JPS6240703A - Manufacture of ultralow iron loss unidirectional silicon steel plate - Google Patents

Manufacture of ultralow iron loss unidirectional silicon steel plate

Info

Publication number
JPS6240703A
JPS6240703A JP18016385A JP18016385A JPS6240703A JP S6240703 A JPS6240703 A JP S6240703A JP 18016385 A JP18016385 A JP 18016385A JP 18016385 A JP18016385 A JP 18016385A JP S6240703 A JPS6240703 A JP S6240703A
Authority
JP
Japan
Prior art keywords
mirror
steel sheet
ultra
silicon steel
unidirectional silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18016385A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18016385A priority Critical patent/JPS6240703A/en
Priority to EP86301071A priority patent/EP0193324B1/en
Priority to DE8686301071T priority patent/DE3666229D1/en
Priority to AU53747/86A priority patent/AU570835B2/en
Priority to CA000502337A priority patent/CA1297070C/en
Priority to EP86904726A priority patent/EP0215134B1/en
Priority to US06/832,172 priority patent/US4698272A/en
Priority to US06/907,734 priority patent/US4713123A/en
Priority to DE8686904726T priority patent/DE3673290D1/en
Priority to PCT/JP1986/000087 priority patent/WO1986004929A1/en
Priority to KR1019860001259A priority patent/KR910006011B1/en
Publication of JPS6240703A publication Critical patent/JPS6240703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide an ultralow iron loss by forming an extremely thin tension film of TiC, TiN or Ti(C, N) on the surface of a steel plate by carbonizing and/or nitriding after forming a Ti-surface layer on a mirror-finished surface. CONSTITUTION:After an oxide on the finish-annealed plate of a directional silicon steel plate is removed, the surface is mirror-polished in average roughness of center line of 0.4mum or less by chemically or electrolytically polishing. After a thin Ti layer of preferably approx. 0.1-2.0mum thick is coated, for example, by depositing on the surface of the mirror-finished surface, the layer is carbonized and/or nitrided to form an extremely thin tension film of TiC, TiN or Ti(C, N) on the surface of the steel plate. Thus, magnetic property and specially iron loss property is largely improved together with the improvement of a film bondability irrespective of the presence or absence of the application of high temperature heat treatment such as strain removing annealing at high temperature in the use as a transformer material of a winding core.

Description

【発明の詳細な説明】 (産業上の利用分野) 一方向性けい素鋼板の電気・磁気的特性の改善、なかで
も、鉄損の低減に係わる極限的な要請を満たそうとする
近年来の目覚ましい開発努力は、逐次その実を挙げつつ
あるが、その実施に伴う重大な弊害として、一方向性け
い素鋼板の使用に当たっての加工、組立てを経たのち、
いわゆるひずみ取り焼鈍がほどこされた場合に、特性劣
化の随伴を不可避に生じて、使途についての制限を受け
る不利が指摘される。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, efforts have been made to improve the electrical and magnetic properties of unidirectional silicon steel sheets, and in particular to meet the extreme demands of reducing iron loss. The remarkable development efforts are gradually bearing fruit, but one serious drawback to their implementation is that after processing and assembly when using unidirectional silicon steel sheets,
It has been pointed out that when so-called strain-relief annealing is applied, it inevitably causes characteristic deterioration and is disadvantageous in that its usage is limited.

この明細書では、ひずみ取り焼鈍のような高温の熱履歴
を経ると否とに拘わらず、上記要請を有利に充足し得る
新たな方途を拓くことについての開発研究の成果に関連
して以下に述べる。
In this specification, the following is related to the results of research and development to open up a new method that can advantageously meet the above requirements, regardless of whether or not it undergoes a high-temperature thermal history such as strain relief annealing. state

さて一方向性け′い素鋼板は、よく知られているとおり
製品の2次再結晶粒を(110) (001) 、すな
わちゴス方位に、高度に集積させたもので、主として変
圧器その他の電気機器の鉄心として使用され電気・磁気
的特性として製品の磁束密度(Bo。
As is well known, unidirectional silicon steel sheets are products in which secondary recrystallized grains are highly concentrated in the (110) (001), or Goss, orientation, and are mainly used in transformers and other equipment. The magnetic flux density (Bo.

値で代表される)が高く、鉄損(W+tzso値で代表
゛される)の低いことが要求される。
It is required that the iron loss (represented by the W+tzso value) be high and the iron loss (represented by the W+tzso value) be low.

この一方向性けい素鋼板は複雑多岐にわたる工程を経て
製造されるが、今までにおびただしい発明・改善が加え
られ、今日では板厚0.30mの製品の磁気特性がBo
o 1.90T以上、1,7.。1.05弱/kg以下
、また板厚0.23mの製品の磁気特性がBIGl、8
9T以上、1./、。0.90W/kg以下の超低鉄損
一方向性けい素鋼板が製造されるようになって来ている
This unidirectional silicon steel sheet is manufactured through a wide variety of complicated processes, but numerous inventions and improvements have been made so far, and today the magnetic properties of a product with a thickness of 0.30 m have reached Bo.
o 1.90T or more, 1,7. . The magnetic properties of a product with a weight of less than 1.05 kg/kg or less and a plate thickness of 0.23 m are BIGl, 8
9T or more, 1. /,. Unidirectional silicon steel sheets with ultra-low core loss of 0.90 W/kg or less are being manufactured.

特に最近では省エネの見地から電力損失の低減を特徴と
する請が著しく強まり、欧米では損失の少ない変圧器を
作る場合に鉄損の減少分を金額に換算して変圧器価格に
上積みする「ロス・エバリユエーション」 (鉄損評価
)制度が普及している。
Particularly recently, there has been a marked increase in demand for power loss reduction features from an energy-saving perspective, and in Europe and the United States, when creating a transformer with low loss, the reduction in iron loss is converted into a monetary value and added to the transformer price.・The "evaluation" (iron loss evaluation) system is becoming widespread.

(従来の技術) このような状況下において最近、一方向性けい素鋼板の
仕上げ焼鈍後の鋼板表面に圧延方向にほぼ直角方向での
レーザ照射により局部微小ひずみを導入して磁区を細分
化し、もって鉄損を低下させることが提案された(特公
昭57−2252号、特公昭57−53419号、特公
昭58−26405号および特公昭58−26406号
各公報参照)。
(Prior Art) Under these circumstances, recently, the surface of a unidirectional silicon steel sheet after final annealing is irradiated with a laser in a direction approximately perpendicular to the rolling direction to introduce local microstrain to subdivide the magnetic domains. It has been proposed to reduce the iron loss (see Japanese Patent Publication No. 57-2252, Japanese Patent Publication No. 57-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406).

この磁区細分化技術はひずみ取り焼鈍を施さない、積鉄
心向はトランス材料としては効果的であるが、ひずみ取
り焼鈍を施す、主として巻鉄心トランス材料にあっては
、レーザー照射によって折角に導入された局部微小ひず
みが焼鈍処理により解放されて磁区幅が広くなるため、
レーザー照射効果が失われるという欠点がある。
Although this magnetic domain refining technology is effective for transformer materials for laminated iron cores that are not subjected to strain relief annealing, it is difficult to introduce them by laser irradiation when applying strain relief annealing, mainly for wound core transformer materials. The local minute strain caused by the annealing process is released and the magnetic domain width becomes wider.
The disadvantage is that the laser irradiation effect is lost.

