JPH0337846B2 - - Google Patents

Info

Publication number
JPH0337846B2
JPH0337846B2 JP18016285A JP18016285A JPH0337846B2 JP H0337846 B2 JPH0337846 B2 JP H0337846B2 JP 18016285 A JP18016285 A JP 18016285A JP 18016285 A JP18016285 A JP 18016285A JP H0337846 B2 JPH0337846 B2 JP H0337846B2
Authority
JP
Japan
Prior art keywords
steel sheet
ultra
annealing
unidirectional silicon
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18016285A
Other languages
Japanese (ja)
Other versions
JPS6240702A (en
Inventor
Masao Iguchi
Isao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18016285A priority Critical patent/JPS6240702A/en
Priority to EP86301071A priority patent/EP0193324B1/en
Priority to DE8686301071T priority patent/DE3666229D1/en
Priority to AU53747/86A priority patent/AU570835B2/en
Priority to CA000502337A priority patent/CA1297070C/en
Priority to EP86904726A priority patent/EP0215134B1/en
Priority to US06/907,734 priority patent/US4713123A/en
Priority to DE8686904726T priority patent/DE3673290D1/en
Priority to US06/832,172 priority patent/US4698272A/en
Priority to PCT/JP1986/000087 priority patent/WO1986004929A1/en
Priority to KR1019860001259A priority patent/KR910006011B1/en
Publication of JPS6240702A publication Critical patent/JPS6240702A/en
Publication of JPH0337846B2 publication Critical patent/JPH0337846B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改
善、なかでも、鉄損の低減に係わる極限的な要請
を満たそうとする近年来の目覚ましい開発努力
は、逐次その実を挙げつつあるが、その実施に伴
う重大な弊害として、一方向性けい素鋼板の使用
に当たつての加工、組立てを経たのち、いわゆる
ひずみ取り焼鈍がほどこされた場合に、特性劣化
の随伴を不可避に生じて、使途についての制限を
受ける不利が指摘される。 この明細書では、ひずみ取り焼鈍のような高温
の熱履歴を経ると否とにに拘わらず、上記要請を
有利に充足し得る新たな方途を拓くことについて
の開発研究の成果に関連して以下に述べる。 さて一方向性けい素鋼板は、よく知られている
とおり製品の2次再結晶粒を(110)〔001〕、すな
わちゴス方位に、高度に集積させたもので、主と
して変圧器その他の電気機器の鉄心として使用さ
れ電気・磁気的特性として製品の磁束密度(B10
値で代表される)が高く、鉄損(W17/50値で代表
される)の低いことが要求される。 この一方向性けい素鋼板は複雑多岐にわたる工
程を経て製造されるが、今までにおびただしい発
明・改善が加えられ、今日では板厚0.30mmの製品
の磁気特性がB101.90T以上、W17/501.50W/Kg以
下、また板厚0.23mmの製品の磁気特性がB101.89T
以上、W17/500.90W/Kg以下の超低鉄損一方向性
けい素鋼板が製造されるようになつて来ている。 特に最近では省エネの見地から電力損失の低減
を至上とする要請が著しく強まり、欧米では損失
の少ない変圧器を作る場合に鉄損の減少分を金額
に換算して変圧器価格に上積みする「ロス・エバ
リユエーシヨン」(鉄損評価)制度が普及してい
る。 (従来の技術) このような状況下において最近、一方向性けい
素鋼板の仕上げ焼鈍後の鋼板表面に圧延方向にほ
ぼ直角方向でのレーザ照射により局部微小ひずみ
を導入して磁区を細分化し、もつて鉄損を低下さ
せることが提案された(特公昭57−2252号、特公
昭57−53419号、特公昭58−26405号及び特公昭58
−26406号各公報参照)。 この磁区細分化技術はひずみ取り焼鈍を施さな
い、積鉄心向けトランス材料としては効果的であ
るが、ひずみ取り焼鈍を施す、主として巻鉄心ト
ランス材料にあつては、レーザー照射によつて折
角に導入された局部微小ひずみが焼鈍処理により
解放されて磁区幅が広くなるため、レーザー照射
効果が失われるという欠点がある。 一方これにより先に特公昭52−24499号公報に
おいては、一方向性けい素鋼板の仕上げ焼鈍後の
鋼板表面を鏡面仕上げするか又はその鏡面仕上げ
面上に金属薄めつきやさらにその上に絶縁被膜を
塗布焼付することによる、超低鉄損一方向性けい
素鋼板の製造方法が提案されている。 しかしながらこの鏡面仕上げによる鉄損向上手
法は、工程的に採用するには、著しいコストアツ
プになる割りに鉄損低減への寄与が充分でない
上、とくに鏡面仕上げ後に不可欠な絶縁被膜を塗
布焼付した後の密着性に問題があるため、現在の
製造工程において採用されるに至つてはいない。
また特公昭56−4150号公報においても鋼板表面を
鏡面仕上げした後、酸化物系セラミツクス薄膜を
蒸着する方法が提案されている。しかしながらこ
の方法も600℃以上の高温焼鈍を施すと鋼板とセ
ラミツク層とが剥離するため、実際の製造工程で
は採用できない。 (発明が解決しようとする問題点) 発明者らは特に今日の省エネ材料開発の観点で
は上記のごときコストアツプの不利を凌駕する特
性、なかでも、高温処理での特性劣化を伴うこと
なくして絶縁層の密着性、耐久性の問題を克服す
ることが肝要と考え、この基本認識に立脚し、仕
上げ焼鈍済みの方向性けい素鋼板表面上の酸化物
を除去した後における鋼板処理方法の抜本的な改
善によつてとくに有利な超低鉄損化を達成するこ
とが、この発明の目的である。 (問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく種々
検討した結果、方向性けい素鋼板の仕上げ焼鈍板
表面上に酸化物を除去した鋼板表面上にたとえば
蒸着により好ましくは0.1〜0.2μm厚程度のTi薄
層を被成したのち、該Ti表面層を炭化および/
または窒化させることにより、鋼板表面上に
TiC、TiNないしTi(C、N)の極薄張力被膜を
形成させるこの(第1発明)、さらにはりん酸塩
とコロイダルシリカを主成分とする絶縁被膜を形
成させること(第2発明)が、所期した目的の達
成に極めて有効であることの知見を得た。 ここにTi表面層を炭化および/または窒化さ
せる手段としては、 仕上げ焼鈍後の一方向性けい素鋼板中にC:
0.001〜0.010wt%(以下単に%で示す)および
N:0.0005〜0.0100%を含有させておき、かかる
鋼板の酸化物を除去した表面上にTiの表面層を
被成してから、非酸化性雰囲気中で焼鈍を施して
鋼板中のCおよびNの純化促進を図ること(第
3、第4発明)、 また同じくCおよびNを所定量含有させた仕上
げ焼鈍済みの一方向性けい素鋼板の表面酸化物を
除去した後、Tiの表面層を被成してから、炭化
性ガスおよび/または窒化性ガス雰囲気中で焼鈍
を施して、鋼板中のCおよびNの純化促進と共に
該雰囲気からの浸炭および/または浸窒を図るこ
と(第5、第6発明)、 さらに同じくCおよびNを所定量含有させた仕
上げ焼鈍済みの一方向性けい素鋼板の表面酸化物
除去後、Tiの表面層を被成してから、非酸化性
雰囲気中で焼鈍を施して鋼板中のCおよびNの純
化促進を図り、引続き炭化性および/または窒化
性ガス雰囲気中で焼鈍を施して該雰囲気からの浸
炭および/または浸窒作用を加味すること(第
7、第8発明)、 がとりわけ有効であることも併せて究明し、この
発明を完成させるに至つたのである。 上記各発明の成功が導かれた具体的実験に従つ
て、以下説明を進める。 C:0.042%、Si:3.36%、Mn:0.066%、Se:
0.021%、Mo:0.025%およびSb:0.025%を含
み、かつN:0.001〜0.015%の範囲において含有
する種々のけい素鋼スラブに熱間圧延を施して
2.4mm厚の熱延板としたのち、900℃で3分間の均
一焼鈍を施し、ついで950℃、3分間の中間焼鈍
を挟んで2回の冷間圧延を施して最終板厚:0.23
mmの冷延板とした。その後露点を50〜10℃の範囲
で種々に変化させた820℃の湿水素中で脱炭を兼
ねる1次再結晶焼鈍を施したのち、鋼板表面上に
Al2O3:60%、MgO:25%、ZrO2:10%および
TiO2:5%の配合割合になる焼鈍分離剤を塗布
してから、850℃、50時間の2次再結晶焼鈍、つ
いで乾水素中でい1200℃、8時間の純化焼鈍を施
した。 その後、各鋼板表面上の酸化物を酸洗により除
去したのち、蒸着装置を用いて該酸化物除去後の
表面上に0.7μm厚のTi蒸着層を被成してから、
H2ガス中で750℃、3時間の焼鈍を施した。 上記の製造工程中、仕上げ焼鈍段階における鋼
中CおよびN量と磁気特性、ならびに最終製品の
CおよびN量と磁気特性との関係について調べた
結果を表1に示す。 また表1には、H2ガス中での焼鈍後、さらに
N2+H2ガス、N2+Ar、CH4+H2、CH+Arお
よびN2+CH4+H2ガス雰囲気中で750℃、5時間
の焼鈍を施した後の鋼中C、N量および磁気特性
について調べた結果を併記する。 さらに各製品板の密着性について調べた結果
も、表1に併せて示す。
