JPS6123861B2 - - Google Patents

Info

Publication number
JPS6123861B2
JPS6123861B2 JP21952783A JP21952783A JPS6123861B2 JP S6123861 B2 JPS6123861 B2 JP S6123861B2 JP 21952783 A JP21952783 A JP 21952783A JP 21952783 A JP21952783 A JP 21952783A JP S6123861 B2 JPS6123861 B2 JP S6123861B2
Authority
JP
Japan
Prior art keywords
copper
based alloy
annealing
producing
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21952783A
Other languages
Japanese (ja)
Other versions
JPS60114556A (en
Inventor
Shuichi Yamazaki
Hiroshi Yamaguchi
Yosuke Taniguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP21952783A priority Critical patent/JPS60114556A/en
Publication of JPS60114556A publication Critical patent/JPS60114556A/en
Publication of JPS6123861B2 publication Critical patent/JPS6123861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐軟化性、電気および熱伝導性、ハン
ダ付性、メツキ性、機械的強度などの総合特性が
要求される。半導体のリードフレーム材、コネク
ター・スイツチなどの電気部品、熱交換器のフイ
ン材などに好適な銅基合金の製造方法に関するも
のである。 一般に、半導体機器用リードフレーム材として
は、従来セラミツクパツケージとの封止性の良好
な42合金(Fe−42%Ni合金)が使用されてき
た。しかし近年樹脂パツケージの広範な普及と低
コスト化に伴ない銅合金リードフレーム材の採用
が急増しており、主にCDA194合金やりん青銅が
使用されている。近年ICの大集積化の進展から
高強度、高耐軟化性銅合金が望まれるようになつ
てきた。しかし前記のCDA194合金は導電性(熱
伝導性は電気伝導性でおよそ評価し得る)、強度
は良好であるものの軟化温度がやや低く、りん青
銅は強度、くり返し曲げ性に優れるものの導電性
が低いなど一長一短がある。一般に、リードフレ
ーム材に要求される特性には次のものがある。 半導体の集積化に伴ない、リードフレームは
電気と熱の伝導性に優れること。 ダイボンデイツグ時の高温加熱に耐え、軟化
しにくいこと。 リード部がくり返し曲げに耐え、また薄肉化
を図つた場合のリード線に加わる応力によりね
じれや曲がりが起らない様、強度的に優れるこ
と。 ハンダ付性が良好なこと。 高温での耐酸化性が良好なこと。 水素ぜい化をおこさないこと。 一方コネクタ・スイツチなどの電気部品用銅合
金にしても、これまでの伝導性、耐応力腐食割れ
性および耐食性に優れているという特性だけでは
不十分で、部品の薄肉化によるコスト低減のため
には、更に十分な強度とろう接時の耐軟化性に優
れていることが望まれている。 また同様に熱交換器のフイン材についても、従
来Sn入り銅(Cu−0.2%Sn)が主に使用されてき
たが材料の薄肉化が進むと従来の合金の特性では
不満足であり、伝導性を確保しつつよい機械的強
度および耐軟化性に優れた銅合金が望まれてい
る。 本発明者らは、以上の点を考慮し、強度、導電
性、耐軟化性にすぐれるCu−Fe−Ti3元合金の
特長をさらに添加物を加えることによつて工業的
により得やすくし、また向上されたものとするこ
とを意図し先にCu−Fe−Ti系に特定の成分を添
加した銅基合金により強度、導電性及び耐軟化性
が何れも改良されることを見出、特願昭58−
146635号明細書に記載しているが、更に、該銅基
合金のこれらの特性をより高めるための処理加工
方法を見出し、本発明に到達した。 即ち、本発明の銅基合金の製造方法は、Ti0.05
〜1.0wt%;Fe0.07〜2.6wt%;0.005〜0.5wt%の
Mg、それぞれが0.01〜0.5wt%のSb、V、ミツシ
ユメタル、Zr、In、Zn、Sn及びNi、0.005〜0.2wt
%のAl、並びに0.005〜0.07wt%のPから選ばれ
る1種又は2種以上:及び残部実質的にCu;か
ら成る銅基合金(以下、本発明の銅基合金とい
う)を鋳造し、850〜980℃で熱間加工及び/又は
熱処理を施し、この熱間加工及び/又は熱処理の
途中又は後に前記銅基合金を650〜840℃で30秒以
上保持し、しかる後加工率30%以上の冷間加工と
焼鈍とを1サイクルとしてこれを1回以上行い、
前記焼鈍の少なくとも1回は350〜550℃で30分間
以上行なうことを特徴とするものである。 本発明方法は、例えば以下のフローシートに示
した如き各工程をもつて実施される。
The present invention requires comprehensive properties such as softening resistance, electrical and thermal conductivity, solderability, plating performance, and mechanical strength. The present invention relates to a method for producing a copper-based alloy suitable for semiconductor lead frame materials, electrical parts such as connectors and switches, fin materials for heat exchangers, and the like. Generally, alloy 42 (Fe-42% Ni alloy), which has good sealing properties with ceramic packages, has been used as a lead frame material for semiconductor devices. However, in recent years, with the widespread use and cost reduction of resin packages, the adoption of copper alloy lead frame materials has rapidly increased, and CDA194 alloy and phosphor bronze are mainly used. In recent years, as ICs have become more integrated, high-strength, high-softening-resistant copper alloys have become desirable. However, the above-mentioned CDA194 