一方これより先に特公昭52−24499号公報におい
ては、一方向性けい素鋼板の仕上げ焼鈍後の鋼板表面を
鏡面仕上げするか又はその鏡面仕上げ面上に金属薄めっ
きやさらにその上に絶縁被膜を塗布焼付することによる
、超低鉄損一方向性けい素鋼板の製造方法が提案されて
いる。
On the other hand, earlier in Japanese Patent Publication No. 52-24499, the surface of a unidirectional silicon steel sheet after finish annealing was mirror-finished, or the mirror-finished surface was coated with thin metal plating or an insulating coating was applied thereon. A method for manufacturing ultra-low core loss unidirectional silicon steel sheets has been proposed by coating and baking.

しかしながらこの鏡面仕上げによる鉄損向上手法は、工
程的に採用するには、著しいコストアンプになる割りに
鉄損低減への寄与が充分でない上、とくに鏡面仕上げ後
に不可欠な絶縁被膜を塗布焼付した後の密着性に問題が
あるため、現在の製造工程において採用されるに至って
はいない。また特公昭56−4150号公報においても
鋼板表面を鏡面仕上げした後、酸化物系セラミックス薄
膜を蒸着する方法が提案されている。しかしながらこの
方法も600℃以上の高温焼鈍を施すと鋼板とセラミッ
ク層とが剥離するため、実際の製造工程では採用できな
い。
However, this method of improving iron loss through mirror finishing cannot be adopted from a process perspective because it does not make a sufficient contribution to reducing iron loss, although it increases the cost significantly, and especially after applying and baking the insulating film that is essential after mirror finishing. Due to problems with adhesion, it has not been adopted in current manufacturing processes. Japanese Patent Publication No. 56-4150 also proposes a method in which a steel plate surface is mirror-finished and then an oxide-based ceramic thin film is vapor-deposited. However, this method cannot be used in actual manufacturing processes because the steel sheet and the ceramic layer will separate when subjected to high-temperature annealing at 600° C. or higher.

(発明が解決しようとする問題点) 発明者らは、上記した鏡面仕上げにより目指した鉄損向
上の実効をより有利に引き出すに当たって、特に今日の
省エネ材料開発の観点では上記のごときコストアップの
不利を凌駕する特性、なかでも、高温処理での特性劣化
を伴うことなくして絶縁層の密着性、耐久性の問題を克
服することが肝要と考え、この基本認識に立脚し、仕上
げ焼鈍済みの方向性けい素鋼板表面上の酸化物を除去し
た後に研磨を施して鏡面状態にする場合も含め、該酸化
物除去後における鋼板処理方法の抜本的な改善によって
とくに有利な超低鉄損化を達成する       きこ
とが、この発明の目的である。
(Problems to be Solved by the Invention) In order to more advantageously bring out the effect of improving iron loss aimed at by the above-mentioned mirror finish, the inventors have found that, especially from the viewpoint of the development of today's energy-saving materials, the above-mentioned disadvantages of increased costs should be avoided. In particular, we believe that it is important to overcome the problems of adhesion and durability of the insulating layer without deteriorating the characteristics during high-temperature treatment, and based on this basic understanding, we have developed A particularly advantageous ultra-low core loss has been achieved through drastic improvements in the steel sheet processing method after removing oxides, including the case where oxides on the surface of a silicon steel sheet are removed and then polished to a mirror-like state. It is an object of this invention to do so.

(問題点を解決するための手段) さて発明者らは、上記の目的を達成すべく種々ゆit 
L f、ニー48よ、カワツー、い□1つ。イ、よ4□
□あ   1表面上の酸化物を除去したのち、表面を化
学研磨または電解研磨によって中心線平均粗さで0.4
μm       J以下の鏡面状態とし、ついでかか
る鏡面仕上げ表       ゛ごパ。
(Means for solving the problem) In order to achieve the above object, the inventors have made various efforts.
L f, knee 48, Kawa two, □ one. I, yo4□
□A 1 After removing the oxide on the surface, the surface is chemically polished or electrolytically polished to a center line average roughness of 0.4.
A mirror finish of μm J or less is to be applied, and then a mirror finish table is applied.

面上にたとえば蒸着により好ましくは0.1〜2.0μ
m厚程度のTi薄層を被成したのち、該Ti表面層を炭
化および/または窒化させることにより、鋼板表面上に
TiC,TiNないしTi(C,N)の極薄張力被膜を
形成させること(第1発明)、さらにはりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜を形成させること
(第2発明)が、所期した目的の達成に極めて有効であ
ることの知見を得た。
Preferably 0.1 to 2.0 μm on the surface, for example by vapor deposition.
After forming a thin Ti layer with a thickness of approximately m, carbonizing and/or nitriding the Ti surface layer to form an ultra-thin tensile coating of TiC, TiN or Ti(C,N) on the surface of the steel sheet. It has been found that (first invention) and furthermore, forming an insulating film mainly composed of phosphate and colloidal silica (second invention) is extremely effective in achieving the intended purpose.

ここにTi表面層を炭化および/または窒化させる手段
としては、 仕上げ焼鈍後の一方向性けい素鋼板中にC:0.001
〜0.010wtχ(以下車に%で示す)およびN: 
0.0005〜0.010wto%を含有させておき、
かかる鋼板の鏡面仕上げ表面上にTiの表面層を被成し
てから、非酸化性雰囲気中で焼鈍を施して鋼板中のCお
よびNの純化促進を図ること(第3.第4発明)、また
同じくCおよびNを所定量含有させた仕上げ焼鈍済みの
一方向性けい素鋼板の表面に、鏡面処理後、T4の表面
層を被成してから、炭化性ガスおよび/または窒化性ガ
ス雰囲気中で焼鈍を施して、fA板中のCおよびNの純
化促進と共に該雰囲気からの浸炭および/または浸窒を
図ること(第5、第6発明)、 さらに同しくCおよびNを所定量含有させた仕上げ焼鈍
済みの一方向性けい素鋼板の表面に、鏡面処理後、T1
の表面層を被成してから、非酸化性雰囲気中で焼鈍を施
して鋼板中のCおよびNの純化促進を図り、引続き炭化
性および/または窒化性ガス雰囲気中で焼鈍を施して該
雰囲気からの浸炭および/または浸窒作用を加味するこ
と(第7゜第8発明)、 がとりわけ有効であることも併せて究明し、この発明を
完成させるに至ったのである。
Here, as a means for carbonizing and/or nitriding the Ti surface layer, C: 0.001 is added to the unidirectional silicon steel sheet after final annealing.
~0.010wtχ (shown in % below) and N:
Contains 0.0005 to 0.010 wto%,
After forming a surface layer of Ti on the mirror-finished surface of such a steel plate, annealing is performed in a non-oxidizing atmosphere to promote purification of C and N in the steel plate (third and fourth inventions); Similarly, after mirror polishing, a T4 surface layer is formed on the surface of a finish-annealed unidirectional silicon steel sheet containing a predetermined amount of C and N, and then a T4 surface layer is formed in a carbonizing gas and/or nitriding gas atmosphere. annealing in the atmosphere to promote purification of C and N in the fA plate as well as carburizing and/or nitriding from the atmosphere (fifth and sixth inventions); and further containing a predetermined amount of C and N. After mirror polishing, T1
After forming a surface layer of They also discovered that adding carburizing and/or nitriding effects (7th and 8th inventions) is particularly effective, leading to the completion of this invention.