(Industrial Application Field) In recent years, remarkable development efforts have been made to improve the electrical and magnetic properties of grain-oriented silicon steel sheets, and in particular to meet the extreme requirements of reducing iron loss. However, a serious problem associated with its implementation is that when unidirectional silicon steel sheets are subjected to so-called strain relief annealing after processing and assembly, the accompanying deterioration of properties may occur. It has been pointed out that there are disadvantages in that this inevitably occurs and restrictions are placed on how it can be used. In this specification, the following is related to the results of research and development to open up a new method that can advantageously satisfy the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. I will explain. As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) [001], or Goss, orientation, and are mainly used in transformers and other electrical equipment. The magnetic flux density (B 10
(represented by the W 17/50 value) and low iron loss (represented by the W 17/50 value). This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.30 mm have magnetic properties of B 10 1.90T or more, W 17 /50 1.50W/Kg or less, and the magnetic properties of products with a plate thickness of 0.23mm are B 10 1.89T
As described above, ultra-low core loss unidirectional silicon steel sheets with W 17/50 0.90W/Kg or less are being manufactured. In particular, recently there has been a marked increase in the demand for reducing power loss as a top priority from the standpoint of energy conservation.・The "Evaluation" (iron loss evaluation) system is becoming widespread. (Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after final annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It was proposed to reduce iron loss (Special Publication No. 57-2252, Special Publication No. 57-53419, Special Publication No. 58-26405, and Special Publication No. 58-1982).
-Refer to each publication No. 26406). This magnetic domain refining technology is effective for transformer materials for laminated cores that are not subjected to strain relief annealing, but it is difficult to introduce it by laser irradiation for transformer materials for rolled cores that are subjected to strain relief annealing. There is a drawback that the laser irradiation effect is lost because the localized microstrain is released by the annealing treatment and the magnetic domain width becomes wider. On the other hand, in Japanese Patent Publication No. 52-24499, the surface of the unidirectional silicon steel plate after finish annealing is mirror-finished, or the mirror-finished surface is coated with metal thinning or an insulating coating is further applied on the mirror-finished surface. A method for manufacturing ultra-low core loss unidirectional silicon steel sheets has been proposed by coating and baking. However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not make a sufficient contribution to reducing iron loss at the cost of a significant increase in costs. Due to problems with adhesion, it has not been adopted in current manufacturing processes.
Japanese Patent Publication No. 56-4150 also proposes a method in which a thin film of oxide ceramics is deposited after mirror-finishing the surface of a steel plate. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher. (Problems to be Solved by the Invention) In particular, from the perspective of today's energy-saving material development, the inventors have developed an insulating layer that has properties that outweigh the disadvantage of increased cost as described above, in particular, without deterioration of properties due to high temperature treatment. We believe that it is important to overcome the problems of adhesion and durability, and based on this basic understanding, we have developed a drastic treatment method for steel sheets after removing oxides on the surface of grain-oriented silicon steel sheets that have been finish annealed. It is an object of the present invention to achieve particularly advantageous ultra-low iron loss through improvement. (Means for Solving the Problems) As a result of various studies to achieve the above object, the inventors have found that, for example, on the surface of a grain-oriented silicon steel sheet from which oxides have been removed, After forming a thin Ti layer with a thickness of preferably about 0.1 to 0.2 μm by vapor deposition, the Ti surface layer is carbonized and/or
or by nitriding on the steel plate surface.
This method of forming an ultra-thin tensile film of TiC, TiN or Ti(C,N) (first invention), and furthermore, forming an insulating film mainly composed of phosphate and colloidal silica (second invention) We have obtained the knowledge that this method is extremely effective in achieving the intended purpose. Here, as a means for carbonizing and/or nitriding the Ti surface layer, C: is added to the unidirectional silicon steel sheet after final annealing.
0.001 to 0.010 wt% (hereinafter simply expressed as %) and N: 0.0005 to 0.0100%, a Ti surface layer is formed on the surface of the steel sheet from which oxides have been removed, and then non-oxidizing To promote the purification of C and N in the steel sheet by annealing in an atmosphere (third and fourth inventions), and also to prepare a finish-annealed unidirectional silicon steel sheet containing a predetermined amount of C and N. After removing surface oxides, a Ti surface layer is formed, and then annealing is performed in a carbonizing gas and/or nitriding gas atmosphere to promote purification of C and N in the steel sheet and remove it from the atmosphere. Carburizing and/or nitriding (fifth and sixth inventions), and after removing surface oxides of a finish-annealed unidirectional silicon steel sheet containing a predetermined amount of C and N, a Ti surface layer is removed. After that, annealing is performed in a non-oxidizing atmosphere to promote the purification of C and N in the steel sheet, and then annealing is performed in a carbonizing and/or nitriding gas atmosphere to remove carburization from the atmosphere. They also discovered that adding nitriding action and/or nitriding action (seventh and eighth inventions) are particularly effective, leading to the completion of this invention. The following explanation will be given in accordance with specific experiments that led to the success of each of the above inventions. C: 0.042%, Si: 3.36%, Mn: 0.066%, Se:
Various silicon steel slabs containing N: 0.021%, Mo: 0.025% and Sb: 0.025%, and N: 0.001 to 0.015% were hot rolled.
After making a hot-rolled plate with a thickness of 2.4 mm, it was uniformly annealed at 900°C for 3 minutes, then cold-rolled twice at 950°C with an intermediate annealing of 3 minutes in between, resulting in a final plate thickness of 0.23.
It was made into a cold-rolled sheet of mm. After that, primary recrystallization annealing, which also serves as decarburization, is performed in wet hydrogen at 820℃ with the dew point varied in the range of 50 to 10℃.
Al2O3 : 60% , MgO: 25%, ZrO2 : 10% and
After applying an annealing separator with a TiO 2 ratio of 5%, secondary recrystallization annealing was performed at 850°C for 50 hours, and then purification annealing was performed in dry hydrogen at 1200°C for 8 hours. After that, the oxides on the surface of each steel plate were removed by pickling, and then a 0.7 μm thick Ti vapor deposition layer was formed on the surface after the oxides were removed using a vapor deposition device.
Annealing was performed at 750° C. for 3 hours in H 2 gas. Table 1 shows the results of an investigation into the relationship between the amount of C and N in the steel and the magnetic properties at the final annealing stage during the above manufacturing process, and the relationship between the amount of C and N and the magnetic properties of the final product. Table 1 also shows that after annealing in H2 gas,
The amount of C and N in the steel and its magnetic properties were investigated after annealing at 750° C for 5 hours in a N 2 + H 2 gas, N 2 + Ar, CH 4 + H 2 , CH + Ar, and N 2 + CH 4 + H 2 gas atmosphere. The results are also listed. Table 1 also shows the results of examining the adhesion of each product board.

【表】【table】

【表】 表1に示した結果から明らかなように、仕上げ
焼鈍時におけるCおよびN量がそれぞれ100ppm
以下の試料を酸化物除去後、Tiを蒸着してから、
H2ガス中で焼鈍するか、あるいはさらに炭化性
および/または窒化性ガス雰囲気中で焼鈍を施し
た場合に、磁束密度B10が1.90T以上で、かつ鉄
損W17/50が0.85W/Kg以下の優れた特性が得られ
た。 ここに最終製品中のC、N量はいずれも、仕上
げ焼鈍後に比べて大幅に低減していることが注目
される。 なお磁気特性が良好な製品はいずれも、密着性
にも優れていた。 次に上に述べた製造工程と同様にしてTiの蒸
着層を被成した鋼板に対し、N2+H2、N2+Al、
CH4+H2、CH4+AlおよびN2+CH4+H2ガス雰
囲気中で800℃、5時間の焼鈍を施して得た製品
の、鋼中C、N量および磁気特性について調べた
結果を、密着性の調査結果と共に、表2に示す。
[Table] As is clear from the results shown in Table 1, the amount of C and N during final annealing was 100 ppm each.
After removing the oxide from the following sample, depositing Ti,
When annealing is performed in H2 gas or in a carbonizing and/or nitriding gas atmosphere, the magnetic flux density B 10 is 1.90T or more and the iron loss W 17/50 is 0.85W/ Excellent properties of less than Kg were obtained. It is noteworthy that the amounts of C and N in the final product are both significantly reduced compared to after final annealing. All products with good magnetic properties also had excellent adhesion. Next, a steel plate coated with a vapor-deposited layer of Ti in the same manner as in the manufacturing process described above was heated with N 2 +H 2 , N 2 +Al,
The results of an investigation of the amount of C and N in the steel and the magnetic properties of products obtained by annealing at 800°C for 5 hours in a CH 4 + H 2 , CH 4 + Al, and N 2 + CH 4 + H 2 gas atmosphere are shown below. Table 2 shows the results of the gender investigation.