alloy has good conductivity (thermal conductivity can be approximately evaluated by electrical conductivity) and strength, but its softening temperature is somewhat low, and phosphor bronze has excellent strength and repeated bending properties, but has low conductivity. There are advantages and disadvantages. Generally, the characteristics required for lead frame materials include the following. With the increasing integration of semiconductors, lead frames must have excellent electrical and thermal conductivity. Must be able to withstand high temperature heating during die bonding and not easily soften. It has excellent strength so that the lead part can withstand repeated bending and will not twist or bend due to the stress applied to the lead wire when thinning the lead wire. Good solderability. Good oxidation resistance at high temperatures. Do not cause hydrogen embrittlement. On the other hand, even when using copper alloys for electrical parts such as connectors and switches, the conventional properties of excellent conductivity, stress corrosion cracking resistance, and corrosion resistance are not enough, and efforts are being made to reduce costs by making parts thinner. It is desired that these materials have sufficient strength and excellent resistance to softening during brazing. Similarly, for heat exchanger fin materials, Sn-containing copper (Cu-0.2%Sn) has traditionally been mainly used, but as the material becomes thinner, the properties of conventional alloys become unsatisfactory, and the conductivity There is a need for a copper alloy with excellent mechanical strength and softening resistance while ensuring the following properties. Taking the above points into consideration, the present inventors have made the features of the Cu-Fe-Ti ternary alloy, which has excellent strength, conductivity, and softening resistance, easier to obtain industrially by adding additives. It was also discovered that the strength, conductivity, and softening resistance of copper-based alloys were improved by adding specific components to the Cu-Fe-Ti system with the intention of improving the properties. Gansho 58-
Although described in the specification of No. 146635, we have further discovered a processing method to further enhance these properties of the copper-based alloy, and have arrived at the present invention. That is, the method for producing a copper-based alloy of the present invention includes Ti0.05
~1.0wt%; Fe0.07~2.6wt%; 0.005~0.5wt%
Mg, each 0.01-0.5wt% Sb, V, Mitsushi Metal, Zr, In, Zn, Sn and Ni, 0.005-0.2wt%
A copper-based alloy (hereinafter referred to as the copper-based alloy of the present invention) consisting of % Al, and one or more selected from 0.005 to 0.07 wt% P: and the balance substantially Cu is cast, and Hot working and/or heat treatment is performed at ~980°C, the copper-based alloy is held at 650 ~ 840°C for 30 seconds or more during or after the hot working and/or heat treatment, and then a working rate of 30% or more is applied. Cold working and annealing are performed one or more times as one cycle,
The annealing is performed at least once at 350 to 550° C. for 30 minutes or more. The method of the present invention is carried out through the steps shown in the flow sheet below, for example.

【表】 ↓
[Table] ↓

Claims (1)

【特許請求の範囲】 1 Ti0.05〜1.0wt%;Fe0.07〜2.6wt%;0.005
〜0.5wt%のMg、それぞれが0.01〜0.5wt%の
Sb、V、ミツシユメタル、Zr、In、Zn、Sn及び
Ni、0.005〜0.2wt%のAl、並びに0.005〜0.07wt
%のPから選ばれる1種又は2種以上:及び残部
実質的にCu;から成る銅基合金を鋳造し、850〜
980℃で熱間加工及び/又は熱処理を施し、この
熱間加工及び/又は熱処理の途中又は後に前記銅
基合金を840〜650℃で30秒以上保持し、しかる後
加工率30%以上の冷間加工と焼鈍とを1サイクル
としてこれを1回以上行い、前記焼鈍の少なくと
も1回は350〜550℃で30分間以上行なうことを特
徴とする銅基合金の製造方法。 2 最終焼鈍後40%未満の冷間加工を行なう特許
請求の範囲第1項記載の銅基合金の製造方法。 3 350〜550℃における焼鈍以外の焼鈍の少なく
とも1回は、550〜850℃で5秒間以上の連続焼鈍
とする特許請求の範囲第1項記載の銅基合金の製
造方法。 4 銅基合金は、Ti0.2〜0.4wt%、Fe0.3〜0.7wt
%、Mg0.05〜0.10wt%及び残部実質的にCuから
成る特許請求の範囲第1項記載の銅基合金の製造
方法。
[Claims] 1 Ti0.05-1.0wt%; Fe0.07-2.6wt%; 0.005
~0.5wt% Mg, each 0.01~0.5wt%
Sb, V, Mitsushi Metal, Zr, In, Zn, Sn and
Ni, 0.005~0.2wt% Al, and 0.005~0.07wt
% of one or more selected from P: and the remainder substantially Cu;
Hot working and/or heat treatment is performed at 980°C, the copper-based alloy is held at 840 to 650°C for 30 seconds or more during or after the hot working and/or heat treatment, and then cooled at a processing rate of 30% or more. 1. A method for producing a copper-based alloy, characterized in that one cycle of machining and annealing is performed one or more times, and at least one of the annealing is performed at 350 to 550° C. for 30 minutes or more. 2. The method for producing a copper-based alloy according to claim 1, wherein cold working is performed by less than 40% after final annealing. 3. The method for producing a copper-based alloy according to claim 1, wherein at least one annealing other than the annealing at 350 to 550°C is continuous annealing at 550 to 850°C for 5 seconds or more. 4 Copper-based alloy contains Ti0.2-0.4wt%, Fe0.3-0.7wt%
%, Mg 0.05 to 0.10 wt %, and the remainder substantially Cu.
JP21952783A 1983-11-24 1983-11-24 Production of copper-base alloy Granted JPS60114556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21952783A JPS60114556A (en) 1983-11-24 1983-11-24 Production of copper-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21952783A JPS60114556A (en) 1983-11-24 1983-11-24 Production of copper-base alloy

Publications (2)

Publication Number Publication Date
JPS60114556A JPS60114556A (en) 1985-06-21
JPS6123861B2 true JPS6123861B2 (en) 1986-06-07

Family

ID=16736873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21952783A Granted JPS60114556A (en) 1983-11-24 1983-11-24 Production of copper-base alloy

Country Status (1)

Country Link
JP (1) JPS60114556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159556U (en) * 1987-04-08 1988-10-19

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60218440A (en) * 1984-04-13 1985-11-01 Furukawa Electric Co Ltd:The Copper alloy for lead frame
JPS61284946A (en) * 1985-06-11 1986-12-15 Mitsubishi Shindo Kk Cu alloy lead blank for semiconductor device
JPS62133034A (en) * 1985-12-06 1987-06-16 Yazaki Corp Alloy for terminal
JPH0617522B2 (en) * 1987-04-03 1994-03-09 株式会社神戸製鋼所 Copper alloy for electrical and electronic parts with excellent hot workability
US6632300B2 (en) * 2000-06-26 2003-10-14 Olin Corporation Copper alloy having improved stress relaxation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159556U (en) * 1987-04-08 1988-10-19

Also Published As

Publication number Publication date
JPS60114556A (en) 1985-06-21

Similar Documents

Publication Publication Date Title
JPS6239213B2 (en)
US3677745A (en) Copper base composition
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JP2542370B2 (en) Copper alloy for semiconductor leads
JP3957391B2 (en) High strength, high conductivity copper alloy with excellent shear processability
JPS6330375B2 (en)
JPS6396237A (en) Material for electrically conductive parts of electronic and electrical appliance
JPS6123861B2 (en)
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JPS6132386B2 (en)
JP3772319B2 (en) Copper alloy for lead frame and manufacturing method thereof
JPH1197609A (en) Copper alloy for lead frame superior in oxide film adhesion and manufacture thereof
JPS6250428A (en) Copper alloy for electronic appliance
JPS6250426A (en) Copper alloy for electronic appliance
JPH0717982B2 (en) Conductive rolled material for leadframes, connectors or switches
JPS6365748B2 (en)
JPS62267456A (en) Manufacture of high strength copper alloy for lead frame having high electric conductivity
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JPH10152736A (en) Copper alloy material and its production
JPS5839901B2 (en) Copper alloy for lead frame
JPS58147140A (en) Lead wire of semiconductor device
JP2001049366A (en) High strength and high conductivity copper alloy excellent in heat resistance
JPH0356292B2 (en)
JPH0314897B2 (en)
JPS64458B2 (en)