上記各発明の成功が導かれた具体的実験に従って、以下
説明を進める。
The following explanation will be given in accordance with specific experiments that led to the success of each of the above inventions.

C: 0.042χ、Si : 3.36χ、Mn :
 0.066X、Se:0.021χ、Mo : 0.
025χおよ6sb : 0.025χを含み、かつN
を0.001〜0.015χの範囲において含有する種
々のけい素鋼スラブに熱間圧延を施して2,4龍厚の厚
の熱圧延としたのち、900°Cで3分間の均一化焼鈍
を施し、ついで950°C13分間の中間焼鈍を挟んで
2回の冷間圧延を施して最終板厚: 0.23鶴の冷延
板とした。その後露点を50〜10℃の範囲で種々に変
化させた820℃の湿水素中て脱炭を兼ねる1次再結晶
焼鈍を施したのち、鋼板表面上にAh03  :60χ
、MgO:25χ、Zr0z : 10χおよびTi0
z:5%の配合割合になる焼鈍分離剤を塗布してから、
850℃、50時間の2次再結晶焼鈍、ついで飽水素中
で1200℃、8時間の純化焼鈍を施した。
C: 0.042χ, Si: 3.36χ, Mn:
0.066X, Se: 0.021χ, Mo: 0.
025χ and 6sb: including 0.025χ and N
Various silicon steel slabs containing in the range of 0.001 to 0.015χ were hot rolled to a thickness of 2.4 dragons, and then homogenized annealed at 900°C for 3 minutes. Then, cold rolling was performed twice with intermediate annealing at 950° C. for 13 minutes to obtain a cold rolled sheet having a final thickness of 0.23 mm. Thereafter, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 820°C with the dew point varied in the range of 50 to 10°C, Ah03:60χ
, MgO: 25χ, Zr0z: 10χ and Ti0
z: After applying an annealing separator with a blending ratio of 5%,
Secondary recrystallization annealing was performed at 850°C for 50 hours, followed by purification annealing at 1200°C for 8 hours in saturated hydrogen.

その後、各鋼板表面上の酸化物を酸洗により除去したの
ち、化学研磨により中心線平均粗さで0.01μmの鏡
面状態に仕上げ、ついで蒸着装置を用いて該鏡面仕上げ
表面上に0.7μm厚のTi蒸着層を被成してから、]
1□ガス中で750℃、3時間の焼鈍を施した。
After that, the oxides on the surface of each steel plate were removed by pickling, and then chemical polishing was performed to give a mirror finish with a center line average roughness of 0.01 μm, and then a vapor deposition device was used to deposit a 0.7 μm layer on the mirror finished surface. After depositing a thick Ti vapor layer,]
Annealing was performed in 1□ gas at 750°C for 3 hours.

上記の製造工程中、仕上げ焼鈍段階における鋼中Cおよ
びN量と磁気特性、ならびに最終製品のCおよびN量と
磁気特性との関係について調べた結果を表1に示す。
Table 1 shows the results of an investigation into the relationship between the amount of C and N in the steel and the magnetic properties at the final annealing stage during the above manufacturing process, and the relationship between the amount of C and N and the magnetic properties of the final product.

また表1には、H2ガス中での焼鈍後、さらにNZ+1
(2ガス−、Nz+Ar、 CH4”Hz、CH4+A
rおよびN2+C114+11□ガス雰囲気中で750
℃、5時間の焼鈍を施した後の鋼中C,N量および磁気
特性について調べた結果を併記する。
Table 1 also shows that after annealing in H2 gas, NZ+1
(2 gas-, Nz+Ar, CH4”Hz, CH4+A
r and N2+C114+11□750 in gas atmosphere
The results of investigating the C and N contents and magnetic properties in the steel after annealing at ℃ for 5 hours are also listed.

さらに各製品板の密着性について調べた結果も、表1に
併せて示す。
Table 1 also shows the results of examining the adhesion of each product board.

表1に示した結果から明らかなように、仕上げ焼鈍時に
おけるCおよびNfiがそれぞれ100 ppm以下の
試料を、鏡面研磨後、Tiを蒸着してから、H2ガス中
で焼鈍するか、あるいはさらに炭化性および/または窒
化性ガス雰囲気中で焼鈍を施した場合に、磁束密度B、
。が1 、90T以上で、かつ鉄損り、/、。が0.8
5W/kg以下の優れた特性が得られた。
As is clear from the results shown in Table 1, samples with C and Nfi of 100 ppm or less each at the time of final annealing are mirror-polished, deposited with Ti, and then annealed in H2 gas or further carbonized. When annealing is performed in a nitriding and/or nitriding gas atmosphere, the magnetic flux density B,
. is 1, 90T or more, and iron loss, /,. is 0.8
Excellent characteristics of 5 W/kg or less were obtained.

ここに最終製品中のC,N量はいずれも、仕上げ焼鈍後
に比べて大幅に低減していることが注目される。
It is noteworthy that the amounts of C and N in the final product are both significantly reduced compared to after final annealing.

なお磁気特性が良好な製品はいずれも、密着性にも優れ
ていた。
All products with good magnetic properties also had excellent adhesion.

次に上に述べた製造工程と同様にしてTiの蒸着層を被
成した鋼板に対し、N!+H2、Nz+Ar、 CHa
+H,、Ctl、 +ArおよびNz + CHa +
 Hzガス雰囲気中で800℃、5時間の焼鈍を施して
得た製品の、鋼中C,N量および磁気特性について調べ
た結果を、密着性の調査結果と共に、表2に示す。
Next, a steel plate coated with a Ti evaporated layer in the same manner as in the manufacturing process described above was coated with N! +H2, Nz+Ar, CHa
+H,, Ctl, +Ar and Nz + CHa +
Table 2 shows the results of investigating the C and N contents in the steel and the magnetic properties of the products obtained by annealing at 800° C. for 5 hours in a Hz gas atmosphere, together with the results of the adhesion investigation.

表2から明らかなように、仕上げ焼鈍後のC3Nilが
それぞれ100 ppm以下の試料を、炭化性および/
または窒化性ガス雰囲気中で焼鈍した場合に、磁束密度
B1゜が1.90T以上で、かつ鉄損WI?/s11が
0.83W/kg以下の優れた特性が得られた。
As is clear from Table 2, the samples with C3Nil of 100 ppm or less after final annealing were evaluated for carbonization and/or
Or, when annealing is performed in a nitriding gas atmosphere, the magnetic flux density B1° is 1.90T or more, and the iron loss WI? Excellent characteristics with /s11 of 0.83 W/kg or less were obtained.

また上記のC,N含有量のものはいずれも、密着性にも
優れたいた。
Furthermore, all of the above-mentioned C and N content materials also had excellent adhesion.

(作 用) 上に述べた磁気特性の向上は、Ti表面層被成後に、炭
化および/または窒化処理を施すことによって、m板表
面にTiC,TiNないしTi(C,N)からなる極薄
被膜が形成され、かかる被膜が鋼板に対し効果的に張力
を付与することによる。
(Function) The above-mentioned improvement in magnetic properties can be achieved by applying carbonization and/or nitriding treatment after forming the Ti surface layer to form an ultra-thin layer made of TiC, TiN or Ti(C,N) on the surface of the m-plate. A coating is formed and the coating effectively applies tension to the steel plate.

またとくに、Ti表面膜の炭化および/または窒化処理
の際に、鋼板中のC,Nの拡散を利用することによって
、鋼板と該被膜の接合度が高まり、被膜密着性のより一
層の向上を図り得る。
In particular, by utilizing the diffusion of C and N in the steel sheet during the carbonization and/or nitriding treatment of the Ti surface film, the degree of bonding between the steel sheet and the film is increased, further improving the adhesion of the film. It is possible.

次に、一方向性けい素鋼板の製造工程について一般的な
説明を含めてより詳しく説明する。
Next, the manufacturing process of the unidirectional silicon steel sheet will be described in more detail, including a general explanation.

まず出発素材は、従来公知の一方向性けい素鋼素材、た
とえば ■c : o、oa〜0.050χ、 St : 2.
50〜4.5χ、Mn : 0.01〜0.2χ、  
Mo : 0.003〜0.1χ、Sb ? 0.00
5〜0.2χ、 N : 0.0005〜0.01χ、
SおよびSeの1種あるいは2種合計で、0.005〜
0.05%を含有する組成、 ■C: 0.03〜0.08χ、 Si : 2.0〜
4.0χ、S : 0.005〜0.05χ、N : 
0.001〜0.01χ、Al : 0.01〜0.0
6χ、 Sn : 0.01〜0.5χ、Cu : 0
.01〜0.3χ、  Mn : 0.01〜0.2χ
を含有する組成、 ■C70,03〜0.06χ、 St : 2.0〜4
.0χ、s : o、oos〜0.05χ、B : 0
.0QO3〜0.0040χ、N : 0.001〜0
.01χ、Mn : 0.01〜0.2Kを含有する組
成、 ■C: 0.03〜0.05X 、Si : 2.0〜
4.0!。
First, the starting material is a conventionally known unidirectional silicon steel material, such as ■c: o, oa to 0.050χ, St: 2.
50~4.5χ, Mn: 0.01~0.2χ,
Mo: 0.003~0.1χ, Sb? 0.00
5~0.2χ, N: 0.0005~0.01χ,
The total of one or two types of S and Se is 0.005~
Composition containing 0.05%, ■C: 0.03~0.08χ, Si: 2.0~
4.0χ, S: 0.005-0.05χ, N:
0.001~0.01χ, Al: 0.01~0.0
6χ, Sn: 0.01~0.5χ, Cu: 0
.. 01~0.3χ, Mn: 0.01~0.2χ
Composition containing, ■C70,03~0.06χ, St: 2.0~4
.. 0χ, s: o, oos~0.05χ, B: 0
.. 0QO3~0.0040χ, N: 0.001~0
.. 01χ, Mn: Composition containing 0.01-0.2K, ■C: 0.03-0.05X, Si: 2.0-
4.0! .

sb : o、oos〜0.2χ、 N : 0.00
05〜0.01χ、SおよびSeのうちいずれか1種ま
たは2種:0.005〜0.05χを含有する組成、■
C: 0.03〜0.05χ、 Si : 2.0〜4
.0χ、N : 0.0005〜0.01χ、Sおよび
Ssのうちいずれか1種または2種70.005〜0.
05χを含有する組成、 の如きにおいて適用可能である。
sb: o, oos~0.2χ, N: 0.00
Composition containing 0.05 to 0.01χ, any one or two of S and Se: 0.005 to 0.05χ, ■
C: 0.03~0.05χ, Si: 2.0~4
.. 0χ, N: 0.0005-0.01χ, any one or two of S and Ss 70.005-0.
It is applicable in compositions containing 05χ.

次に熱延板は800〜1100℃の均一化焼鈍を経て1
回の冷間圧延で最終板厚とする1回冷延法か又は、通常
850℃から1050℃の中間焼鈍をはさんでさらに冷
延する2回冷延法にて、後者の場合最初の圧下率は50
%から80%程度、最終の圧下率は50%から85%程
度で0.151mから0.35+n厚の最終冷延板厚と
する。
Next, the hot-rolled sheet undergoes uniform annealing at 800 to 1100°C.
One-time cold rolling method, in which the final plate thickness is obtained by two cold rolling steps, or two-step cold rolling method, in which intermediate annealing is usually performed at 850°C to 1050°C, and then further cold rolling is performed.In the latter case, the first rolling rate is 50
% to about 80%, the final rolling reduction is about 50% to 85%, and the final cold rolled plate thickness is from 0.151 m to 0.35+n thickness.

最終冷延を終わり製品板厚に仕上げた綱板は表面脱脂後
750℃から850℃の湿水素中で脱炭1次再結晶焼鈍
を施す。
After finishing the final cold rolling, the steel plate finished to the product thickness is surface degreased and then decarburized and primary recrystallization annealed in wet hydrogen at 750°C to 850°C.

ここに脱炭処理は、通常後続の2次再結晶焼鈍において
ゴス方位に強く集積した2次再結晶粒を発達させると共
に、純化焼鈍における鋼中Cのより一層の低減のために
、C量をできる限り低くし、もって鉄損の低減を図るた
めに行われるものであるが、この発明ではすでに逮べた
ように、Tiを蒸着した後の焼鈍においてNと共にCの
純化が促進されることから、この脱炭焼鈍段階において
は従来はど厳しい脱炭を図る必要はなく、0.01%以
下程度(好ましくは0.001%以上)で充分である。
Here, the decarburization treatment usually develops secondary recrystallized grains that are strongly accumulated in the Goss orientation in the subsequent secondary recrystallization annealing, and also reduces the amount of C in the steel in order to further reduce C in the steel in the purification annealing. This is done in order to reduce the iron loss as much as possible, and as already shown in this invention, the purification of C along with N is promoted in the annealing after depositing Ti. In this decarburization annealing step, it is not necessary to carry out severe decarburization as in the past, and about 0.01% or less (preferably 0.001% or more) is sufficient.

その後は通常、鋼板表面に九〇を主成分とする焼鈍分離
剤を塗布するが、この発明では、一般的には仕上げ焼鈍
後の形成を不可欠としていたフォルステライトをとくに
形成させない方がその後の鋼板の鏡面処理を簡便にする
のに有効であるので、焼鈍分離剤としてAIZO31Z
r0z+ TiOz等を50%以上をMgOに混入して
使用するのが好ましい。
After that, an annealing separator mainly composed of 90 is applied to the surface of the steel sheet, but in this invention, it is better not to form forsterite, which is generally required to be formed after finish annealing, so that the subsequent steel sheet AIZO31Z is used as an annealing separator because it is effective in simplifying the mirror finishing of
It is preferable to use 50% or more of r0z+ TiOz or the like mixed with MgO.

その後2次再結晶焼鈍を行うが、この工程は(110)
 <001>方位の2次再結晶粒を充分発達させるため
に施されるもので、通常箱焼鈍によって直ちに1000
℃以上に昇温し、その温度に保持することによって行わ
れる。
After that, secondary recrystallization annealing is performed, but this step is (110)
This is done to sufficiently develop secondary recrystallized grains with <001> orientation, and is usually box annealed to immediately
This is done by raising the temperature above ℃ and maintaining it at that temperature.

この場合(110) <001>方位に、高度に揃った
2次再結晶粒組織を発達させるためには820℃から9
00℃の低温で保定焼鈍する方が有利であり、そのほか
例えば0.5〜15°c / hの昇温速度の除熱焼鈍
でもよい。
In this case, in order to develop a highly uniform secondary recrystallized grain structure in the (110) <001> orientation, the
It is more advantageous to carry out retention annealing at a low temperature of 0.000C, and in addition, heat removal annealing at a temperature increase rate of 0.5 to 15C/h may also be used.

ついで飽水素中で純化焼鈍を施すが、製品板における被
膜密着性の一層の改善のためには、鋼板中にc : o
、ooi〜0.01%およびN : 0.0005〜0
.01%を残存させることが肝要である。このためには
純化焼鈍において、1100℃以上、1〜20時間とい
う条件の中から適切な焼鈍条件を選択すればよい。
Purification annealing is then performed in a saturated hydrogen atmosphere, but in order to further improve the film adhesion of the product sheet, c:o is added to the steel sheet.
, ooi~0.01% and N: 0.0005~0
.. It is important that 0.1% remain. For this purpose, appropriate annealing conditions may be selected from among the conditions of 1100° C. or higher and 1 to 20 hours in purification annealing.

その後、鋼板表面の酸化物被膜を、公知の酸洗などの化
学的除去や切削、研削などの機械的除去法またはそれら
の組合わせより除去する。
Thereafter, the oxide film on the surface of the steel plate is removed by known chemical removal methods such as pickling, mechanical removal methods such as cutting and grinding, or a combination thereof.

この酸化物除去処理の後、化学研磨、電解研磨などの化
学的研磨や、パフ研磨などの機械的研磨あるいはそれら
の組合せなど従来の手法により鋼板表面を鏡面状態つま
り中心線平均粗さ0.4μm以下に仕上げる。
After this oxide removal treatment, conventional methods such as chemical polishing such as chemical polishing and electrolytic polishing, mechanical polishing such as puff polishing, or a combination thereof are used to polish the steel plate surface to a mirror-like state, that is, to a center line average roughness of 0.4 μm. Finish as below.

その後、鏡面仕上げ表面上にTiの表面層を被成するが
、このときのTi表面層厚は0.1〜2.0μm程度と
するのが好ましい。
Thereafter, a Ti surface layer is formed on the mirror-finished surface, and the thickness of the Ti surface layer at this time is preferably about 0.1 to 2.0 μm.

またTiの表面層の被成方法は、これまで述べてきた蒸
着の他にCVD法、イオンブレーティング法あるいはイ
オンインプランテーション法等の方法であっても良い。
Further, the method for forming the Ti surface layer may be, in addition to the vapor deposition described above, a method such as a CVD method, an ion blasting method, or an ion implantation method.

ついでTi表面層付き方向性けい素鋼板に、非酸化性雰
囲気、また炭化性および/または窒化性雰囲気、さらに
は非酸化性雰囲気ついで炭化性および/または窒化性雰
囲気中で焼鈍を施すわけであるが、これらの焼鈍処理は
次の要領で行う。
The grain-oriented silicon steel sheet with a Ti surface layer is then annealed in a non-oxidizing atmosphere, a carbonizing and/or nitriding atmosphere, and further annealing in a non-oxidizing atmosphere and then a carbonizing and/or nitriding atmosphere. However, these annealing treatments are performed in the following manner.

i)非酸化性雰囲気中での焼鈍 雰囲気ガスとしては、■2ガスやArガスがとりわけ有
利に適合し、かかる雰囲気中において500℃以上の温
度で焼鈍を行い、鋼板中のC,Hの表面への拡散を促進
させるのである。このとき鋼中C量がN量に比べて多い
場合には、鋼板表面には主としてTiCよりなる極薄被
膜が、一方送の場合には主としてTiNよりなる極薄被
膜が形成されることになる。
i) Annealing in a non-oxidizing atmosphere As the atmospheric gas, ■2 gas or Ar gas is particularly advantageously suitable, and annealing is carried out in such an atmosphere at a temperature of 500°C or higher, and the surface of C and H in the steel sheet is This promotes the spread of the virus. At this time, if the amount of C in the steel is greater than the amount of N, an extremely thin film consisting mainly of TiC will be formed on the surface of the steel sheet, and in the case of one-way feeding, an extremely thin coating mainly consisting of TiN will be formed. .

ii )炭化性および/または窒化性ガス雰囲気中での
焼鈍 炭化性ガスとしては、CH,やC2H4などの炭化水素
系ガスおよびCOガス、さらにはこれらのガスとN2や
Arガスとの混合ガスが、また窒化性ガスとしては、N
2ガスやNlhガスならびにこれらのガスとN2やAr
ガスとの混合ガスが有利に適合し、かかる雰囲気中にお
いて500℃以上の温度で焼鈍を行うことによって、鋼
中C,Nの純化促進ならびに雰囲気ガスからの浸炭およ
び/または浸窒を図ることにより、鋼板表面に炭化物お
よび/または窒化物からなる混合薄膜を形成させる。
ii) Annealing in a carbonizing and/or nitriding gas atmosphere Carbonizing gases include hydrocarbon gases such as CH and C2H4, CO gas, and mixed gases of these gases and N2 and Ar gases. , and as a nitriding gas, N
2 gas and Nlh gas as well as these gases and N2 and Ar
By performing annealing in such an atmosphere at a temperature of 500°C or higher, the purification of C and N in the steel and carburizing and/or nitriding from the atmospheric gas are advantageously suited. , a mixed thin film consisting of carbide and/or nitride is formed on the surface of the steel plate.

さらにこのようにして形成した極薄張力被膜上に、りん
酸塩とコロイダルシリカを主成分とする絶縁被膜の塗布
焼付を行うことが、100万KV^にも上る大容量トラ
ンスの使途において当然に必要であり、この絶縁性塗布
焼付層の形成の如きは、従来公知の手法をそのまま用い
て良い。
Furthermore, it is natural to apply and bake an insulating film containing phosphate and colloidal silica as main components on the ultra-thin tension film formed in this way when using a large capacity transformer of up to 1 million KV^. This is necessary, and conventionally known methods may be used as they are for forming the insulating coated and baked layer.

