 | Nippon Mining Co Ltd | High strength copper alloy having high electric conductivity |
JPS61183426A (en) * | 1985-02-06 | 1986-08-16 | Furukawa Electric Co Ltd:The | High strength, highly conductive heat resisting copper alloy |
-
1985
- 1985-02-08 JP JP2177485A patent/JPS61183427A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6039139A (en) * | 1983-08-12 | 1985-02-28 | Mitsui Mining & Smelting Co Ltd | Softening resistant copper alloy with high conductivity |
JPS60218440A (en) * | 1984-04-13 | 1985-11-01 | Furukawa Electric Co Ltd:The | Copper alloy for lead frame |
JPS60245752A (en) * | 1984-05-22 | 1985-12-05 | Nippon Mining Co Ltd | High strength copper alloy having high electric conductivity |
JPS61183426A (en) * | 1985-02-06 | 1986-08-16 | Furukawa Electric Co Ltd:The | High strength, highly conductive heat resisting copper alloy |
Also Published As
Publication number | Publication date |
---|---|
JPS61183427A (en) | 1986-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR870001504B1 (en) | Copper alloy | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JPS63130739A (en) | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material | |
JP2593107B2 (en) | Manufacturing method of high strength and high conductivity copper base alloy | |
JPS61183426A (en) | High strength, highly conductive heat resisting copper alloy | |
JP2001032029A (en) | Copper alloy excellent in stress relaxation resistance, and its manufacture | |
JPS6314056B2 (en) | ||
JPS63143230A (en) | Precipitation strengthening high tensile copper alloy having high electrical conductivity | |
JPS6231059B2 (en) | ||
JPS63149345A (en) | High strength copper alloy having high electrical conductivity and improved heat resistance | |
JPS6160846A (en) | Lead material of copper alloy for semiconductor device | |
JPS62182240A (en) | Conductive high-tensile copper alloy | |
JPS63307232A (en) | Copper alloy | |
JPH0356292B2 (en) | ||
JPH01159337A (en) | High tensile and high electric conductive copper alloy | |
JPS6123861B2 (en) | ||
JPH0717982B2 (en) | Conductive rolled material for leadframes, connectors or switches | |
JPS6142772B2 (en) | ||
JPS6365748B2 (en) | ||
JPH0356294B2 (en) | ||
JPH0469217B2 (en) | ||
JPS64458B2 (en) | ||
JPS60245750A (en) | Copper alloy for lead material of semiconductor apparatus | |
JPH0816255B2 (en) | Copper alloy for electronic devices | |
JPH02129326A (en) | High strength copper alloy |