【表】 表2から明らかなように、仕上げ焼鈍後のC、
N量がそれぞれ100ppm以下の試料を、炭化性お
よび/または窒化性ガス雰囲気中で焼鈍した場合
に、磁束密度B10が1.90T以上で、かつ鉄損W17/50
が0.87W/Kg以下の優れた特性が得られた。 また上記のC、N含有量のものはいずれも、密
着性にも優れたいた。 (作用) 上に述べた磁気特性の向上は、Ti表面層被成
後に、炭化および/または窒化処理を施すことに
よつて、鋼板表面にTiC、TiNないしTi(C、N)
からなる極薄被膜が形成され、かかる被膜が鋼板
に対し効果的に張力を付与することによる。 またとくに、Ti表面膜の炭化および/または
窒化処理の際に、鋼板中のC、Nの拡散を利用す
ることによつて、鋼板と該被膜の接合度が高ま
り、被膜密着性の向上を図り得る。 さらに表面酸化物を除去することによつて、鋼
板表面は適度の粗さの粗面を呈するようになるの
で、密着性のより一層の向上がもたらされる。 次に、一方向性けい素鋼板の製造工程について
一般的な説明を含めてより詳しく説明する。 まず出発素材は、従来公知の一方向性けい素鋼
板素材、たとえば C:0.03〜0.05%、Si:2.50〜4.5%、Mn:
0.01〜0.2%、Mo:0.003〜0.1%、Sb:0.005〜
0.2%、N:0.0005〜0.01%、SおよびSeの1種
あるいは2種合計で、0.005〜0.05%を含有す
る組成 C:0.03〜0.08%、Si:2.0〜4.0%、S:
0.005〜0.05%、N:0.001〜0.01%、Al:0.01〜
0.06%、Sn:0.01〜0.5%、Cu:0.01〜0.3%、
Mn:0.01〜0.2%を含有する組成、 C:0.03〜0.06%、Si:2.0〜4.0%、S:
0.005〜0.05%、B:0.0003〜0.0040%、N:
0.001〜0.01%、Mn:0.01〜0.2%を含有する組
成、 C:0.03〜0.05%、Si:2.0〜4.0%、Sb:
0.005〜0.2%、N:0.0005〜0.01%、Sおよび
Seのうちいずれか1種または2種:0.005〜
0.05%を含有する組成、 C:0.03〜0.05%、Si:2.0〜4.0%、N:
0.0005〜0.01%、SおよびSeのうちいずれか1
種または2種:0.005〜0.05%を含有する組成、 の如きにおいて適用可能である。 次に熱延板は800〜1100℃の均一化焼鈍を経て
1回の冷間圧延で最終板厚とする1回冷延法か又
は、通常850℃から1050℃の中間焼鈍をはさんで
さらに冷延する2回冷延法にて、後者の場合最初
の圧下率は50%から80%程度、最終の圧下率は50
%から85%程度で0.15mmから0.35mmの厚の最終冷
延板厚とする。 最終冷延を終わり製品板厚に仕上げた鋼板は表
面脱脂後750℃から850℃の湿水素中で脱炭1次再
結晶焼鈍を施す。 ここに脱炭処理は、通常後続の2次再結晶焼鈍
においてゴス方位に強く集積した2次再結晶粒を
発達させると共に、純化焼鈍における鋼中Cのよ
り一層の低減のために、C量をできる限り低く
し、もつて鉄損の低減を図るために行われるもの
であるが、この発明ではすでに述べたように、
Tiを蒸着した後の焼鈍においてNと共にCの純
化が促進されることから、この脱炭焼鈍段階にお
いては従来ほど厳しい脱炭を図る必要はなく、
0.01%以下程度(好ましくは0.001%以上)で充
分である。 その後は通常、鋼板表面にMgOを主成分とす
る焼鈍分離剤を塗布するが、この発明では、一般
的には仕上げ焼鈍後の形成を不可欠としていたフ
オルステライトをとくに形成させない方がその後
の鋼板の鏡面処理を簡便にするのに有効であるの
で、焼鈍分離剤としてAl2O3、ZrO2、TiO2等を
50%以上MgOに混入して使用するのが好ましい。 その後2次再結晶焼鈍を行うが、この工程は
{110}<001>方位の2次再結晶粒を充分発達させ
るために施されるもので、通常箱焼鈍によつて直
ちに1000℃以上に昇温し、その温度に保持するこ
とによつて行われる。 この場合{110}<001>方位に、高度に揃つた
2次再結晶粒組織を発達させるためには820℃か
ら900℃の低温で保定焼鈍する方が有利であり、
そのほか例えば0.5〜15℃/hの昇温速度の徐熱
焼鈍でもよい。 ついで乾水素中で純化焼鈍を施すが、製品板に
おける被膜密着性の一層の改善のためには、鋼板
中にC:0.001〜0.01%およびN:0.0005〜0.01%
を残存させることが肝要である。このためには純
化焼鈍において、1100℃以上、1〜20時間という
条件の中から適切な焼鈍上限を選択すればよい。 その後、鋼板表面の酸化物被膜を、公知の酸洗
などの化学的除去や切削、研削などの機械的除去
法またはそれらの組合わせより除去する。 その後酸化物を除去した鋼板表面上にTiの表
面層を被成するが、このときのTi表面層厚は0.1
〜2.0μm程度とするのが好ましい。 またTiの表面層の被成方法は、これまで述べ
てきた蒸着の他にCVD法、イオンプレーテイン
グ法あるいはイオンインプランテーシヨン法等の
方法であつても良い。 ついでTi表面層付き方向性けい素鋼板に、非
酸化性雰囲気、また炭化性および/または窒化性
雰囲気、さらには非酸化性雰囲気ついで炭化性お
よび/または窒化性雰囲気中で焼鈍を施すわけで
あるが、これらの焼鈍処理は次の要領で行う。 () 非酸化性雰囲気中での焼鈍 雰囲気ガスとしては、H2ガスやArガスがと
りわけ有効に適合し、かかる雰囲気中において
500℃以上の温度で焼鈍を行い、鋼板中のC、
Nの表面への拡散を促進させるのである。この
とき鋼中C量がN量に比べて多い場合には、鋼
板表面には主としてTiCよりなる極薄被膜が、
一方逆の場合には主としてTiNよりなる極薄
被膜が形成されることになる。 () 炭化性および/または窒化性ガス雰囲気中
での焼鈍 炭化性ガスとしては、CH4やC2H6などの炭
化水素系ガスおよびCOガス、さらにはこれら
のガスとH2やArガスとの混合ガスが、また窒
化性ガスとしては、N2ガスやNH3ガスならび
にこれらのガスとH2やArガスとの混合ガスが
有利に適合し、かかる雰囲気中において500℃
以上の温度で焼鈍を行うことによつて、鋼中
C,Nの純化促進ならびに雰囲気ガスからの浸
炭および/または浸窒を図ることにより、鋼板
表面に炭化物および/または窒化物からなる混
合薄膜を形成させる。 さらにこのようにして形成した極薄張力被膜上
に、りん酸塩とコロイダルシリカを主成分とする
絶縁被膜の塗布焼付を行うことが、100万KVAに
も上る大容量トランスの使途において当然に必要
であり、この絶縁性塗布焼付層の形成の如きは、
従来公知の手法をそのまま用いて良い。 (実施例) (A) C:0.041%、Si:3.48%、Mn:0.062%、
Mo:0.025%、Se:0.022%、Sb:0.025%およ
びN:0.0038% (B) C:0.053%、Si:3.32%、Mn:0.072%、
S:0.018%、Al:0.025%およびN:0.0066% (C) C:0.039%、Si:3.31%、Mn:0.059%、
S:0.030%、B:0.0019%、N:0.0068%およ
びCn:0.15% (D) C:0.046%、Si:3.09%、Mn:0.063%、
Se:0.019%およびSb:0.025% (E) C:0.038%、Si:3.08%、Mn:0.071%およ
びS:0.019% を含有する組成になるけい素鋼熱延板を用いた。
まず熱延板(A)、(C)、(D)、(E)については900℃で均
一化焼鈍を行つた。他方熱延板(B)は、1050℃で3
分間の均一化焼鈍後、900℃から急冷した。その
後(A)、(D)、(E)については、950℃の中間焼鈍を挟
んで2回冷間圧延を行つて0.23mmの最終板厚と
し、また(B)、(C)は1回の強冷延によつて0.23mm厚
の最終冷延板に仕上げたが、冷延途中に300℃の
温間圧延を挟んだ。 ついでこれらの冷延板表面を脱脂したのち、露
点25℃の湿水素中における830℃の脱炭焼鈍後、
Al2O3:70%、MgO:25%、ZrO2:5%からな
る焼鈍分離剤を塗布した。 その後、(A)、(D)は850℃で50時間の2次再結晶
焼鈍を行つたのち、乾水素中で1200℃、6時間の
純化焼鈍を施した。一方(B)、(C)、(E)は850℃から
5℃/hで1050℃まで昇温して2次再結晶させた
のち、乾水素中で1200℃、8時間の純化焼鈍を施
した。 その後得られた各鋼板を酸洗処理して、表面の
酸化被膜を除去してから、該酸化物除去後の表面
上に、0.7μm厚のTiの蒸着層を被成した。 その後(A)、(B)、(C)については、H2ガス雰囲気
中で800℃、5時間の焼鈍を施し、一部の試料に
ついてはさらにN2および/またはCH4ガスを含
有する雰囲気中で700℃、3時間の焼鈍を施した。 また(D)、(E)については、直ちにN2および/ま
たはCH4ガスを含有する雰囲気中で800℃、5時
間の焼鈍を施した。 かくして得られたTiC、TiNないしTi(C、N)
からなる極薄被膜をそなえる方向性けい素板の鋼
中C、N量、磁気特性および密着性について調べ
た結果を、仕上げ焼鈍後の鋼中C、N量および磁
気特性と比較して、表3に示す。 また表3には、上記の極薄被膜付き方向性けい
素鋼板の表面に、さらにり酸塩とコロイダルシリ
カを主成分とするコーテイング被膜を被成した製
品の磁気特性についての調査結果も併せて示す。
[Table] As is clear from Table 2, C after finish annealing,
When a sample with a N content of 100 ppm or less is annealed in a carbonizing and/or nitriding gas atmosphere, the magnetic flux density B 10 is 1.90 T or more and the iron loss W 17/50
Excellent characteristics were obtained, with a value of 0.87W/Kg or less. In addition, all of the above-mentioned C and N content materials also had excellent adhesion. (Function) The above-mentioned improvement in magnetic properties can be achieved by carbonizing and/or nitriding the surface layer of TiC, TiN or Ti(C,N) on the surface of the steel sheet.
This is because an ultra-thin coating is formed, and this coating effectively applies tension to the steel plate. In particular, by utilizing the diffusion of C and N in the steel sheet during the carbonization and/or nitriding treatment of the Ti surface film, the degree of bonding between the steel sheet and the film is increased, and the adhesion of the film is improved. obtain. Furthermore, by removing surface oxides, the surface of the steel sheet becomes rough with appropriate roughness, resulting in further improvement in adhesion. Next, the manufacturing process of the unidirectional silicon steel sheet will be described in more detail, including a general explanation. First, the starting material is a conventionally known unidirectional silicon steel sheet material, such as C: 0.03 to 0.05%, Si: 2.50 to 4.5%, Mn:
0.01~0.2%, Mo: 0.003~0.1%, Sb: 0.005~
Composition containing 0.2%, N: 0.0005-0.01%, one or both of S and Se in total of 0.005-0.05% C: 0.03-0.08%, Si: 2.0-4.0%, S:
0.005~0.05%, N: 0.001~0.01%, Al: 0.01~
0.06%, Sn: 0.01~0.5%, Cu: 0.01~0.3%,
Composition containing Mn: 0.01-0.2%, C: 0.03-0.06%, Si: 2.0-4.0%, S:
0.005~0.05%, B: 0.0003~0.0040%, N:
Composition containing 0.001-0.01%, Mn: 0.01-0.2%, C: 0.03-0.05%, Si: 2.0-4.0%, Sb:
0.005-0.2%, N: 0.0005-0.01%, S and
Any one or two of Se: 0.005~
Composition containing 0.05%, C: 0.03-0.05%, Si: 2.0-4.0%, N:
0.0005-0.01%, any one of S and Se
It is applicable in compositions containing 0.005 to 0.05% of one species or two species. Next, the hot-rolled sheet is either uniformly annealed at 800-1100℃ and then cold-rolled once to reach the final thickness, or it is usually subjected to intermediate annealing at 850-1050℃ and further processed. In the two-step cold rolling method, in the latter case, the initial rolling reduction is about 50% to 80%, and the final rolling reduction is 50%.
The final cold-rolled plate thickness is between 0.15mm and 0.35mm at a rate of about 85%. After the final cold rolling, the steel plate finished to the product thickness is surface degreased and then decarburized and primary recrystallized annealed in wet hydrogen at 750°C to 850°C. Here, the decarburization treatment usually develops secondary recrystallized grains that are strongly accumulated in the Goss orientation in the subsequent secondary recrystallization annealing, and also reduces the amount of C in the steel in order to further reduce C in the steel in the purification annealing. This is done in order to reduce the iron loss as much as possible, but as already mentioned in this invention,
Since the purification of C as well as N is promoted in the annealing after Ti is deposited, there is no need to carry out decarburization as harshly as in the past at this decarburization annealing stage.
A content of about 0.01% or less (preferably 0.001% or more) is sufficient. After that, an annealing separator mainly composed of MgO is usually applied to the surface of the steel sheet, but in this invention, it is better not to form forsterite, which is generally required to be formed after finish annealing. Al 2 O 3 , ZrO 2 , TiO 2 , etc. are used as annealing separators because they are effective in simplifying mirror finishing.