(実施例) (A) C: 0.041χ、St : 3.48χ9
、Mn : 0.062χ、Mo : 0.025X、
 Se : 0.022χ、Sb : 0.025χお
よびN:0.0038χ (B) C: 0.053X、St : 3.32χ、
Mn : 0.072χ、S:0.018χ、Al :
 0.025χおよびN : 0.0066χ(C) 
 C: 0.039χ、Si : 3.31χ 、Mn
 : 0.059χ、S:0.030χ、B : 0.
0019χ、N : 0.0068χおよびCu:0.
15χ (D)  C: 0.046χ、Si : 3.09χ
 、Mn : 0.063χ、Se:0.019χおよ
びSb : 0.025χ(E)  C: 0.038
χ、St : 3.08χ 、Mn : 0.071χ
、S :0.019% を含有する組成になるけい素鋼熱延板を用いた。
(Example) (A) C: 0.041χ, St: 3.48χ9
, Mn: 0.062χ, Mo: 0.025X,
Se: 0.022χ, Sb: 0.025χ and N: 0.0038χ (B) C: 0.053X, St: 3.32χ,
Mn: 0.072χ, S: 0.018χ, Al:
0.025χ and N: 0.0066χ(C)
C: 0.039χ, Si: 3.31χ, Mn
: 0.059χ, S: 0.030χ, B: 0.
0019χ, N: 0.0068χ and Cu: 0.
15χ (D) C: 0.046χ, Si: 3.09χ
, Mn: 0.063χ, Se: 0.019χ and Sb: 0.025χ(E)C: 0.038
χ, St: 3.08χ, Mn: 0.071χ
, S: 0.019%.

まず熱延板(A) 、 (C) 、 (D) 、 (E
)については900℃で均一化焼鈍を行った。他方熱延
板(B)は、1050℃で3分間の均一化焼鈍後、90
0℃から急冷した。
First, hot rolled sheets (A), (C), (D), (E
), uniform annealing was performed at 900°C. On the other hand, the hot rolled sheet (B) was homogenized at 1050°C for 3 minutes and then heated to 90°C.
It was rapidly cooled from 0°C.

その後(A) 、 (D) 、 ([りについては、9
50℃の中間焼鈍を挟んで2回の冷間圧延を行って0.
23mの最終板厚とし、また(B) 、 (C)は1回
の強冷延によって0.23mm厚の最終冷延板に仕上げ
たが、冷延途中に300℃の温間圧延を挟んだ。
After that, (A), (D), ([Regarding 9
Cold rolling was performed twice with intermediate annealing at 50°C to reduce the temperature to 0.
The final plate thickness was 23 m, and (B) and (C) were finished in a final cold-rolled plate with a thickness of 0.23 mm by one round of strong cold rolling, but warm rolling at 300°C was interposed during cold rolling. .

づいでこれらの冷延板表面を脱脂したのち、露点25℃
の湿水素中における830℃の脱炭焼鈍後、A1zO3
ニア0! 、MgO:25χ、zrOt=5%からなる
焼鈍分離剤を塗布した。
Next, after degreasing the surface of these cold-rolled plates, the dew point was reduced to 25℃.
After decarburization annealing at 830°C in wet hydrogen, A1zO3
Near 0! , MgO:25χ, zrOt=5%.

その後、(八)、(D)は850℃で50時間の2次再
結晶焼鈍を行ったのち、飽水素中で1200℃、6時間
の純化焼鈍を施した。一方(B) 、 (C) 、 (
E)は850℃から5℃/hで1050℃まで昇温しで
2次再結晶させたのち、飽水素中で1200℃、8時間
の純化焼鈍を施した。
Thereafter, (8) and (D) were subjected to secondary recrystallization annealing at 850° C. for 50 hours, and then subjected to purification annealing at 1200° C. for 6 hours in saturated hydrogen. On the other hand, (B), (C), (
E) was heated from 850°C to 1050°C at a rate of 5°C/h for secondary recrystallization, and then subjected to purification annealing at 1200°C for 8 hours in saturated hydrogen.

その後得られた各鋼板を酸洗処理して、表面の酸化被膜
を除去してから、化学研磨によって中心線平均粗さ0.
03μm以下の鏡面に仕上げた。
Thereafter, each steel plate obtained was pickled to remove the oxide film on the surface, and then chemically polished to a center line average roughness of 0.
Finished with a mirror surface of 0.03 μm or less.

ついで鏡面仕上げ表面上に、0.7μm厚のTiの蒸着
層を被成した。
Then, a 0.7 μm thick Ti vapor deposited layer was formed on the mirror-finished surface.

その後(A) 、 (B) 、 (C)については、N
2ガス雰囲気中で800℃、5時間の焼鈍を施し、一部
の試料についてはさらにNZおよび/またはCH,ガス
を含有する雰囲気中で700℃、3時間の焼鈍を施した
After that, for (A), (B), and (C), N
Annealing was performed at 800° C. for 5 hours in a two-gas atmosphere, and some samples were further annealed at 700° C. for 3 hours in an atmosphere containing NZ and/or CH gas.

また(D) 、 (E)については、直ちにN2および
/またはCH,ガスを含有する雰囲気中で800℃、5
時間の焼鈍を施した。
For (D) and (E), immediately conduct the test at 800°C for 50 minutes in an atmosphere containing N2 and/or CH gas.
Subjected to time annealing.

かくして得られたTiC、TiNないしTi(C,N)
からなる極薄被膜をそなえる方向性けい素鋼板の鋼中C
,N量、磁気特性および密着性について調べた結果を、
仕上げ焼鈍後の鋼中C,N量および磁気特性と比較して
、表3に示す。
TiC, TiN or Ti(C,N) thus obtained
C of grain-oriented silicon steel plate with an ultra-thin coating consisting of
, the results of investigating the amount of N, magnetic properties and adhesion.
Table 3 shows a comparison of the C and N contents and magnetic properties in the steel after final annealing.

また表3には、上記の極薄被膜付き方向性けい素鋼板の
表面に、さらにりん酸塩とコロイダルシリカを主成分と
するコーティング被膜を被成した製品の磁気特性につい
ての調査結果も併せて示す。
Table 3 also includes the results of a study on the magnetic properties of a product in which the surface of the grain-oriented silicon steel sheet with the ultra-thin coating described above is further coated with a coating film containing phosphate and colloidal silica as the main components. show.

ン ;1 “: )、5 表3に示した成績から明らかなように、この発明に従い
、仕上げ焼鈍後の一方向性けい素鋼板につき、その表面
酸化物除去後、鏡面に仕上げてからTiの薄膜を被成し
たのち、非酸化性雰囲気中、または炭化性および/また
は窒化性ガス雰囲気中、さらには非酸化性雰囲気中つい
で炭化性および/または窒化性ガス雰囲気中において焼
鈍を施し、鋼板表面上にTiC,TiNないしTi(C
,N)の極薄被膜を形成させることによって、良好な被
膜密着性の下に磁気特性とくに鉄損特性の著しい向上が
達成された。
1 ": ), 5 As is clear from the results shown in Table 3, according to the present invention, the unidirectional silicon steel sheet after finish annealing was polished to a mirror surface after the surface oxide was removed, and then Ti was applied. After forming the thin film, annealing is performed in a non-oxidizing atmosphere, or in a carbonizing and/or nitriding gas atmosphere, or further in a non-oxidizing atmosphere, and then in a carbonizing and/or nitriding gas atmosphere to improve the surface of the steel sheet. TiC, TiN or Ti(C
, N), a remarkable improvement in magnetic properties, particularly iron loss properties, was achieved while maintaining good film adhesion.

(発明の効果) かくしてこの発明によれば、巻鉄心向はトランス材料と
しての使途におけるような高温でのひずみ取り焼鈍の如
き高温処理の適用の有無にかかわらず、磁気特性とくに
鉄損特性の大幅な改善を被膜密着性の向上に併せて実現
することができる。
(Effects of the Invention) Thus, according to the present invention, the winding core direction can significantly improve magnetic properties, especially iron loss properties, regardless of whether high-temperature treatment such as high-temperature strain relief annealing is applied when used as a transformer material. It is possible to achieve significant improvements in combination with improved film adhesion.

Claims (1)

【特許請求の範囲】 1、仕上げ焼鈍済みの一方向性けい素鋼板につき、その
表面酸化物を除去してから、研磨を施して中心線平均粗
さで0.4μm以下の鏡面状態に仕上げ、ついで該鏡面
仕上げ表面上にTiの表面層を被成したのち、該Ti表
面層を炭化および/または窒化させることにより、鋼板
表面上にTiC、TiNないしTi(C、N)の極薄張
力被膜を形成させることを特徴とする超低鉄損一方向性
けい素鋼板の製造方法。 2、仕上げ焼鈍済みの一方向性けい素鋼板につき、その
表面酸化物を除去してから、研磨を旋して中心線平均粗
さで0.4μm以下の鏡面状態に仕上げ、ついで該鏡面
仕上げ表面上にTiの表面層を被成したのち、該Ti表
面層を炭化および/または窒化させることにより、鋼板
表面上にTiC、TiNないしTi(C、N)の極薄張
力被膜を形成し、しかるのちりん酸塩とコロイダルシリ
カを主成分とする絶縁被膜を形成させることを特徴とす
る超低鉄損一方向性けい素鋼板の製造方法。 3、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面酸化物を除去してから、研磨を施
して中心線平均粗さで0.4μm以下の鏡面状態に仕上
げ、ついで該鏡面仕上げ表面上にTiの表面層を被成し
たのち、非酸化性雰囲気中で焼鈍を施して鋼板中のCお
よびNの純化促進を図ることにより、鋼板表面上にTi
C、TiNないしTi(C、N)の極薄張力被膜を形成
させることを特徴とする超低鉄損一方向性けい素鋼板の
製造方法。 4、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面酸化物を除去してから、研磨を施
して中心線平均粗さで0.4μm以下の鏡面状態に仕上
げ、ついで該鏡仕上げ表面上にTiの表面層を破戒した
のち、非酸化性雰囲気中で焼鈍を施して鋼板中のCおよ
びNの純化促進を図ることにより、鋼板表面上にTiC
、TiNないしTi(C、N)の極薄張力被膜を形成し
、しかるのちりん酸塩とコロイダルシリカを主成分とす
る絶縁被膜を形成させることを特徴とする超低鉄損一方
向性けい素鋼板の製造方法。 5、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面酸化物を除去してから、研磨を施
して中心線平均粗さで0.4μm以下の鏡面状態に仕上
げ、ついで該鏡面仕上げ表面上にTiの表面層を被成し
たのち、炭化性および/または窒化性ガス雰囲気中で焼
鈍を施して、鋼板中のCおよびNの純化促進ならびに該
雰囲気からの浸炭および/または浸窒作用により、鋼板
表面上にTiC、TiNないしTi(C、N)の極薄張
力被膜を形成させることを特徴とする超低鉄損一方向性
けい素鋼板の製造方法。 6、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面酸化物を除去してから、研磨を施
して中心線平均粗さで0.4μm以下の鏡面状態に仕上
げ、ついで該鏡面仕上げ表面上にTiの表面層を被成し
たのち、炭化性および/または窒化性ガス雰囲気中で焼
鈍を施して、鋼板中のCおよびNの純化促進ならびに該
雰囲気からの浸炭および/または浸窒作用により、鋼板
表面上にTiC、TiNないしTi(C、N)の極薄張
力被膜を形成し、しかるのちりん酸塩とコロイダルシリ
カを主成分とする絶縁被膜を形成させることを特徴とす
る超低鉄損一方向性けい素鋼板の製造方法。 7、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面酸化物を除去してから、研磨を施
して中心線平均粗さで0.4μm以下の鏡面状態に仕上
げ、ついで該鏡面仕上げ表面上にTiの表面層を被成し
たのち、非酸化性雰囲気中で焼鈍を施して鋼板中のCお
よびNの純化促進を図り、さらに炭化性および/または
窒化性ガス雰囲気中で焼鈍を施して該雰囲気からの浸炭
および/または浸窒作用を加味することにより、鋼板表
面上にTiC、TiNないしTi(C、N)の極薄張力
被膜を形成させることを特徴とする超低鉄損一方向性け
い素鋼板の製造方法。 8、C:0.001〜0.010wt%およびN:0.
0005〜0.0100wt% を含有する組成になる仕上げ焼鈍済みの一方向性けい素
鋼板につき、その表面酸化物を除去してから、研磨を施
して中心線平均粗さで0.4μm以下の鏡面状態に仕上
げ、ついで該鏡面仕上げ表面上にTiの表面層を被成し
たのち、非酸化性雰囲気中で焼鈍を施して鋼板中のCお
よびNの純化促進を図り、さらに炭化性および/または
窒化性ガス雰囲気中で焼鈍を施して該雰囲気からの浸炭
および/または浸窒作用を加味することにより、鋼板表
面上にTiC、TiNないしTi(C、N)の極薄張力
被膜を形成し、しかるのちりん酸塩とコロイダルシリカ
を主成分とする絶縁被膜を形成させることを特徴とする
超低鉄損一方向性けい素鋼板の製造方法。
[Claims] 1. After removing surface oxides from a finish-annealed unidirectional silicon steel plate, polishing it to a mirror finish with a center line average roughness of 0.4 μm or less; Next, after forming a Ti surface layer on the mirror-finished surface, the Ti surface layer is carbonized and/or nitrided to form an ultra-thin tensile coating of TiC, TiN or Ti(C,N) on the surface of the steel sheet. A method for producing an ultra-low iron loss unidirectional silicon steel sheet, characterized by forming a unidirectional silicon steel sheet. 2. After removing surface oxides from the finish-annealed unidirectional silicon steel sheet, it is polished to a mirror-like state with a center line average roughness of 0.4 μm or less, and then the mirror-finished surface is After forming a Ti surface layer thereon, the Ti surface layer is carbonized and/or nitrided to form an ultra-thin tensile coating of TiC, TiN or Ti (C, N) on the surface of the steel sheet, and then A method for producing an ultra-low core loss unidirectional silicon steel sheet, which is characterized by forming an insulating film containing phosphoric acid salt and colloidal silica as main components. 3, C: 0.001 to 0.010 wt% and N: 0.
For finish annealed unidirectional silicon steel sheets with a composition containing 0.0005 to 0.0100 wt%, surface oxides are removed and then polished to a mirror surface with a center line average roughness of 0.4 μm or less. After forming a Ti surface layer on the mirror-finished surface, annealing is performed in a non-oxidizing atmosphere to promote the purification of C and N in the steel sheet.
A method for producing an ultra-low core loss unidirectional silicon steel sheet, which comprises forming an ultra-thin tensile coating of C, TiN or Ti (C, N). 4, C: 0.001 to 0.010 wt% and N: 0.
For finish annealed unidirectional silicon steel sheets with a composition containing 0.0005 to 0.0100 wt%, surface oxides are removed and then polished to a mirror surface with a center line average roughness of 0.4 μm or less. TiC on the surface of the steel plate is polished to a fine state, and then the surface layer of Ti is removed on the mirror-finished surface, and then annealed in a non-oxidizing atmosphere to promote the purification of C and N in the steel plate.
, an ultra-low core loss unidirectional silicon that forms an ultra-thin tensile film of TiN or Ti(C,N), and forms an insulating film whose main components are phosphate and colloidal silica. Method of manufacturing steel plates. 5, C: 0.001-0.010 wt% and N: 0.
For finish annealed unidirectional silicon steel sheets with a composition containing 0.0005 to 0.0100 wt%, surface oxides are removed and then polished to a mirror surface with a center line average roughness of 0.4 μm or less. After forming a Ti surface layer on the mirror-finished surface, annealing is performed in a carbonizing and/or nitriding gas atmosphere to promote the purification of C and N in the steel sheet and remove it from the atmosphere. A method for producing an ultra-low iron loss unidirectional silicon steel sheet, which is characterized by forming an ultra-thin tensile film of TiC, TiN or Ti(C,N) on the surface of the steel sheet by carburizing and/or nitriding. . 6, C: 0.001-0.010 wt% and N: 0.
For finish annealed unidirectional silicon steel sheets with a composition containing 0.0005 to 0.0100 wt%, surface oxides are removed and then polished to a mirror surface with a center line average roughness of 0.4 μm or less. After forming a Ti surface layer on the mirror-finished surface, annealing is performed in a carbonizing and/or nitriding gas atmosphere to promote the purification of C and N in the steel sheet and remove it from the atmosphere. By carburizing and/or nitriding, an ultra-thin tensile film of TiC, TiN or Ti(C,N) is formed on the surface of the steel sheet, and an insulating film mainly composed of tiphosphate and colloidal silica is formed. A method for producing an ultra-low core loss unidirectional silicon steel sheet. 7, C: 0.001-0.010 wt% and N: 0.
For finish annealed unidirectional silicon steel sheets with a composition containing 0.0005 to 0.0100 wt%, surface oxides are removed and then polished to a mirror surface with a center line average roughness of 0.4 μm or less. After forming a surface layer of Ti on the mirror-finished surface, annealing is performed in a non-oxidizing atmosphere to promote purification of C and N in the steel sheet, and further carbonization and/or nitridation is performed. It is possible to form an ultra-thin tensile coating of TiC, TiN or Ti(C,N) on the surface of a steel sheet by annealing in a hostile gas atmosphere and adding carburizing and/or nitriding effects from the atmosphere. A method for manufacturing unidirectional silicon steel sheets with a feature of ultra-low iron loss. 8, C: 0.001-0.010 wt% and N: 0.
For finish annealed unidirectional silicon steel sheets with a composition containing 0.0005 to 0.0100 wt%, surface oxides are removed and then polished to a mirror surface with a center line average roughness of 0.4 μm or less. After forming a surface layer of Ti on the mirror-finished surface, annealing is performed in a non-oxidizing atmosphere to promote purification of C and N in the steel sheet, and further carbonization and/or nitridation is performed. By carrying out annealing in a hostile gas atmosphere and adding carburizing and/or nitriding effects from the atmosphere, an ultra-thin tensile coating of TiC, TiN or Ti (C, N) is formed on the surface of the steel sheet, and then A method for producing an ultra-low core loss unidirectional silicon steel sheet, which is characterized by forming an insulating film containing phosphoric acid salt and colloidal silica as main components.
JP18016385A 1985-02-22 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate Pending JPS6240703A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP18016385A JPS6240703A (en) 1985-08-16 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate
EP86301071A EP0193324B1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
DE8686301071T DE3666229D1 (en) 1985-02-22 1986-02-17 Extra-low iron loss grain oriented silicon steel sheets
AU53747/86A AU570835B2 (en) 1985-02-22 1986-02-19 Metal nitride/carbide coated grain oriented silicon steel sheet
CA000502337A CA1297070C (en) 1985-02-22 1986-02-20 Extra-low iron loss grain oriented silicon steel sheets
EP86904726A EP0215134B1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
US06/832,172 US4698272A (en) 1985-02-22 1986-02-21 Extra-low iron loss grain oriented silicon steel sheets
US06/907,734 US4713123A (en) 1985-02-22 1986-02-21 Method of producing extra-low iron loss grain oriented silicon steel sheets
DE8686904726T DE3673290D1 (en) 1985-02-22 1986-02-21 MANUFACTURING METHOD FOR UNIDIRECTIONAL SILICON STEEL PLATE WITH EXCEPTIONAL IRON LOSS.
PCT/JP1986/000087 WO1986004929A1 (en) 1985-02-22 1986-02-21 Process for producing unidirectional silicon steel plate with extraordinarily low iron loss
KR1019860001259A KR910006011B1 (en) 1985-02-22 1986-02-22 Extra-low iron loss grain oriented silicon steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18016385A JPS6240703A (en) 1985-08-16 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate

Publications (1)

Publication Number Publication Date
JPS6240703A true JPS6240703A (en) 1987-02-21

Family

ID=16078498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18016385A Pending JPS6240703A (en) 1985-02-22 1985-08-16 Manufacture of ultralow iron loss unidirectional silicon steel plate

Country Status (1)

Country Link
JP (1) JPS6240703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819241A (en) * 1994-06-24 1996-01-19 Fuji Elelctrochem Co Ltd Stator yoke and manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819241A (en) * 1994-06-24 1996-01-19 Fuji Elelctrochem Co Ltd Stator yoke and manufacture

Similar Documents

Publication Publication Date Title
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JPS6240703A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JPS61201732A (en) Manufacture of grain oriented silicon steel sheet having thermal stability and ultralow iron loss
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JPS6240704A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate with excellent tight contact
JPS6240702A (en) Manufacture of ultralow iron loss unidirectional silicon steel plate
JP2724094B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JPS62103374A (en) Grain-oriented silicon steel sheet having superior magnetic characteristic
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS6270520A (en) Manufacture of ultralow iron loss grain oriented silicon steel sheet
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet
JPS621820A (en) Grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPS6240317A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPH11243005A (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof
JPS6223984A (en) Very thin tensile film for improving compressive stress characteristic of magnetostriction of grain-oriented silicon steel sheet
JPS621822A (en) Production of grain oriented silicon steel sheet having thermal stability and ultra-low iron loss
JPH075973B2 (en) Manufacturing method of ultra-low iron loss unidirectional silicon steel sheet
JPH0335377B2 (en)
JPS6263407A (en) Production of low iron loss unidirectional silicon steel plate
JPS6263408A (en) Production of super low iron loss unidirectional silicon plate
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss