JPS6240317A - Manufacture of grain-oriented silicon steel sheet with extremely small iron loss - Google Patents

Manufacture of grain-oriented silicon steel sheet with extremely small iron loss

Info

Publication number
JPS6240317A
JPS6240317A JP60180161A JP18016185A JPS6240317A JP S6240317 A JPS6240317 A JP S6240317A JP 60180161 A JP60180161 A JP 60180161A JP 18016185 A JP18016185 A JP 18016185A JP S6240317 A JPS6240317 A JP S6240317A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
forming
ultra
annealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60180161A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60180161A priority Critical patent/JPS6240317A/en
Priority to EP86301071A priority patent/EP0193324B1/en
Priority to DE8686301071T priority patent/DE3666229D1/en
Priority to AU53747/86A priority patent/AU570835B2/en
Priority to CA000502337A priority patent/CA1297070C/en
Priority to EP86904726A priority patent/EP0215134B1/en
Priority to US06/907,734 priority patent/US4713123A/en
Priority to DE8686904726T priority patent/DE3673290D1/en
Priority to US06/832,172 priority patent/US4698272A/en
Priority to PCT/JP1986/000087 priority patent/WO1986004929A1/en
Priority to KR1019860001259A priority patent/KR910006011B1/en
Publication of JPS6240317A publication Critical patent/JPS6240317A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the adhesion of a film as well as to improve the iron loss characteristics of annealed grain-oriented silicon steel sheet by forming a Ti surface layer on the surface of the steel sheet and carbonizing and nitriding the surface layer to form a very thin tension film. CONSTITUTION:A Ti surface layer formed on the surface of a grain-oriented silicon steel sheet contg. 0.001-0.010wt% C and 0.0005-0.0100wt% N after finish annealing is carbonized and nitrided to form a very thin tension film of TiC, TiN or Ti(C, N). An insulating film contg. phosphate and colloidal silica as essential components is further formed. By this method, the adhesion of the films are enhanced and the magnetic characteristics, especially the iron loss characteristics, can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も、鉄損の低減に係わる極限的な要請を満たそうとする
近年来の目覚ましい開発努力は、逐次その実を挙げつつ
あるが、その実施に伴う重大な弊害として、一方向性け
い素鋼板の使用に当たっての加工、組立てを経たのち、
いわゆるひずみ取り焼鈍がほどこされた場合に、特性劣
化の随伴を不可避に生じて、使途についての制限を受け
る不利が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, efforts have been made to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. The remarkable development efforts are gradually bearing fruit, but one serious drawback to their implementation is that after processing and assembly when using unidirectional silicon steel sheets,
It has been pointed out that when so-called strain-relief annealing is applied, it inevitably causes characteristic deterioration and is disadvantageous in that its usage is limited.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を拓くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性けい素鋼板は、よく知られているとおり製
品の2次再結晶粒を(110) (001) 、すなわ
ちゴス方位に、高度に集積させたもので、主として変圧
器その他の電気機器の鉄心として使用され電気・磁気的
特性として製品の磁束密度(Bo。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (001), or Goss, orientation, and are mainly used in transformers and other electrical equipment. The magnetic flux density (Bo.

値で代表される)が高く、鉄損(W+tzs。値で代表
される)の低いことが要求される。
It is required that the iron loss (W+tzs, represented by the value) be high and the iron loss (W+tzs, represented by the value) be low.

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30+mの製品の磁気特性がB
oo 1.90T以上、Lt/so 1.05W八g以
下、また板厚0.23mの製品の磁気特性がB、。
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today products with a thickness of 0.30+m have magnetic properties of B.
oo 1.90T or more, Lt/so 1.05W 8g or less, and a product with a plate thickness of 0.23m has a magnetic property of B.

1.89T以上、W+t/so O,90W/kg以下
の超低鉄損一方向性けい素鋼板が製造されるようになっ
て来ている。
Unidirectional silicon steel sheets with ultra-low iron loss of 1.89T or more, W+t/so O, and 90W/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板の
仕上げ焼鈍後の鋼板表面に圧延方向にほぼ直角方向での
レーザ照射により局部微小ひずみを導入して磁区を細分
化し、もって鉄損を低下させることが提案された(特公
昭57−2252号、特公昭57−53419号、特公
昭58−26405号および特公昭58−26406号
各公報参照)。
(Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after final annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce the iron loss (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料としては効果的であるが、ひずみ取
り焼鈍を施す、主として巻鉄心トランス材料にあっては
、レーザー照射によって折角に導入された局部微小ひず
みが焼鈍処理により解放されて磁区幅が広くなるため、
レーザー照射効果が失われるという欠点がある。
Although this magnetic domain refining technology is effective for transformer materials for laminated iron cores that are not subjected to strain relief annealing, it is difficult to introduce them by laser irradiation when applying strain relief annealing, mainly for wound core transformer materials. The local minute strain caused by the annealing process is released and the magnetic domain width becomes wider.
The disadvantage is that the laser irradiation effect is lost.

一方これより先に特公昭52−24499号公報(こお
いては、一方向性けい素鋼板の仕上げ焼鈍後の鋼板表面
を鏡面仕上げするか又はその鏡面仕上げ面上に金属薄め
っきやさらにその上に絶縁被膜を塗布焼付することによ
る、超低鉄損一方向性けい素鋼板の製造方法が提案され
ている。
On the other hand, earlier than this, Japanese Patent Publication No. 52-24499 (in this case, the surface of a unidirectional silicon steel sheet after finish annealing is mirror-finished, or the mirror-finished surface is coated with metal thin plating or further A method for producing ultra-low core loss unidirectional silicon steel sheets has been proposed by applying and baking an insulating film on the steel.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアンプになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上げ後
に不可欠な絶縁被膜を塗布焼付した後の密着性に問題が
あるため、現在の製造工程において採用されるに至って
はいない。また特公昭56−4150号公報においても
鋼板表面を鏡面仕上げした後、酸化物系セラミックス薄
膜を蒸着する方法が提案されている。しかしながらこの
方法も600℃以上の高温焼鈍を施すと鋼板とセラミッ
ク層とが剥離するため、実際の製造工程では採用できな
い。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not make a sufficient contribution to reducing iron loss, although it increases the cost significantly, and especially after applying and baking the insulating film that is essential after mirror finishing. Due to problems with adhesion, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 発明者らは特に今日の省エネ材料開発の観点では上記の
ごときコストアンプの不利を凌駕する特性、なかでも、
高温処理での特性劣化を伴うことなくして絶縁層の密着
性、耐久性の問題を克服することが肝要と考え、この基
本認識に立脚し、仕上げ焼鈍済みの方向性けい素鋼板表
面上の鋼板処理方法の抜本的な改善によってとくに有利
な超低鉄損化を達成することが、この発明の目的である
(Problems to be Solved by the Invention) In particular, from the perspective of today's energy-saving material development, the inventors have developed characteristics that outweigh the disadvantages of cost amplifiers as described above.
We believe that it is important to overcome the problems of adhesion and durability of the insulating layer without deterioration of properties during high-temperature treatment, and based on this basic understanding, we have developed a steel plate on the surface of a grain-oriented silicon steel plate that has been finish annealed. It is an object of the present invention to achieve a particularly advantageous ultra-low iron loss by radically improving the processing method.

(問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく種々検討した
結果、方向性けい素鋼板の仕上げ焼鈍板表面上に例えば
蒸着により好ましくは0.1〜2.0μm厚程鹿のTi
Fii層を被成したのち、該Ti表面層を炭化および/
または窒化させることにより、鋼板表面上にTiC,T
iNないしTi (C,N)の極薄張力被膜を形成させ
ること(第1発明)、さらにはりん酸塩とコロイダルシ
リカを主成分とする絶縁被膜を形成させること(第2発
明)が、所期した目的の達成に極めて有効であることの
知見を得た。
(Means for Solving the Problems) Now, as a result of various studies to achieve the above object, the inventors have found that preferably 0.1 to 2 .0μm thick Deer Ti
After forming the Fii layer, the Ti surface layer is carbonized and/or
Or, by nitriding, TiC, T
Forming an ultra-thin tensile film of iN or Ti (C,N) (first invention), and further forming an insulating film mainly composed of phosphate and colloidal silica (second invention) We have obtained knowledge that this method is extremely effective in achieving the intended purpose.

ここにTi表面層を炭化および/または窒化させる手段
としては、 仕上げ焼鈍後の一方向性けい素鋼板中にC:0゜001
〜0.010wt?! (以下単ニ%テ示す)およびN
:0.0005〜o、oioo%を含有させておき、か
かる鋼板の表面上にTiの表面層を被成してから、非酸
化性雰囲気中で焼鈍を施して鋼板中のCおよびNの純化
促進を図ること(第3.第4発明)、また同じくCおよ
びNを所定量含有させた仕上げ焼鈍済みの一方向性けい
素鋼板の表面に、Tiの表面層を被成してから、炭化性
ガスおよび/または窒化性ガス雰囲気中で焼鈍を施して
、綱板中のCおよびNの純化促進と共に該雰囲気からの
浸炭および/または浸窒を図ること(第5.第6発明)
、さらに同じくCおよびNを所定量含有させた仕上げ焼
鈍済みの一方向性けい素鋼板の表面に、Tiの表面層を
被成してから、非酸化性雰囲気中で焼鈍を施して鋼板中
のCおよびNの純化促進を図り、引続き炭化性および/
または窒化性ガス雰囲気中で焼鈍を施して該雰囲気から
の浸炭および/または浸窒作用を加味すること(第7.
第8発明)、がとりわけ有効であることも併せて究明し
、この発明を完成させるに至ったのである。
Here, as a means for carbonizing and/or nitriding the Ti surface layer, C: 0°001 is added to the unidirectional silicon steel sheet after final annealing.
~0.010wt? ! (hereinafter shown as single %) and N
:0.0005 to 0.000%, a Ti surface layer is formed on the surface of the steel sheet, and then annealed in a non-oxidizing atmosphere to purify C and N in the steel sheet. (3rd and 4th inventions) Also, after forming a surface layer of Ti on the surface of a finish-annealed unidirectional silicon steel sheet containing a predetermined amount of C and N, carbonization is performed. Annealing is carried out in a carbonaceous gas and/or nitriding gas atmosphere to promote the purification of C and N in the steel sheet and to carry out carburizing and/or nitriding from the atmosphere (fifth. sixth invention)
Furthermore, a surface layer of Ti is formed on the surface of a finish-annealed unidirectional silicon steel sheet containing a predetermined amount of C and N, and then annealing is performed in a non-oxidizing atmosphere to improve the content of the steel sheet. Promote purification of C and N, and continue to improve carbonization and/or
Alternatively, annealing is performed in a nitriding gas atmosphere to take into account carburizing and/or nitriding effects from the atmosphere (7th.
It was also discovered that the eighth invention) is particularly effective, leading to the completion of this invention.

上記各発明の成功が導かれた具体的実験に従って、以下
説明を進める。
The following explanation will be given in accordance with specific experiments that led to the success of each of the above inventions.

C: 0.042χ、Si : 3.36χ、Mn :
 0.066X、Se : 0021χ、Mo : 0
.025χおよびSb : 0.025χを含み、かつ
Nを0.001〜0.015χの範囲において含有する
種々のけい素鋼スラブに熱間圧延を施して2.4m厚の
熱延板としたのち、900°Cで3分間の均一化焼鈍を
施し、ついで950℃、3分間の中間焼鈍を挟んで2回
の冷間圧延を施して最終板厚: 0.23mの冷延板と
した。その後露点を50〜10℃の範囲で種々に変化さ
せた820℃の湿水素中て脱炭を兼ねる1次再結晶焼鈍
を施したのち、鋼板表面上にAIz03:60χ、Mg
O:25χ、Zrf)z : 10χおよびTt(h:
5%の配合割合になる焼鈍分離剤を塗布してから、85
0℃、50時間の2次再結晶焼鈍、ついで飽水素中で1
200℃、8時間の純化焼鈍を施した。
C: 0.042χ, Si: 3.36χ, Mn:
0.066X, Se: 0021χ, Mo: 0
.. 025χ and Sb: Various silicon steel slabs containing 0.025χ and N in the range of 0.001 to 0.015χ were hot rolled into 2.4 m thick hot rolled sheets, and then Uniform annealing was performed at 900° C. for 3 minutes, and then cold rolling was performed twice with intermediate annealing at 950° C. for 3 minutes, to obtain a cold rolled sheet with a final thickness of 0.23 m. After that, primary recrystallization annealing, which also serves as decarburization, is performed in wet hydrogen at 820°C with the dew point varied in the range of 50 to 10°C, and then AIz03:60χ, Mg
O: 25χ, Zrf)z: 10χ and Tt(h:
After applying an annealing separator with a blending ratio of 5%,
Secondary recrystallization annealing at 0°C for 50 hours, followed by 1 hour in saturated hydrogen.
Purification annealing was performed at 200°C for 8 hours.

その後、この鋼板表面上に蒸着装置を用いて0.7μm
厚のTi蒸着層を被成してから、H2ガス中で750℃
、3時間の焼鈍を施した。
Thereafter, a 0.7 μm film was deposited on the surface of this steel plate using a vapor deposition device.
After depositing a thick Ti layer, heat treatment at 750°C in H2 gas.
, and was annealed for 3 hours.

上記の製造工程中、仕上げ焼鈍段階における鋼中Cおよ
びNiと磁気特性、ならびに最終製品のCおよびN量と
磁気特性との関係について調べた結果を表1に示す。
Table 1 shows the results of an investigation into the relationship between C and Ni in the steel and the magnetic properties at the final annealing stage during the above manufacturing process, and the relationship between the C and N amounts and the magnetic properties of the final product.

また表1には、+12ガス中での焼鈍後、さらにN2+
11□ガス、N2+^r s CHa  + 112、
CH4十へrおよびN2+CIL +H,ガス雰囲気中
で750℃、5時間の焼鈍を施した後の鋼中C,N量お
よび磁気特性について調べた結果を併記する。
Table 1 also shows that after annealing in +12 gas,
11□Gas, N2+^r s CHa + 112,
The results of investigating the amount of C and N in the steel and the magnetic properties after annealing at 750° C. for 5 hours in a CH4+R and N2+CIL+H gas atmosphere are also listed.

さらに各製品板の密着性について調べた結果も、表1に
併せて示す。
Table 1 also shows the results of examining the adhesion of each product board.

表1に示した結果から明らかなように、仕上げ焼鈍時に
おけるCおよびNlがそれぞれ100 ppm以下の試
料を、Tiを蒸着してから、H2ガス中で焼鈍するか、
あるいはさらに炭化性および/または窒化性ガス雰囲気
中で焼鈍を施した場合に、磁束密度Booが1.89T
以上で、かつ鉄損W177、。が0.87W/kg以下
の優れた特性が得られた。
As is clear from the results shown in Table 1, samples in which C and Nl are each 100 ppm or less during final annealing are either annealed in H2 gas after depositing Ti, or
Alternatively, when annealing is further performed in a carbonizing and/or nitriding gas atmosphere, the magnetic flux density Boo is 1.89T.
Above, and iron loss W177. Excellent characteristics were obtained in which the resistance was 0.87 W/kg or less.

ここに最終製品中のC,Niはいずれも、仕上げ焼鈍後
に比べて大幅に低減していることが注目される。
It is noteworthy that both C and Ni in the final product are significantly reduced compared to after final annealing.

なお磁気特性が良好な製品はいずれも、密着性にも優れ
ていた。
All products with good magnetic properties also had excellent adhesion.

次に上に述べた製造工程と同様にしてTiの蒸着層を被
成した鋼板に対し、N2+lh、 N、+^r、 CH
Next, N2+lh, N, +^r, CH was applied to a steel plate coated with a Ti vapor deposition layer in the same manner as in the manufacturing process described above.
.

+lI2、CI+4 +ArおよびN2+CH,+H2
ガス雰囲気中で800°C15時間の焼鈍を施して得た
製品の、鋼中C,Nlおよび磁気特性について調べた結
果を、密着性の調査結果と共に、表2に示す。
+lI2, CI+4 +Ar and N2+CH, +H2
Table 2 shows the results of investigating the C, Nl and magnetic properties in the steel of the product obtained by annealing at 800° C. for 15 hours in a gas atmosphere, together with the results of the investigation of adhesion.

表2から明らかなように、仕上げ焼鈍後のC1Ni1が
それぞれ100 ppm以下の試料を、炭化性および/
または窒化性ガス雰囲気中で焼鈍した場合に、磁束密度
貼。が1.89T以上で、かつ鉄損唱、/、。
As is clear from Table 2, the samples with C1Ni1 of 100 ppm or less after final annealing were evaluated for carbonization and/or
Or, when annealed in a nitriding gas atmosphere, magnetic flux density is applied. is 1.89T or more, and the iron loss is /,.

が0.87W/kg以下の優れた特性が得られた。Excellent characteristics were obtained in which the resistance was 0.87 W/kg or less.

また上記のC,N含有量のものはいずれも、密着性にも
優れたいた。
Furthermore, all of the above-mentioned C and N content materials also had excellent adhesion.

(作 用) 上に述べた磁気特性の向上は、Ti表面層被成後に、炭
化および/または窒化処理を施すことによって、鋼板表
面にTiC,TiNないしTi(C,N)からなる極薄
被膜が形成され、かかる被膜が鋼板に対し効果的に張力
を付与することによる。
(Function) The above-mentioned improvement in magnetic properties can be achieved by applying carbonization and/or nitriding treatment after forming the Ti surface layer to form an ultra-thin coating made of TiC, TiN or Ti(C,N) on the surface of the steel sheet. is formed, and this coating effectively applies tension to the steel plate.

またとくに、Ti表面膜の炭化および/または窒化処理
の際に、鋼板中のC,Hの拡散を利用することによって
、鋼板と該被膜の接合度が高まり、被膜密着性のより一
層の向上を図り得る。
In particular, by utilizing the diffusion of C and H in the steel sheet during the carbonization and/or nitriding treatment of the Ti surface film, the degree of bonding between the steel sheet and the film is increased, further improving the adhesion of the film. It is possible.

次に、一方向性けい素鋼板の製造工程について一般的な
説明を含めてより詳しく説明する。
Next, the manufacturing process of the unidirectional silicon steel sheet will be described in more detail, including a general explanation.

まず出発素材は、従来公知の一方向性けい素鋼素材、た
とえば ■C,: 0.03〜0.050χ、 Si : 2.
50〜4.5χ、Mn : 0.01〜0.2Z、  
 Mo : 0.003〜0.1χ、Sb : 0.0
05〜0.2χ、 N : 0.0005〜0.01χ
、SおよびSeの1種あるいは2種合計で、0.005
〜0.05%を含有する組成、 ■C: 0.03〜0,08χ、 Si : 2.0〜
4.0χ、S : 0.005〜0.05χ、N : 
0.001〜0.01χ、AI : 0.01〜0.0
6χ、 Sn : 0.01〜0.5χ、Cu : 0
.01〜0.3χ、  Mn : 0.01〜0.2χ
を含有する組成、 ■C: 0.03〜0.062 XSi : 2.0〜
4.0!、S : 0.005〜0.05χ、B : 
0.0003〜0.0040χ、N : 0.001〜
0.01χ、Mn : 0.01〜0.2χを含有する
組成、 ■C: 0.03〜0.05χ、Si : 2.0〜4
.0!。
First, the starting material is a conventionally known unidirectional silicon steel material, such as ■C: 0.03 to 0.050χ, Si: 2.
50~4.5χ, Mn: 0.01~0.2Z,
Mo: 0.003-0.1χ, Sb: 0.0
05~0.2χ, N: 0.0005~0.01χ
, the total of one or both of S and Se is 0.005
Composition containing ~0.05%, ■C: 0.03~0.08χ, Si: 2.0~
4.0χ, S: 0.005-0.05χ, N:
0.001~0.01χ, AI: 0.01~0.0
6χ, Sn: 0.01~0.5χ, Cu: 0
.. 01~0.3χ, Mn: 0.01~0.2χ
A composition containing: ■C: 0.03~0.062 XSi: 2.0~
4.0! , S: 0.005-0.05χ, B:
0.0003~0.0040χ, N: 0.001~
Composition containing 0.01χ, Mn: 0.01 to 0.2χ, ■C: 0.03 to 0.05χ, Si: 2.0 to 4
.. 0! .

sb : o、oos〜0.2χ、 N : 0.00
05〜0.01χ、SおよびSeのうちいずれか1種ま
たは2種二0.005〜0.05χを含有する組成、■
C70,03〜0.05χ、 Si : 2.0〜4.
0χ、N : 0.0005〜0.01χ、SおよびS
eのうちいずれか1種または2種: 0.005〜0.
05!を含有する組成、 の如きにおいて適用可能である。
sb: o, oos~0.2χ, N: 0.00
05 to 0.01χ, a composition containing any one or both of S and Se, and 0.005 to 0.05χ;
C70,03~0.05χ, Si: 2.0~4.
0χ, N: 0.0005-0.01χ, S and S
Any one or two of e: 0.005 to 0.
05! It is applicable to compositions containing .

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.151mから0.35.會厚の最終冷延板厚と
する。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the final reduction rate is about 50% to 85%, and from 0.151 m to 0.35 m. The final cold-rolled sheet thickness is the thickness of the board.

最終冷延を終わり製品板厚に仕上げた鋼板は表面脱脂後
750℃から850℃の湿水素中で脱炭1次再結晶焼鈍
を施す。
After finishing the final cold rolling and finishing the steel plate to the product thickness, the steel plate is surface degreased and then subjected to primary decarburization recrystallization annealing in wet hydrogen at 750°C to 850°C.

ここに脱炭処理は、通常後続の2次再結晶焼鈍において
ゴス方位に強く集積した2次再結晶粒を発達させると共
に、純化焼鈍における鋼中Cのより一層の低減のために
、C量をできる限り低くし、もって鉄損の低減を図るた
めに行われるものであるが、この発明ではすでに述べた
ように、Tiを蒸着した後の焼鈍においてNと共にCの
純化が促進されることから、この脱炭焼鈍段階において
は従来はど厳しい脱炭を図る必要はなく 、0.01%
以下程度(好ましくはo、ooi%以上)で充分である
Here, the decarburization treatment usually develops secondary recrystallized grains that are strongly accumulated in the Goss orientation in the subsequent secondary recrystallization annealing, and also reduces the amount of C in the steel in order to further reduce C in the steel in the purification annealing. This is done in order to reduce the iron loss as much as possible, and as mentioned above, in this invention, since the annealing after depositing Ti promotes the purification of C along with N, At this decarburization annealing stage, there is no need to carry out severe decarburization as in the past, and 0.01%
A level below (preferably o, ooi% or more) is sufficient.

その後は通常、鋼板表面にMgOを主成分とする焼鈍分
離剤を塗布するが、この発明では、一般的には仕上げ焼
鈍後の形成を不可欠としていたフォルステライトをとく
に形成させない方がその後の鋼板の鏡面処理を簡便にす
るのに有効であるので、焼鈍分離剤として八’ 20s
 + Z r 021 T r Oz等を50%以上M
gOに混入して使用するのが好ましい。
After that, an annealing separator mainly composed of MgO is usually applied to the surface of the steel sheet, but in this invention, it is better not to form forsterite, which is generally required to be formed after finish annealing. Since it is effective for simplifying mirror finishing, 8'20s is used as an annealing separator.
+ Z r 021 T r Oz etc. at 50% or more M
It is preferable to use it by mixing it with gO.

その後2次再結晶焼鈍を行うが、この工程は!1101
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this process is! 1101
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(11o) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜b 焼鈍でもよい。
In this case (11o), in order to develop a highly uniform secondary recrystallized grain structure in the <001> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 0.000C, and in addition, for example, 0.5-b annealing may be used.

ついで乾水素中で純化焼鈍を施すが、製品板における被
膜密着性の一層の改善のためには、鋼板中にC: 0.
001〜0.01%およびN : 0.0005〜0.
01%を残存させることが肝要である。このためには純
化焼鈍において、1100℃以上、1〜20時間という
条件の中から適切な焼鈍条件を選択すればよい。
Purification annealing is then performed in dry hydrogen, but in order to further improve the film adhesion of the product sheet, C:0.
001-0.01% and N: 0.0005-0.
It is important that 0.1% remain. For this purpose, appropriate annealing conditions may be selected from among the conditions of 1100° C. or higher and 1 to 20 hours in purification annealing.

その後鋼板表面上にTiの表面層を被成するが、このと
きのTi表面層厚は0.1〜2.0 μm程度とするの
が好ましい。
Thereafter, a surface layer of Ti is formed on the surface of the steel sheet, and the thickness of the Ti surface layer at this time is preferably about 0.1 to 2.0 μm.

またTiの表面層の被成方法は、これまで述べてきた蒸
着の他にCVD法、イオンブレーティング法あるいはイ
オンインプランテーション法等の方法であっても良い。
Further, the method for forming the Ti surface layer may be, in addition to the vapor deposition described above, a method such as a CVD method, an ion blasting method, or an ion implantation method.

ついでTi表面層付き方向性けい素鋼板に、非酸化性雰
囲気、また炭化性および/または窒化性雰囲気、さらに
は非酸化性雰囲気ついで炭化性および/または窒化性雰
囲気中で焼鈍を施すわけであるが、これらの焼鈍処理は
次の要領で行う。
The grain-oriented silicon steel sheet with a Ti surface layer is then annealed in a non-oxidizing atmosphere, a carbonizing and/or nitriding atmosphere, and further annealing in a non-oxidizing atmosphere and then a carbonizing and/or nitriding atmosphere. However, these annealing treatments are performed in the following manner.

i)非酸化性雰囲気中での焼鈍 雰囲気ガスとしては、11□ガスやArガスがとりわけ
有利に適合し、かかる雰囲気中において500℃以上の
温度で焼鈍を行い、鋼板中のC,Hの表面への拡散を促
進させるのである。このとき鋼中C量がN量に比べて多
い場合には、鋼板表面には主としてTiCよりなる極薄
被膜が、一方逆の場合には主としてTiNよりなる極薄
被膜が形成されることになる。
i) As the atmosphere gas for annealing in a non-oxidizing atmosphere, 11□ gas or Ar gas is particularly advantageously suitable, and annealing is performed in such an atmosphere at a temperature of 500°C or higher to remove C and H surfaces in the steel sheet. This promotes the spread of the virus. At this time, if the amount of C in the steel is greater than the amount of N, an extremely thin film consisting mainly of TiC will be formed on the surface of the steel sheet, whereas in the opposite case, an extremely thin coating mainly consisting of TiN will be formed. .

ii )炭化性および/または窒化性ガス雰囲気中での
焼鈍 炭化性ガスとしては、CH,やC、I+ 6などの炭化
水素系ガスおよびCOガス、さらにはこれらのガスとH
2や計ガスとの混合ガスが、また窒化性ガスとしては、
N2ガスやNH,ガスならびにこれらのガスとH2やA
rガスとの混合ガスが有利に適合し、かかる雰囲気中に
おいて500℃以上の温度で焼鈍を行うことによって、
鋼中C,Nの純化促進ならびに雰囲気ガスからの浸炭お
よび/または浸窒を図ることにより、鋼板表面に炭化物
および/または窒化物からなる混合薄膜を形成させる。
ii) Annealing in a carbonizing and/or nitriding gas atmosphere Carbonizing gases include hydrocarbon gases such as CH, C, and I+6, and CO gas, and furthermore, these gases and H
2 and meter gas, and as a nitriding gas,
N2 gas, NH, gas and these gases and H2 and A
By carrying out the annealing in such an atmosphere at a temperature of 500° C. or higher, a gas mixture with r gas is advantageously suitable.
By promoting the purification of C and N in steel and carburizing and/or nitriding from atmospheric gas, a mixed thin film of carbides and/or nitrides is formed on the surface of the steel sheet.

さらにこのようにして形成した極薄張力被膜上に、りん
酸塩とコロイダルシリカを主成分とする絶縁被膜の塗布
焼付を行うことが、100万KVAにも上る大容量トラ
ンスの使途において当然に必要であり、この絶縁性塗布
焼付層の形成の如きは、従来公知の手法をそのまま用い
て良い。
Furthermore, it is necessary to apply and bake an insulating film mainly composed of phosphate and colloidal silica on the ultra-thin tension film formed in this way when using a large capacity transformer of up to 1 million KVA. For the formation of this insulating coated and baked layer, conventionally known methods may be used as they are.

(実施例) (八)   C:0.041χ、 Si  :  3.
48χ 、 Mn  :  0.062%1Mo : 
0.025χ、Se : 0.022χ、Sb : 0
.025χおよびN:0.0038χ (B) C: 0.053χ、Si : 3.32χ、
Mn : 0.072χ、S:0.018%、^1 :
 0.025χ、およびN : 0.0066χ(C)
C: 0.039χ、Si : 3.31Z XMn 
: 0.059χ、S:0.030χ、B : 0.0
019χ、N : 0.0068χおよびCu:0.1
5χ (D) C: 0.046χ、St : 3.09Z 
、 Mn : 0.063χ、Se:0.019χおよ
びSb : 0.025χ(E)  C: 0.038
χ、Si : 3.08χ、Mn : 0.071χお
よびS : 0.019χ を含有する組成になるけい素鋼熱延板を用いた。
(Example) (8) C: 0.041χ, Si: 3.
48χ, Mn: 0.062%1Mo:
0.025χ, Se: 0.022χ, Sb: 0
.. 025χ and N: 0.0038χ (B) C: 0.053χ, Si: 3.32χ,
Mn: 0.072χ, S: 0.018%, ^1:
0.025χ, and N: 0.0066χ(C)
C: 0.039χ, Si: 3.31ZXMn
: 0.059χ, S: 0.030χ, B: 0.0
019χ, N: 0.0068χ and Cu: 0.1
5χ (D) C: 0.046χ, St: 3.09Z
, Mn: 0.063χ, Se: 0.019χ and Sb: 0.025χ(E)C: 0.038
A silicon steel hot rolled sheet having a composition containing χ, Si: 3.08χ, Mn: 0.071χ, and S: 0.019χ was used.

まず熱延板(A) 、 (C) 、 (D) 、 (E
>については900℃で均一化焼鈍を行った。他方熱延
板(B)は、1050℃で3分間の均−化焼鈍後、90
0℃から急冷した。
First, hot rolled sheets (A), (C), (D), (E
>, uniform annealing was performed at 900°C. On the other hand, the hot rolled sheet (B) was homogenized at 1050°C for 3 minutes and then heated to 90°C.
It was rapidly cooled from 0°C.

その後(A) 、 (D) 、 (E)については、9
50℃の中間焼鈍を挟んで2回の冷間圧延を行って0.
23mmの最終板厚とし、また(B) 、 (C)は1
回の強冷延によって0.23m厚の最終冷延板に仕上げ
たが、冷延途中に300℃の温間圧延を挟んだ。
After that, for (A), (D), and (E), 9
Cold rolling was performed twice with intermediate annealing at 50°C to reduce the temperature to 0.
The final plate thickness is 23 mm, and (B) and (C) are 1
A final cold-rolled sheet with a thickness of 0.23 m was obtained by intense cold rolling, but warm rolling at 300° C. was interposed between the cold rolling steps.

ついでこれらの冷延板表面を脱脂したのち、露点25℃
の湿水素中における830″Cの脱炭焼鈍後、八h03
  ニア0χ、MgO:25χ、ZrO□: 5%から
なる焼鈍分離剤を塗布した。
After degreasing the surface of these cold-rolled plates, the dew point was reduced to 25°C.
After decarburization annealing at 830″C in wet hydrogen, 8h03
An annealing separator consisting of near 0x, MgO: 25x, and ZrO□: 5% was applied.

その後、(八)、(D)は850 ’Cで50時間の2
次再結晶焼鈍を行ったのち、乾水素中で1200℃、6
時間の純化焼鈍を施した。一方(B) 、 (C) 、
 (E)は850℃から5℃/hで1050℃まで昇温
しで2次再結晶させたのち、乾水素中で1200℃、8
時間の純化焼鈍を施した。
After that, (8), (D) are 2 for 50 hours at 850'C.
After the next recrystallization annealing, 1200℃ in dry hydrogen for 6
Subjected to time purification annealing. On the other hand, (B), (C),
(E) was subjected to secondary recrystallization by raising the temperature from 850°C to 1050°C at 5°C/h, and then heating at 1200°C in dry hydrogen for 8
Subjected to time purification annealing.

その後得られた各鋼板表面上に、0.7μm厚のTiの
蒸着層を被成した。
Thereafter, a 0.7 μm thick Ti vapor deposition layer was formed on the surface of each steel plate obtained.

その後(A) 、 (B) 、 (C)については、1
2ガス雰囲気中で800℃、5時間の焼鈍を施し、一部
の試料についてはさらにN2および/またはCI+4ガ
スを含有する雰囲気中で700℃、3時間の焼鈍を施し
た。
After that, for (A), (B), and (C), 1
Annealing was performed at 800° C. for 5 hours in a two-gas atmosphere, and some samples were further annealed at 700° C. for 3 hours in an atmosphere containing N2 and/or CI+4 gas.

また(D)、(E)については、直らにN2および/ま
たばC114ガスを含有する雰囲気中で800℃、5時
間の焼鈍を施した。
In addition, (D) and (E) were immediately annealed at 800° C. for 5 hours in an atmosphere containing N2 and/or C114 gas.

かくして得られたTiC,TiNないしTi(C,N)
からなる極薄被膜をそなえる方向性けい素鋼板の鋼中C
,N量、磁気特性および密着性について調べた結果を、
仕上げ焼鈍後の鋼中C,N量および磁気特性と比較して
、表3に示す。
TiC, TiN or Ti(C,N) thus obtained
C of grain-oriented silicon steel plate with an ultra-thin coating consisting of
, the results of investigating the amount of N, magnetic properties and adhesion.
Table 3 shows a comparison of the C and N contents and magnetic properties in the steel after final annealing.

また表3には、上記の極薄被膜付き方向性けい素鋼板の
表面に、さらにりん酸塩とコロイダルシリカを主成分と
するコーティング被膜を被成した製品の磁気特性につい
ての調査結果も併せて示す。
Table 3 also includes the results of a study on the magnetic properties of a product in which the surface of the grain-oriented silicon steel sheet with the ultra-thin coating described above is further coated with a coating film containing phosphate and colloidal silica as the main components. show.

表3に示した成績から明らかなように、この発明に従い
、仕上げ焼鈍後の一方向性けい素鋼板の表面に、Tiの
薄膜を被成したのち、非酸化性雰囲気中、または炭化性
および/または窒化性ガス雰囲気中、さらには非酸化性
雰囲気中ついで炭化性および/または窒化性ガス雰囲気
中において焼鈍を施し、鋼板表面上にTiC,TiNな
いしTi(C,N)の極薄被膜を形成させることによっ
て、良好な被膜密着性の下に磁気特性とくに鉄を異特性
の著しい向上が達成された。
As is clear from the results shown in Table 3, according to the present invention, a thin film of Ti is formed on the surface of a unidirectional silicon steel sheet after finish annealing, and then a thin film of Ti is deposited in a non-oxidizing atmosphere or with carbonizing and/or Alternatively, annealing is performed in a nitriding gas atmosphere, further in a non-oxidizing atmosphere, and then in a carbonizing and/or nitriding gas atmosphere to form an extremely thin film of TiC, TiN or Ti(C,N) on the steel plate surface. By applying this method, a significant improvement in magnetic properties, especially in iron properties, was achieved while maintaining good film adhesion.

(発明の効果) かくしてこの発明によれば、巻鉄心向はトランス材料と
しての使途におけるような高温でのひずみ取り焼鈍の如
き高温処理の通用の有無にかかわらず、磁気特性とくに
鉄1員特性の大幅な改善を被膜密着性の向上に併せて実
現することができる。
(Effects of the Invention) Thus, according to the present invention, the winding core direction can be adjusted to improve the magnetic properties, especially the iron one-member properties, regardless of whether or not high-temperature treatment such as high-temperature strain relief annealing is applicable when used as a transformer material. Significant improvements can be achieved along with improved film adhesion.

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍済みの一方向性けい素鋼板につき、その
表面上にTiの表面層を被成したのち、該Ti表面層を
炭化および/または窒化させることにより、鋼板表面上
にTiC、TiNないしTi(C、N)の極薄張力被膜
を形成させることを特徴とする超低鉄損一方向性けい素
鋼板の製造方法。 2、仕上げ焼鈍済みの一方向性けい素鋼板につき、その
表面上にTiの表面層を被成したのち、該Ti表面層を
炭化および/または窒化させることにより、鋼板表面上
にTiC、TiNないしTi(C、N)の極薄張力被膜
を形成し、しかるのちりん酸塩とコロイダルシリカを主
成分とする絶縁被膜を形成させることを特徴とする超低
鉄損一方向性けい素鋼板の製造方法。 3、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面上にTiの表面層を被成したのち
、非酸化性雰囲気中で焼鈍を施して鋼板中のCおよびN
の純化促進を図ることにより、鋼板表面上にTiC、T
iNないしTi(C、N)の極薄張力被膜を形成させる
ことを特徴とする超低鉄損一方向性けい素鋼板の製造方
法。 4、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面上にTiの表面層を被成したのち
、非酸化性雰囲気中で焼鈍を施して鋼板中のCおよびN
の純化促進を図ることにより、鋼板表面上にTiC、T
iNないしTi(C、N)の極薄張力被膜を形成し、し
かるのちりん酸塩とコロイダルシリカを主成分とする絶
縁被膜を形成させることを特徴とする超低鉄損一方向性
けい素鋼板の製造方法。 5、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面上にTiの表面層を被成したのち
、炭化性および/または窒化性ガス雰囲気中で焼鈍を施
して、鋼板中のCおよびNの純化促進ならびに該雰囲気
からの浸炭および/または浸窒作用により、鋼板表面上
にTiC、TiNないしTi(C、N)の極薄張力被膜
を形成されることを特徴とする超低鉄損一方向性けい素
鋼板の製造方法。 6、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面上にTiの表面層を被成したのち
、炭化性および/または窒化性ガス雰囲気中で焼鈍を施
して、鋼板中のCおよびNの純化促進ならびに該雰囲気
からの浸炭および/または浸窒作用により、鋼板表面上
にTiC、TiNないしTi(C、N)の極薄張力被膜
を形成し、しかるのちりん酸塩とコロイダルシリカを主
成分とする絶縁被膜を形成させることを特徴とする超低
鉄損一方向性けい素鋼板の製造方法。 7、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面上にTiの表面層を被成したのち
、非酸化性雰囲気中で焼鈍を施して鋼板中のCおよびN
の純化促進を図り、さらに炭化性および/または窒化性
ガス雰囲気中で焼鈍を施して該雰囲気からの浸炭および
/または浸窒作用を加味することにより、鋼板表面上に
TiC、TiNないしTi(C、N)の極薄張力被膜を
形成させることを特徴とする超低鉄損一方向性けい素鋼
板の製造方法。 8、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面上にTiの表面層を被成したのち
、非酸化性雰囲気中で焼鈍を施して鋼板中のCおよびN
の純化促進を図り、さらに炭化性および/または窒化性
ガス雰囲気中で焼鈍を施して該雰囲気からの浸炭および
/または浸窒作用を加味することにより、鋼板表面上に
TiC、TiNないしTi(C、N)の極薄張力被膜を
形成し、しかるのちりん酸塩とコロイダルシリカを主成
分とする絶縁被膜を形成させることを特徴とする超低鉄
損一方向性けい素鋼板の製造方法。
[Claims] 1. After forming a surface layer of Ti on the surface of a unidirectional silicon steel sheet that has been finish annealed, the surface of the steel sheet is improved by carbonizing and/or nitriding the Ti surface layer. A method for producing an ultra-low iron loss unidirectional silicon steel sheet, which comprises forming an ultra-thin tensile coating of TiC, TiN or Ti(C,N) thereon. 2. After forming a Ti surface layer on the surface of a unidirectional silicon steel sheet that has been finish annealed, the Ti surface layer is carbonized and/or nitrided to form TiC, TiN or TiC on the surface of the steel sheet. Production of an ultra-low iron loss unidirectional silicon steel sheet characterized by forming an ultra-thin tensile coating of Ti (C, N) and then forming an insulating coating mainly composed of phosphate and colloidal silica. Method. 3, C: 0.001 to 0.010 wt% and N: 0.
After forming a Ti surface layer on the surface of a finish-annealed unidirectional silicon steel sheet having a composition containing 0.0005 to 0.0100 wt%, the steel sheet is annealed in a non-oxidizing atmosphere. C and N
By promoting the purification of TiC and T on the steel plate surface,
A method for producing an ultra-low iron loss unidirectional silicon steel sheet, which comprises forming an ultra-thin tensile coating of iN or Ti (C, N). 4, C: 0.001 to 0.010 wt% and N: 0.
After forming a Ti surface layer on the surface of a finish-annealed unidirectional silicon steel sheet having a composition containing 0.0005 to 0.0100 wt%, the steel sheet is annealed in a non-oxidizing atmosphere. C and N
By promoting the purification of TiC and T on the steel plate surface,
An ultra-low iron loss unidirectional silicon steel sheet characterized by forming an ultra-thin tensile coating of iN or Ti (C, N), and forming an insulating coating whose main components are chirophosphate and colloidal silica. manufacturing method. 5, C: 0.001-0.010 wt% and N: 0.
After forming a surface layer of Ti on the surface of a finish-annealed unidirectional silicon steel sheet having a composition containing 0.0005 to 0.0100 wt%, annealing is performed in a carbonizing and/or nitriding gas atmosphere. An ultra-thin tensile coating of TiC, TiN or Ti(C,N) is formed on the surface of the steel plate by promoting the purification of C and N in the steel plate and by carburizing and/or nitriding from the atmosphere. A method for producing an ultra-low core loss unidirectional silicon steel sheet. 6, C: 0.001-0.010 wt% and N: 0.
After forming a surface layer of Ti on the surface of a finish-annealed unidirectional silicon steel sheet having a composition containing 0.0005 to 0.0100 wt%, annealing is performed in a carbonizing and/or nitriding gas atmosphere. to promote purification of C and N in the steel plate and carburizing and/or nitriding from the atmosphere to form an ultra-thin tension film of TiC, TiN or Ti(C,N) on the surface of the steel plate, A method for producing an ultra-low iron loss unidirectional silicon steel sheet, which is characterized by forming an insulating film containing Shikarunochiphosphate and colloidal silica as main components. 7, C: 0.001-0.010 wt% and N: 0.
After forming a Ti surface layer on the surface of a finish-annealed unidirectional silicon steel sheet having a composition containing 0.0005 to 0.0100 wt%, the steel sheet is annealed in a non-oxidizing atmosphere. C and N
By promoting the purification of TiC, TiN or Ti(C , N) A method for producing an ultra-low iron loss unidirectional silicon steel sheet, the method comprising forming an ultra-thin tensile coating of N). 8, C: 0.001-0.010 wt% and N: 0.
After forming a Ti surface layer on the surface of a finish-annealed unidirectional silicon steel sheet having a composition containing 0.0005 to 0.0100 wt%, the steel sheet is annealed in a non-oxidizing atmosphere. C and N
By promoting the purification of TiC, TiN or Ti(C , N), and forming an insulating film containing phosphoric acid salt and colloidal silica as main components.
JP60180161A 1985-02-22 1985-08-16 Manufacture of grain-oriented silicon steel sheet with extremely small iron loss Pending JPS6240317A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP60180161A JPS6240317A (en) 1985-08-16 1985-08-16 Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
EP86301071A EP0193324B1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
DE8686301071T DE3666229D1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
AU53747/86A AU570835B2 (en) 1985-02-22 1986-02-19 Metal nitride/carbide coated grain oriented silicon steel sheet
CA000502337A CA1297070C (en) 1985-02-22 1986-02-20 Extra-low iron loss grain oriented silicon steel sheets
EP86904726A EP0215134B1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
US06/907,734 US4713123A (en) 1985-02-22 1986-02-21 Method of producing extra-low iron loss grain oriented silicon steel sheets
DE8686904726T DE3673290D1 (en) 1985-02-22 1986-02-21 MANUFACTURING METHOD FOR UNIDIRECTIONAL SILICON STEEL PLATE WITH EXCEPTIONAL IRON LOSS.
US06/832,172 US4698272A (en) 1985-02-22 1986-02-21 Extra-low iron loss grain oriented silicon steel sheets
PCT/JP1986/000087 WO1986004929A1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
KR1019860001259A KR910006011B1 (en) 1985-02-22 1986-02-22 Extra-low iron loss grain oriented silicon steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60180161A JPS6240317A (en) 1985-08-16 1985-08-16 Manufacture of grain-oriented silicon steel sheet with extremely small iron loss

Publications (1)

Publication Number Publication Date
JPS6240317A true JPS6240317A (en) 1987-02-21

Family

ID=16078463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60180161A Pending JPS6240317A (en) 1985-02-22 1985-08-16 Manufacture of grain-oriented silicon steel sheet with extremely small iron loss

Country Status (1)

Country Link
JP (1) JPS6240317A (en)

Similar Documents

Publication Publication Date Title
CA2073631A1 (en) Grain oriented silicon steel sheet having excellent primary film properties
JP2000355717A (en) Grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property and its production
US20050247374A1 (en) Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6240317A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPH06192743A (en) Production of grain-oriented silicon steel sheet excellent in film property and magnetic property
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
KR102080165B1 (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing the same
JPS6240702A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JPS6240703A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS6240704A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate with excellent tight contact
JPH0832928B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties and glass film properties
JP2014156620A (en) Method for producing grain-oriented electromagnetic steel sheet
JPS6263407A (en) Production of low iron loss unidirectional silicon steel plate
JP2001123229A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet excellent in film characteristic
KR20030052205A (en) Chromium-free insulation coating material for grain-oriented electrical steel sheet having no glass film and method for manufacturing grain-oriented electrical steel sheet by using it
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JP2002194434A (en) Method for producing low core less grain oriented electrical steel sheet having excellent high frequency magnetic characteristic and film characteristic
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
EP4273277A1 (en) Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
JPS62141706A (en) Manufacture of very low iron loss grain oriented silicon steel plate