It is preferable to use 50% or more of MgO mixed with MgO. After that, secondary recrystallization annealing is performed, but this step is carried out to sufficiently develop secondary recrystallized grains with {110}<001> orientation, and is usually box annealed to immediately raise the temperature to 1000℃ or higher. This is done by heating and holding at that temperature. In this case, in order to develop a highly uniform secondary recrystallized grain structure in the {110}<001> orientation, it is advantageous to perform retention annealing at a low temperature of 820°C to 900°C.
In addition, slow heat annealing at a heating rate of 0.5 to 15° C./h may also be used. Purification annealing is then performed in dry hydrogen, but in order to further improve the film adhesion of the product sheet, C: 0.001-0.01% and N: 0.0005-0.01% are added to the steel sheet.
It is essential that these remain. For this purpose, an appropriate upper limit of annealing may be selected from the conditions of 1100° C. or higher and 1 to 20 hours in purification annealing. Thereafter, the oxide film on the surface of the steel plate is removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof. After that, a Ti surface layer is formed on the steel sheet surface from which oxides have been removed, and the Ti surface layer thickness at this time is 0.1
It is preferable to set it to about 2.0 μm. Further, the method for forming the Ti surface layer may be, in addition to the vapor deposition described above, a method such as a CVD method, an ion plating method, or an ion implantation method. The grain-oriented silicon steel sheet with a Ti surface layer is then annealed in a non-oxidizing atmosphere, a carbonizing and/or nitriding atmosphere, and further annealing in a non-oxidizing atmosphere and then a carbonizing and/or nitriding atmosphere. However, these annealing treatments are performed in the following manner. () Annealing in a non-oxidizing atmosphere As the atmospheric gas, H 2 gas and Ar gas are particularly effective.
Annealing is performed at a temperature of 500℃ or higher to remove C,
This promotes the diffusion of N to the surface. At this time, if the amount of C in the steel is larger than the amount of N, an ultra-thin film mainly made of TiC will form on the steel plate surface.
On the other hand, in the opposite case, an extremely thin film consisting mainly of TiN will be formed. () Annealing in a carbonizing and/or nitriding gas atmosphere Carbonizing gases include hydrocarbon gases such as CH 4 and C 2 H 6 and CO gas, as well as combinations of these gases with H 2 and Ar gas. Also, as the nitriding gas, N 2 gas, NH 3 gas, and a mixture of these gases with H 2 or Ar gas are advantageously suitable.
By annealing at the above temperature, purification of C and N in the steel and carburizing and/or nitriding from atmospheric gas are achieved, thereby forming a mixed thin film of carbides and/or nitrides on the surface of the steel sheet. Let it form. Furthermore, it is necessary to apply and bake an insulating film mainly composed of phosphate and colloidal silica on the ultra-thin tension film formed in this way when using a large capacity transformer of up to 1 million KVA. The formation of this insulating coating and baking layer is as follows:
Conventionally known methods may be used as they are. (Example) (A) C: 0.041%, Si: 3.48%, Mn: 0.062%,
Mo: 0.025%, Se: 0.022%, Sb: 0.025% and N: 0.0038% (B) C: 0.053%, Si: 3.32%, Mn: 0.072%,
S: 0.018%, Al: 0.025% and N: 0.0066% (C) C: 0.039%, Si: 3.31%, Mn: 0.059%,
S: 0.030%, B: 0.0019%, N: 0.0068% and Cn: 0.15% (D) C: 0.046%, Si: 3.09%, Mn: 0.063%,
A silicon steel hot rolled sheet having a composition containing Se: 0.019% and Sb: 0.025% (E) C: 0.038%, Si: 3.08%, Mn: 0.071% and S: 0.019% was used.
First, hot-rolled sheets (A), (C), (D), and (E) were uniformly annealed at 900°C. On the other hand, the hot rolled sheet (B) was heated to 3 at 1050℃.
After uniform annealing for 1 minute, it was rapidly cooled from 900°C. After that, (A), (D), and (E) were cold rolled twice with intermediate annealing at 950℃ to obtain a final thickness of 0.23 mm, and (B) and (C) were cold rolled once. A final cold-rolled sheet with a thickness of 0.23 mm was obtained by intense cold rolling, but warm rolling at 300°C was interposed during the cold rolling. After degreasing the surface of these cold-rolled sheets, decarburization annealing was performed at 830°C in wet hydrogen with a dew point of 25°C.
An annealing separator consisting of 70% Al 2 O 3 , 25% MgO, and 5% ZrO 2 was applied. Thereafter, (A) and (D) were subjected to secondary recrystallization annealing at 850°C for 50 hours, followed by purification annealing at 1200°C for 6 hours in dry hydrogen. On the other hand, (B), (C), and (E) were heated from 850℃ to 1050℃ at 5℃/h for secondary recrystallization, and then subjected to purification annealing at 1200℃ for 8 hours in dry hydrogen. did. Thereafter, each steel plate obtained was pickled to remove the oxide film on the surface, and a 0.7 μm thick Ti vapor deposited layer was formed on the surface after the oxide was removed. Thereafter, (A), (B), and (C) were annealed for 5 hours at 800°C in an H 2 gas atmosphere, and some samples were further annealed in an atmosphere containing N 2 and/or CH 4 gas. The material was annealed at 700°C for 3 hours. In addition, (D) and (E) were immediately annealed at 800° C. for 5 hours in an atmosphere containing N 2 and/or CH 4 gas. TiC, TiN or Ti(C,N) thus obtained
The results of investigating the C and N contents, magnetic properties, and adhesion of grain-oriented silicon plates with ultra-thin coatings are compared with the C and N contents and magnetic properties of steel after final annealing. Shown in 3. Table 3 also includes the results of a study on the magnetic properties of a product in which a coating film containing phosphate and colloidal silica as main components is applied to the surface of the above-mentioned ultra-thin film-coated grain-oriented silicon steel sheet. show.

【表】 表3に示した成績から明らかなように、この発
明に従い、仕上げ焼鈍後の一方向性けい素鋼板に
つき、その表面酸化物除去後、Tiの薄膜を被成
したのち、非酸化性雰囲気中、または炭化性およ
び/または窒化性ガス雰囲気中、さらには非酸化
性雰囲気中ついで炭化性および/または窒化性ガ
ス雰囲気中において焼鈍を施し、鋼板表面上に
TiC、TiNないしTi(C、N)の極薄被膜を形成
させることによつて、良好な被膜密着性の下に磁
気特性とくに鉄損特性の著しい向上が達成され
た。 (発明の効果) かくしてこの発明によれば、巻鉄心向けトラン
ス材料としての使途におけるような高温でのひず
み取り焼鈍の如き高温処理の適用の有無にかかわ
らず、磁気特性とくに鉄損特性の大幅な改善を被
膜密着性の向上に併せて実現することができる。
[Table] As is clear from the results shown in Table 3, according to the present invention, after surface oxides were removed from the unidirectional silicon steel sheet after final annealing, a thin film of Ti was formed on the non-oxidizing silicon steel sheet. Annealing is performed in an atmosphere, a carbonizing and/or nitriding gas atmosphere, a non-oxidizing atmosphere, and a carbonizing and/or nitriding gas atmosphere, and the surface of the steel sheet is annealed.
By forming an extremely thin film of TiC, TiN or Ti(C,N), a remarkable improvement in magnetic properties, particularly iron loss properties, was achieved with good film adhesion. (Effects of the Invention) Thus, according to the present invention, magnetic properties, particularly iron loss properties, can be significantly improved regardless of whether high-temperature treatment such as high-temperature strain relief annealing is applied when used as a transformer material for wound cores. Improvements can be realized in conjunction with improvements in film adhesion.

Claims (1)

【特許請求の範囲】 1 仕上げ焼鈍済みの一方向性けい素鋼板につ
き、その表面酸化物を除去した鋼板表面上にTi
の表面層を被成したのち、該Ti表面層を炭化お
よび/または窒化させることにより、鋼板表面上
にTiC、TiNないしTi(C、N)の極薄張力被膜
を形成させることを特徴とする超低鉄損一方向性
けい素鋼板の製造方法。 2 仕上げ焼鈍済みの一方向性けい素鋼板につ
き、その表面酸化物を除去した鋼板表面上にTi
の表面層を被成したのち、該Ti表面層を炭化お
よび/または窒化させることにより、鋼板表面上
にTiC、TiNないしTi(C、N)の極薄張力被膜
を形成し、しかるのちりん酸塩とコロイダルシリ
カを主成分とする絶縁被膜を形成させることを特
徴とする超低鉄損一方向性けい素鋼板の製造方
法。 3 C:0.001〜0.010wt%および N:0.0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性
けい素鋼板につき、その表面酸化物を除去した鋼
板表面上にTiの表面層を被成したのち、非酸化
性雰囲気中で焼鈍を施して鋼板中のCおよびNの
純化促進を図ることにより、鋼板表面上にTiC、
TiNないしTi(C、N)の極薄張力被膜を形成さ
せることを特徴とする超低鉄損一方向性けい素鋼
板の製造方法。 4 C:0.001〜0.010wt%および N:0.0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性
けい素鋼板につき、その表面酸化物を除去した鋼
板表面上にTiの表面層を被成したのち、非酸化
性雰囲気中で焼鈍を施して鋼板中のCおよびNの
純化促進を図ることにより、鋼板表面上にTiC、
TiNないしTi(C、N)の極薄張力被膜を形成
し、しかるのちりん酸塩とコロイダルシリカを主
成分とする絶縁被膜を形成させることを特徴とす
る超低鉄損一方向性けい素鋼板の製造方法。 5 C:0.001〜0.010wt%および N:0.0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性
けい素鋼板につき、その表面酸化物を除去した鋼
板表面上にTiの表面層を被成したのち、炭化性
および/または窒化性ガス雰囲気中で焼鈍を施し
て、鋼板中のCおよびNの純化促進ならびに該雰
囲気からの浸炭および/または浸窒作用により、
鋼板表面上にTiC、TiNないしTi(C、N)の極
薄張力被膜を形成させることを特徴とする超低鉄
損一方向性けい素鋼板の製造方法。 6 C:0.001〜0.010wt%および N:0.0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性
けい素鋼板につき、その表面酸化物を除去した鋼
板表面上にTiの表面層を被成したのち、炭化性
および/または窒化性ガス雰囲気中で焼鈍を施し
て、鋼板中のCおよびNの純化促進ならびに該雰
囲気からの浸炭および/または浸窒作用により、
鋼板表面上にTiC、TiNないしTi(C、N)の極
薄張力被膜を形成し、しかるのちりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜を形成させ
ることを特徴とする超低鉄損一方向性けい素鋼板
の製造方法。 7 C:0.001〜0.010wt%および N:0.0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性
けい素鋼板につき、その表面酸化物を除去した鋼
板表面上にTiの表面層を被成したのち、非酸化
性雰囲気中で焼鈍を施して鋼板中のCおよびNの
純化促進を図り、さらに炭化性および/または窒
化性ガス雰囲気中で焼鈍を施して該雰囲気からの
浸炭および/または浸窒作用を加味することによ
り、鋼板表面上にTiC、TiNないしTi(C、N)
の極薄張力被膜を形成させることを特徴とする超
低鉄損一方向性けい素鋼板の製造方法。 8 C:0.001〜0.010wt%および N:0.0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性
けい素鋼板につき、その表面酸化物を除去した鋼
板表面上にTiの表面層を被成したのち、非酸化
性雰囲気中で焼鈍を施して鋼板中のCおよびNの
純化促進を図り、さらに炭化性および/または窒
化性ガス雰囲気中で焼鈍を施して該雰囲気からの
浸炭および/または浸窒作用を加味することによ
り、鋼板表面上にTiC、TiNないしTi(C、N)
の極薄張力被膜を形成し、しかるのちりん酸塩と
コロイダルシリカを主成分とする絶縁被膜を形成
させることを特徴とする超低鉄損一方向性けい素
鋼板の製造方法。
[Claims] 1. For a finish annealed unidirectional silicon steel sheet, Ti is applied on the surface of the steel sheet from which surface oxides have been removed.
After forming a surface layer, the Ti surface layer is carbonized and/or nitrided to form an ultra-thin tensile coating of TiC, TiN or Ti(C,N) on the surface of the steel sheet. A method for producing ultra-low core loss unidirectional silicon steel sheets. 2. For finish annealed unidirectional silicon steel sheets, Ti is applied on the surface of the steel sheets from which surface oxides have been removed.
After forming a surface layer, the Ti surface layer is carbonized and/or nitrided to form an ultra-thin tension film of TiC, TiN or Ti(C,N) on the surface of the steel sheet, and then the phosphoric acid A method for producing an ultra-low iron loss unidirectional silicon steel sheet, which is characterized by forming an insulating film containing salt and colloidal silica as main components. 3 For a finish-annealed unidirectional silicon steel sheet having a composition containing C: 0.001 to 0.010 wt% and N: 0.0005 to 0.0100 wt%, a surface layer of Ti was formed on the surface of the steel sheet from which surface oxides had been removed. After TiC is deposited on the surface of the steel sheet, annealing is performed in a non-oxidizing atmosphere to promote the purification of C and N in the steel sheet.
A method for producing an ultra-low core loss unidirectional silicon steel sheet, which comprises forming an ultra-thin tensile coating of TiN or Ti(C,N). 4 For a finish-annealed unidirectional silicon steel sheet having a composition containing C: 0.001 to 0.010 wt% and N: 0.0005 to 0.0100 wt%, a surface layer of Ti was added on the surface of the steel sheet from which surface oxides had been removed. After TiC is deposited on the surface of the steel sheet, annealing is performed in a non-oxidizing atmosphere to promote the purification of C and N in the steel sheet.
An ultra-low iron loss unidirectional silicon steel sheet characterized by forming an ultra-thin tensile coating of TiN or Ti (C, N), and then forming an insulating coating whose main components are phosphate and colloidal silica. manufacturing method. 5 For a finish-annealed unidirectional silicon steel sheet having a composition containing C: 0.001 to 0.010 wt% and N: 0.0005 to 0.0100 wt%, a surface layer of Ti was formed on the surface of the steel sheet from which surface oxides had been removed. After the formation, annealing is performed in a carbonizing and/or nitriding gas atmosphere to promote the purification of C and N in the steel sheet and to cause carburizing and/or nitriding effects from the atmosphere.
A method for producing an ultra-low core loss unidirectional silicon steel sheet, which comprises forming an ultra-thin tensile film of TiC, TiN or Ti(C,N) on the surface of the steel sheet. 6 For a finish-annealed unidirectional silicon steel sheet having a composition containing C: 0.001 to 0.010 wt% and N: 0.0005 to 0.0100 wt%, a surface layer of Ti was added on the surface of the steel sheet from which surface oxides had been removed. After the formation, annealing is performed in a carbonizing and/or nitriding gas atmosphere to promote the purification of C and N in the steel sheet and to cause carburizing and/or nitriding effects from the atmosphere.
Ultra-low iron loss characterized by forming an ultra-thin tensile coating of TiC, TiN or Ti (C, N) on the surface of the steel plate, and then forming an insulating coating whose main components are tiphosphate and colloidal silica. A method for producing unidirectional silicon steel sheets. 7 For a finish-annealed unidirectional silicon steel sheet having a composition containing C: 0.001 to 0.010 wt% and N: 0.0005 to 0.0100 wt%, a surface layer of Ti was added on the surface of the steel sheet from which surface oxides had been removed. After the formation, annealing is performed in a non-oxidizing atmosphere to promote the purification of C and N in the steel sheet, and further annealing is performed in a carbonizing and/or nitriding gas atmosphere to remove carburization and/or carbonization from the atmosphere. Or, by adding nitriding effect, TiC, TiN or Ti(C,N) can be added to the steel plate surface.
A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized by forming an ultra-thin tensile film. 8 For a finish-annealed unidirectional silicon steel sheet having a composition containing C: 0.001 to 0.010 wt% and N: 0.0005 to 0.0100 wt%, a surface layer of Ti was formed on the surface of the steel sheet from which surface oxides had been removed. After the formation, annealing is performed in a non-oxidizing atmosphere to promote the purification of C and N in the steel sheet, and further annealing is performed in a carbonizing and/or nitriding gas atmosphere to remove carburization and/or carbonization from the atmosphere. Or, by adding nitriding effect, TiC, TiN or Ti(C,N) can be added to the steel plate surface.
1. A method for producing an ultra-low core loss unidirectional silicon steel sheet, characterized by forming an ultra-thin tensile film of 1, and forming an insulating film mainly composed of phosphate and colloidal silica.
JP18016285A 1985-02-22 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate Granted JPS6240702A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP18016285A JPS6240702A (en) 1985-08-16 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate
EP86301071A EP0193324B1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
DE8686301071T DE3666229D1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
AU53747/86A AU570835B2 (en) 1985-02-22 1986-02-19 Metal nitride/carbide coated grain oriented silicon steel sheet
CA000502337A CA1297070C (en) 1985-02-22 1986-02-20 Extra-low iron loss grain oriented silicon steel sheets
EP86904726A EP0215134B1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
US06/907,734 US4713123A (en) 1985-02-22 1986-02-21 Method of producing extra-low iron loss grain oriented silicon steel sheets
DE8686904726T DE3673290D1 (en) 1985-02-22 1986-02-21 MANUFACTURING METHOD FOR UNIDIRECTIONAL SILICON STEEL PLATE WITH EXCEPTIONAL IRON LOSS.
US06/832,172 US4698272A (en) 1985-02-22 1986-02-21 Extra-low iron loss grain oriented silicon steel sheets
PCT/JP1986/000087 WO1986004929A1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
KR1019860001259A KR910006011B1 (en) 1985-02-22 1986-02-22 Extra-low iron loss grain oriented silicon steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18016285A JPS6240702A (en) 1985-08-16 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate

Publications (2)

Publication Number Publication Date
JPS6240702A JPS6240702A (en) 1987-02-21
JPH0337846B2 true JPH0337846B2 (en) 1991-06-06

Family

ID=16078481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18016285A Granted JPS6240702A (en) 1985-02-22 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate

Country Status (1)

Country Link
JP (1) JPS6240702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117346A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Gold-colored steel sheet and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117346A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Gold-colored steel sheet and manufacturing method therefor
US11339459B2 (en) 2016-12-23 2022-05-24 Posco Gold-colored steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6240702A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS6335684B2 (en)
JPS6332849B2 (en)
JPH0337846B2 (en)
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JPH0374486B2 (en)
JPS62103374A (en) Grain-oriented silicon steel sheet having superior magnetic characteristic
JPS6354767B2 (en)
JPS6263407A (en) Production of low iron loss unidirectional silicon steel plate
JPS6332850B2 (en)
JPH0577749B2 (en)
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPS6335685B2 (en)
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPS6240703A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPS62192581A (en) Production of extra-low iron loss grain oriented silicon steel sheet
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPH0335377B2 (en)
JPS6240317A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPH0374488B2 (en)
JPS6229107A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPH0699823B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet