JPS61183427A - High strength copper alloy - Google Patents

High strength copper alloy

Info

Publication number
JPS61183427A
JPS61183427A JP2177485A JP2177485A JPS61183427A JP S61183427 A JPS61183427 A JP S61183427A JP 2177485 A JP2177485 A JP 2177485A JP 2177485 A JP2177485 A JP 2177485A JP S61183427 A JPS61183427 A JP S61183427A
Authority
JP
Japan
Prior art keywords
alloy
strength
copper alloy
high strength
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2177485A
Other languages
Japanese (ja)
Other versions
JPH0356292B2 (en
Inventor
Shuichi Yamazaki
周一 山崎
Hiroshi Yamaguchi
洋 山口
Yosuke Taniguchi
谷口 洋亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2177485A priority Critical patent/JPS61183427A/en
Publication of JPS61183427A publication Critical patent/JPS61183427A/en
Publication of JPH0356292B2 publication Critical patent/JPH0356292B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a high strength copper alloy excelling in overall characteristics such as heat resistance, electric conductivity, thermal conductiv ity, solderability, plating suitability, strength, spring characteristic, repeated bendability, and the like, by adding specific amounts of Fe, Ti, Sn and Mg to Cu. CONSTITUTION:The Cu alloy in which, by weight, 0.1-1.0% Fe, 0.05-0.5% Ti, and 0.5-2% Sn are incorporated to Cu or further 0.005-0.2% Mg is added and the weight ratio of Fe to Ti is 1.4-2.8 is manufactured. By performing conventional hot rolling and successive shower water cooling, cold working, and annealing, obviating the necessity of solution heat treatment and water quenching, the high strength copper alloy having overall characteristics suitable as lead material for semiconductor use and material for connector, switch, and the like can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性、電気および熱伝導性、はんだ付は性、
めっき性1機械的強度、ばね特性、<シ返1、曲げ性方
どの総合特性が要求されふ岸導体用す−ド材、コネクタ
ー・スイッチなどの電気部品に好適な銅合金に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is characterized by heat resistance, electrical and thermal conductivity, soldering properties,
This invention relates to a copper alloy that requires comprehensive properties such as plating properties, mechanical strength, spring properties, bendability, etc., and is suitable for electric parts such as cord materials for shore conductors and connectors and switches.

〔従来技術〕[Prior art]

一般に牛導体のリード材としては、従来よシセラミック
ノ母ツケージとの封止性が良好であるという観点から高
強度、高耐熱性の42合金(Fs−42% N1合金)
が使用されてきた。しかし、樹脂・母ツケージの普及と
低コスト化の進展により銅合金の使用も急増しており、
主にCDA I 94合金とシん青銅が使用されている
。一方、近年のICの高集積化の進展からは高導電性材
料が望まれており、また実装密度向上のための小型化や
薄肉化の進展からは強度の向上・くυ返し曲げ特性の向
上が望まれている。
In general, 42 alloy (Fs-42% N1 alloy), which has high strength and high heat resistance, is used as the lead material for conductors because it has good sealing properties with the ceramic motherboard.
has been used. However, the use of copper alloys is rapidly increasing due to the spread of resin/base cages and progress in cost reduction.
Mainly CDA I 94 alloy and thin bronze are used. On the other hand, due to the recent progress in high integration of ICs, highly conductive materials are desired, and the progress in miniaturization and thinning of walls to improve packaging density has led to improvements in strength and repeated bending characteristics. is desired.

また一方、コネクター、スイッチなどの電気部品用銅合
金は、ODA 194合金、シん青銅等が使用されてき
たが、部品の小型、薄肉化によるコスト低減のためには
、更に高い強度、導電率、ばね特性などの総合特性を有
することが望まれている。
On the other hand, ODA 194 alloy, thin bronze, etc. have been used as copper alloys for electrical parts such as connectors and switches, but in order to reduce costs by making parts smaller and thinner, higher strength and conductivity are needed. It is desired to have comprehensive properties such as , spring properties, etc.

しかし、CDAl94合金は導電性と強度が良好である
ものの、ばね特性、耐熱性がやや低く、シん育銅は強度
、ばね特性、<シ返し曲げ特性に優れるものの、耐熱性
、導電率が低いなど一長一短がある。
However, although CDAl94 alloy has good conductivity and strength, its spring properties and heat resistance are somewhat low, and thin-raised copper has excellent strength, spring properties, and bending properties, but has low heat resistance and conductivity. There are advantages and disadvantages.

一般に牛導体用リード材及びコネクター等の電気部品の
小型、薄肉化の進展に伴ない銅合金に要求される特性に
は次の様なものがある。
In general, the following properties are required of copper alloys as electric components such as conductor lead materials and connectors become smaller and thinner.

(1)熱と電気の伝導性にすぐれること(熱伝導性電気
伝導性でおよそ評価できる)、 (2)薄肉化をはかった場合ねじシや曲がシがおこらな
い禄高強度であること、 (3)  グイボンディング時の高温加熱に耐え軟化し
にくいこと、 (4)  リード材としてのくシ返し曲げに耐えること
、 (5)ハンダ付けが良好であること。
(1) Excellent thermal and electrical conductivity (approximately evaluated by thermal conductivity and electrical conductivity); (2) High strength that does not cause screws or bends when thinned. (3) Must be able to withstand high temperature heating during bonding and not easily soften; (4) Must be able to withstand repeated bending as a lead material; (5) Must have good soldering properties.

これらの特性のうち、強度、導電率の要求を満たすもの
として、例えば特公昭34−1253号公報に開示され
ているとおfi 、p’eとTi 、 FeとSiある
いはF’sとNiの金属間化合物の析出を利用して製造
される強力導電性銅合金が知られている。ここでCu 
−Fe−Ti系の三元合金ではそのすぐれた強度と導電
性を得るには1000℃での溶体化、水焼入れ処理が不
可欠であシ複雑な操作が要求される。
Among these characteristics, metals such as fi, p'e and Ti, Fe and Si, or F's and Ni are disclosed in Japanese Patent Publication No. 34-1253 as meeting the requirements for strength and electrical conductivity. Strongly conductive copper alloys manufactured using the precipitation of intermediate compounds are known. Here Cu
-Fe-Ti ternary alloy requires solution treatment at 1000° C. and water quenching treatment in order to obtain its excellent strength and conductivity, and requires complicated operations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は1000℃での溶体化、水焼入れ処理を
必要とせず、通常の熱間圧延とこれに続くシャワー水冷
及び冷間加工と時効析出処理(焼鈍)  “を施すこと
によシ、導電率の低下を極力抑えた上で強度を大きく改
良し、更にばね特性、〈シ返し曲げ特性、耐熱性を向上
させた牛導体用リード材及び電気部品などに好適な銅合
金を提供することにある。
The purpose of the present invention is to eliminate the need for solution treatment and water quenching at 1000°C, and to perform ordinary hot rolling, subsequent shower water cooling, cold working, and aging precipitation treatment (annealing). To provide a copper alloy suitable for lead materials for conductors, electrical parts, etc., which has greatly improved strength while suppressing a decrease in conductivity as much as possible, and has improved spring characteristics, 〈reverse bending characteristics, and heat resistance. It is in.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に従りてFe 0.1〜I To、 Ti 0.
05〜0.5%、Sn 0.1〜2%及び残部が本質的
1ccuか′らなシ、FeとTiの重量比が1.4〜2
.8である銅合金が提供される。
According to the invention, Fe 0.1 to I To, Ti 0.
05-0.5%, Sn 0.1-2% and the balance essentially 1 ccu, the weight ratio of Fe and Ti is 1.4-2.
.. 8 is provided.

また本発明に従ってF・0.1〜1チ、Ti0.05〜
0.5 % 、 an 0.5%をこえ2%まで、Mg
0.O05〜0.2チ及び残部が本質的にCuからな#
)、F’@とTiの重量比が1.4〜2.8である銅合
金が提供される。
Further, according to the present invention, F・0.1 to 1 inch, Ti 0.05 to
0.5%, an over 0.5% up to 2%, Mg
0. O05~0.2chi and the rest are essentially Cu#
), a copper alloy having a weight ratio of F'@ and Ti of 1.4 to 2.8 is provided.

次に合金の成分の添加理由と成分範囲の限定理由を説明
する。FeとTiは相乗効果によシ本発明の目的である
特性(強度、導電性)を向上させる。
Next, the reason for adding the alloy components and the reason for limiting the range of the components will be explained. Fe and Ti have a synergistic effect to improve the properties (strength, conductivity) that are the object of the present invention.

これはFeとTiがFe 2 T iという化合物を生
成し、熱処理によりてマトリックス中に微細に析出する
ためである。
This is because Fe and Ti form a compound called Fe 2 Ti, which is finely precipitated in the matrix by heat treatment.

なお本発明合金の優れた特性は基本的にはFeとTiの
化合物の析出によシ得られることがらFeとTiO比は
適正な比率があF) 、F@/’ri (重量比)で1
.4〜2.8、更には1.7〜2.4が好ましい。この
重量比に関してはCu −Fe −Ti 3元系につき
本発明者らは研究し第1図に示した結果に代表されるr
e/Tiと時効析出処理後の導電率および強度との関係
に関する知見を得ている。FeZT iが1.4未満で
は、過剰Tiのマトリックスへの固溶量が増して導電率
の低下が大きくな、9.2.8を超えると過剰Feのマ
トリックスへの固溶量が増して導電率も低下するが、特
に引張強さの低下が大きくなる。
The excellent properties of the alloy of the present invention are basically obtained by the precipitation of a compound of Fe and Ti, so the ratio of Fe to TiO should be set at an appropriate ratio (F), F@/'ri (weight ratio) 1
.. 4 to 2.8, more preferably 1.7 to 2.4. Regarding this weight ratio, the present inventors conducted research on the Cu-Fe-Ti ternary system, and the results shown in Figure 1 are representative of r.
We have obtained knowledge regarding the relationship between e/Ti and the electrical conductivity and strength after aging precipitation treatment. When FeZTi is less than 1.4, the amount of excess Ti dissolved in the matrix increases and the conductivity decreases significantly.When it exceeds 9.2.8, the amount of excess Fe dissolved in the matrix increases and the conductivity decreases. Although the tensile strength also decreases, the decrease in tensile strength becomes particularly large.

T10.05To 、 re o、t*未満では、Fe
 2T l析出物による強度と耐軟化性の向上効果が少
なく、Ti0.5チ、 Fe 1%を超えて添加しても
特性向上はほとんど飽和してしまう。
Below T10.05To, re o, t*, Fe
The effect of improving strength and softening resistance due to 2Tl precipitates is small, and even if more than 0.5% Ti and 1% Fe are added, the improvement in properties is almost saturated.

SnはCu −it’s −Ti合金に固溶し、固溶体
硬化作用によって、Cu−Fe−Ti合金の強度を向上
させるとともに、<シ返し曲げ性や耐熱性、はね特性を
向上させるものである。ここでSnの添加量が0.5−
以下では曲げ特性や耐熱強度の向上効果が小さく、一方
2チを超えると導電率の低下が大きくなる。
Sn forms a solid solution in the Cu-it's-Ti alloy, and through solid solution hardening, it improves the strength of the Cu-Fe-Ti alloy, as well as improves its bendability, heat resistance, and spring characteristics. be. Here, the amount of Sn added is 0.5-
If the thickness is less than 2 inches, the effect of improving bending properties and heat resistance strength will be small, while if it exceeds 2 inches, the conductivity will decrease significantly.

MgはSnと同様Cu −Fe −T1合金に固溶し、
強度を向上させるとともに耐熱性、はね特性を向上させ
る。Mgはo、oos*未満ではこれらの効果が小さく
 0.2 %を越えて添加しても強度は飽和してしまい
、導電率の低下が大きくなる。
Like Sn, Mg is dissolved in the Cu-Fe-T1 alloy,
Improves strength, heat resistance, and splash characteristics. If the Mg content is less than o, oos*, these effects will be small, and if it is added in an amount exceeding 0.2%, the strength will be saturated and the conductivity will decrease significantly.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例:高周波溶解炉を用いて電気鋼をアルミナルツ?
中で、湯面を木炭粉で被覆しながら済解し、電解鉄、ス
ポンジTi 、 Sn地金、Cu−50%Mg母合金な
どを添加して内径150Jllφの金型に鋳込み、寸法
150朋φX1X10Ox’のビレットを溶製した。こ
れらの合金ならびに比較合金の組成を表1に示す。
Example: Making electrical steel into aluminum using a high-frequency melting furnace?
Inside, the surface of the hot water was coated with charcoal powder, and electrolytic iron, sponge Ti, Sn base metal, Cu-50% Mg master alloy, etc. were added and cast into a mold with an inner diameter of 150Jllφ, and the dimensions were 150mmφX1X10OX. 'The billet was melted. The compositions of these alloys and comparative alloys are shown in Table 1.

このビレットを950℃に加熱し、熱間押出しによυ8
.5 amφの押出線を作った。さらにこの線を中間焼
鈍を施さずに0.9鵡φまで伸線した。この時の冷間加
工は途中の線切れもなく良好であった。
This billet was heated to 950℃ and hot extruded to υ8
.. An extruded line of 5 amφ was made. Further, this wire was drawn to a diameter of 0.9 mm without intermediate annealing. The cold working at this time was good with no line breaks on the way.

0.9朋φの線は500℃で3時間の焼鈍(時効析出処
理)を行ない、焼鈍前後の引張強さ、伸び、導電率を調
査した。この結果を表1に合わせて示す。
The wire with a diameter of 0.9 mm was annealed at 500° C. for 3 hours (aging precipitation treatment), and the tensile strength, elongation, and electrical conductivity before and after the annealing were investigated. The results are also shown in Table 1.

また焼鈍材について90°〈シ返し曲げ試験を行なった
・このくシ返し曲げ試験は上記の線を鉛直に保持具に保
持し該線の下端に1kgの錘をつシ下げ、保持具を90
度折シ曲げたのち元の位置に戻しこれを1回と数える。
In addition, a 90° bending test was conducted on the annealed material. For this bending test, the above line was held vertically in a holder, a 1 kg weight was hung on the lower end of the line, and the holder was held at a 90° angle.
After bending it several times, return it to its original position and count this as one time.

折シ曲げ方向は一方向のみである。この操作を〈シ返し
、破断に至るまでの回数を測定した。この結果を第1表
に合わせて示す。
The folding direction is only one direction. This operation was repeated and the number of times it took to break was measured. The results are also shown in Table 1.

なお本発明の合金とその性能の比較を行なうため、市販
のCDA I 94合金とシん青銅の厚さ0.25m。
In order to compare the performance of the alloy of the present invention, commercially available CDA I 94 alloy and thin bronze were used with a thickness of 0.25 m.

質別(H:硬質)の板についても加工材(H材のまま)
と焼鈍材(500℃、3Hr焼鈍)の特性を測定し、結
果を第1表に示す。ただしくシ返し曲げ試験は行なわな
かった。
The tempered (H: hard) plate is also processed material (as H material)
The characteristics of the and annealed materials (annealed at 500° C. for 3 hours) were measured, and the results are shown in Table 1. However, a reverse bending test was not performed.

さらに本発明合金(Al〜5)と比較合金(A6〜9)
について各温度で1時間の焼鈍を行ない引張強さが初期
引張強さと完全軟化後の引張強さの和の棒の値なる時の
温度(牛軟化温度)を調べた。この手軟化温度を第1表
に合わせて示す。
Furthermore, the present invention alloy (Al~5) and the comparative alloy (A6~9)
The samples were annealed at each temperature for 1 hour, and the temperature at which the tensile strength becomes the sum of the initial tensile strength and the tensile strength after complete softening (beef softening temperature) was investigated. This hand softening temperature is also shown in Table 1.

この学軟化温度は耐熱性の指標となるものである。This chemical softening temperature is an index of heat resistance.

次に本発明の効果について第1表を参照して説明する。Next, the effects of the present invention will be explained with reference to Table 1.

(1)強度特性二 本発明合金(A 1〜5)の加工材
および焼鈍材(時効析出処理材)は比較合金A8(CD
A194合金)の加工材に比較し強度は著るしく大きく
、比較合金扁9(シん青銅)の加工材に比較し、Fe 
、Ti 、Snが低濃である。&1,2を除き同等もし
くは大幅に上まわっている。
(1) Strength properties 2 Processed materials and annealed materials (aging precipitation treated materials) of the present invention alloys (A 1 to 5) are comparative alloy A8 (CD
The strength is significantly higher than that of the processed material of A194 alloy), and the strength is significantly higher than that of the processed material of comparative alloy flat 9 (thin bronze).
, Ti, and Sn are in low concentrations. With the exception of &1 and 2, they are the same or significantly higher.

次にCu−Fe−Ti系合金で特性を比較する場合、T
i量の多少により諸特性値が変動するため、同一量のT
iを含有する合金どうしで比較する必要がある。本発明
の合金A 3 、4とtヨぼ同−Ti量を含有するが、
Sn 、 Mgを含有しないA6を比較すると、Sn 
、 Mgを含有させた扁3,4の特性の向上は著るしい
。また比較含金A7はFe / T i比が5.3であ
シ本発明で規定されたFe/Ti比(1,4〜2.8)
よシ犬きくはずれているため焼鈍材の強度低下が著るし
い。
Next, when comparing the properties of Cu-Fe-Ti alloys, T
Since various characteristic values vary depending on the amount of i, the same amount of T
It is necessary to compare alloys containing i. Alloys A 3 and 4 of the present invention contain the same amount of Ti, but
When comparing A6 which does not contain Sn and Mg, Sn
, The improvement in properties of the flat sheets 3 and 4 containing Mg is remarkable. In addition, comparative metal-containing A7 has an Fe/Ti ratio of 5.3 and a Fe/Ti ratio (1.4 to 2.8) defined in the present invention.
The strength of the annealed material is significantly reduced due to the unevenness.

(2)耐熱性二 本発明合金のヰ軟化温度は550℃以
上であるのに対し比較合金ム8,9はこれよシはるかに
低くそれぞれ480℃、380℃である。またCu −
Fe −Ti系の比較合金A6,7は焼鈍時の強度低下
が著るしく竿軟化温度は各5201:、480℃である
(2) Heat resistance 2 The softening temperature of the alloy of the present invention is 550°C or higher, whereas the softening temperature of comparative alloys Nos. 8 and 9 is much lower, at 480°C and 380°C, respectively. Also, Cu −
Comparative alloys A6 and 7 based on Fe--Ti have a remarkable decrease in strength during annealing, and their rod softening temperatures are 5201: and 480°C, respectively.

(3)熱電気の伝導性: 本発明合金はFeとT1の析
出を利用しているため、焼鈍により導電率は著るしく向
上するが、Snの添加量が増すに従い導電率は低下する
。しかしながら1.54%Snを含む本発明合金ム5は
比較合金ム9(シん青銅)を上まわっており良好な導電
性を示している。Tiをそれぞれ0.15チ、0.14
チ、またSnをそれぞれ0.21%、0.22チ含む本
発明合金&1,2の焼鈍材は比較合金A8(CDA19
4合金)の加工材と同等以上の特性を有している。
(3) Thermoelectric conductivity: Since the alloy of the present invention utilizes the precipitation of Fe and T1, the electrical conductivity is significantly improved by annealing, but the electrical conductivity decreases as the amount of Sn added increases. However, the present invention alloy M 5 containing 1.54% Sn exceeds the comparative alloy M 9 (thin bronze) and exhibits good electrical conductivity. Ti 0.15 and 0.14 respectively
The annealed materials of alloys &1 and 2 of the present invention containing 0.21% and 0.22% Sn, respectively, are comparative alloy A8 (CDA19
It has properties equivalent to or better than processed materials of 4 alloys).

(4)くり返し曲げ性二 本発明合金の〈シ返し曲げ数
はSnを含まない比較合金属6.7に比較し【1〜4回
もの向上が見られる。
(4) Repeated bendability 2 The number of repeated bends of the alloy of the present invention is improved by 1 to 4 times compared to 6.7 times of a comparative alloy that does not contain Sn.

なお本発明合金(Al〜7)のはんだ付は性は本発明合
金を230℃のはんだ浴(5n60−Pb40)に5秒
間浸漬し、はんだ付着状況を観察したが問題はなかった
。また同じ試料についてAgメッキも実施してみたが全
く問題はなかった。
Regarding the soldering properties of the alloys of the present invention (Al~7), the alloys of the present invention were immersed in a solder bath (5n60-Pb40) at 230° C. for 5 seconds and the state of solder adhesion was observed, and no problems were found. We also performed Ag plating on the same sample, but there were no problems at all.

以上の様に、本発明合金は改善された高強度と、耐熱性
、<シ返し曲げ性を有するとともに、導電率も良好で、
はんだ付は性も問題ないことから、牛導体用リード材な
らびにコネクター、スイッチ等の電気部品などに広く利
用でき、部品の高性能化、小型化、薄肉化に大いに貢献
するものである。
As described above, the alloy of the present invention has improved high strength, heat resistance, and bendability, as well as good electrical conductivity.
Since soldering has no problems with soldering, it can be widely used for lead materials for conductors and electrical parts such as connectors and switches, and it greatly contributes to higher performance, smaller size, and thinner parts.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はCu−Fe−Ti系三元合金におけるF6/
’ri重量比と時効析出処理後の導電率及び強度との関
係を示すグラフである。 臼/T;(皇1ル)
The attached drawing shows the F6/Cu-Fe-Ti ternary alloy.
It is a graph showing the relationship between the 'ri weight ratio and the electrical conductivity and strength after aging precipitation treatment. Mortar/T; (Kou 1ru)

Claims (2)

【特許請求の範囲】[Claims] (1)Fe0.1〜1%(重量による、以下同じ)、 Ti0.05〜0.5% Sn0.5%をこえ2%まで および残部が本質的にCuよりなり、FeとTiの重量
比が1.4〜2.8であることを特徴とする銅合金
(1) Fe0.1-1% (by weight, the same applies hereinafter), Ti0.05-0.5%, Sn over 0.5% up to 2%, and the balance essentially consisting of Cu, the weight ratio of Fe and Ti. A copper alloy characterized in that the is from 1.4 to 2.8.
(2)Fe0.1〜1% Ti0.05〜0.5% Sn0.5%をこえ2%まで Mg0.005〜0.2% および残部が本質的にCuよりなり、FeとTiの重量
比が1.4〜2.8であることを特徴とする銅合金
(2) Fe0.1~1% Ti0.05~0.5% Sn More than 0.5% up to 2% Mg0.005~0.2% and the balance essentially consisting of Cu, weight ratio of Fe and Ti A copper alloy characterized in that the is from 1.4 to 2.8.
JP2177485A 1985-02-08 1985-02-08 High strength copper alloy Granted JPS61183427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2177485A JPS61183427A (en) 1985-02-08 1985-02-08 High strength copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177485A JPS61183427A (en) 1985-02-08 1985-02-08 High strength copper alloy

Publications (2)

Publication Number Publication Date
JPS61183427A true JPS61183427A (en) 1986-08-16
JPH0356292B2 JPH0356292B2 (en) 1991-08-27

Family

ID=12064413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177485A Granted JPS61183427A (en) 1985-02-08 1985-02-08 High strength copper alloy

Country Status (1)

Country Link
JP (1) JPS61183427A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605588B2 (en) 2013-10-18 2017-03-28 Nissan Motor Co., Ltd. Air intake pathway structure for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039139A (en) * 1983-08-12 1985-02-28 Mitsui Mining & Smelting Co Ltd Softening resistant copper alloy with high conductivity
JPS60218440A (en) * 1984-04-13 1985-11-01 Furukawa Electric Co Ltd:The Copper alloy for lead frame
JPS60245752A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity
JPS61183426A (en) * 1985-02-06 1986-08-16 Furukawa Electric Co Ltd:The High strength, highly conductive heat resisting copper alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039139A (en) * 1983-08-12 1985-02-28 Mitsui Mining & Smelting Co Ltd Softening resistant copper alloy with high conductivity
JPS60218440A (en) * 1984-04-13 1985-11-01 Furukawa Electric Co Ltd:The Copper alloy for lead frame
JPS60245752A (en) * 1984-05-22 1985-12-05 Nippon Mining Co Ltd High strength copper alloy having high electric conductivity
JPS61183426A (en) * 1985-02-06 1986-08-16 Furukawa Electric Co Ltd:The High strength, highly conductive heat resisting copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9605588B2 (en) 2013-10-18 2017-03-28 Nissan Motor Co., Ltd. Air intake pathway structure for internal combustion engine

Also Published As

Publication number Publication date
JPH0356292B2 (en) 1991-08-27

Similar Documents

Publication Publication Date Title
US4559200A (en) High strength and high conductivity copper alloy
US5021105A (en) Copper alloy for electronic instruments
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JPS6045698B2 (en) Lead material for semiconductor equipment
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JPS6330375B2 (en)
JPS63143230A (en) Precipitation strengthening high tensile copper alloy having high electrical conductivity
JPS6231059B2 (en)
JPS62182240A (en) Conductive high-tensile copper alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS63307232A (en) Copper alloy
JPS6256937B2 (en)
JPS61183427A (en) High strength copper alloy
JPH01159337A (en) High tensile and high electric conductive copper alloy
JP5002767B2 (en) Copper alloy sheet and manufacturing method thereof
JPH0356294B2 (en)
JPS6365748B2 (en)
JPS6142772B2 (en)
JPS63109132A (en) High-strength conductive copper alloy and its production
JPH0816255B2 (en) Copper alloy for electronic devices
JPH02129326A (en) High strength copper alloy
JPS60245750A (en) Copper alloy for lead material of semiconductor apparatus
JPS60194031A (en) Copper alloy for lead material for semiconductor device